101
|
Boroumand N, Saghi H, Avan A, Bahreyni A, Ryzhikov M, Khazaei M, Hassanian SM. Therapeutic potency of heat-shock protein-90 pharmacological inhibitors in the treatment of gastrointestinal cancer, current status and perspectives. J Pharm Pharmacol 2017; 70:151-158. [DOI: 10.1111/jphp.12824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Heat-shock protein-90 (HSP90) chaperone machinery is critical to the folding, stability and activity of several client proteins including many responsible for tumour initiation, progression and metastasis. Overexpression of HSP90 is correlated with poor prognosis of GI cancer.
Key findings
Pharmacological inhibitors of HSP90 suppress tumorigenic effects of HSP90 by suppressing angiogenesis, survival, metastasis and drug resistance in GI cancer. This review summarizes the role of HSP90 inhibitors in the treatment of GI cancer.
Summary
We have presented different antitumour mechanisms of HSP90 inhibitors in cancer treatment. Suppression of HSP90 signalling via specific and novel pharmacological inhibitors is a potentially novel therapeutic approach for patients with GI cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Nadia Boroumand
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Saghi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
102
|
Gugliandolo A, Diomede F, Cardelli P, Bramanti A, Scionti D, Bramanti P, Trubiani O, Mazzon E. Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: A promising strategy for neuroregeneration. J Biomed Mater Res A 2017; 106:126-137. [PMID: 28879677 DOI: 10.1002/jbm.a.36213] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126-137, 2018.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Cardelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.,Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello,", National Research Council of Italy, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
103
|
Yeramian A, García V, Bergadà L, Domingo M, Santacana M, Valls J, Martinez-Alonso M, Carceller JA, Cussac AL, Dolcet X, Matias-Guiu X. Bioluminescence Imaging to Monitor the Effects of the Hsp90 Inhibitor NVP-AUY922 on NF-κB Pathway in Endometrial Cancer. Mol Imaging Biol 2017; 18:545-56. [PMID: 26604096 DOI: 10.1007/s11307-015-0907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE In this study, we first aimed to evaluate the effects in vitro and in vivo, of the Hsp90 inhibitor NVP-AUY922, in endometrial cancer (EC). We also aimed to track nuclear factor kappa B (NF-κB) signalling, a key pathway involved in endometrial carcinogenesis and to check whether NVP-AUY922 treatment modulates it both in vitro and in vivo. PROCEDURES I n vitro effects of NVP-AUY922 on EC cell growth and the signalling pathways were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic assays, Western Blot and luciferase assay. NVP-AUY922 effect on Ishikawa (IK) xenograft growth was evaluated in vivo, and NF-κB activity was monitored using bioluminescence imaging. RESULTS NVP-AUY922 inhibited the growth of three endometrial cell lines tested in vitro. In vivo, NVP-AUY922 reduced tumour growth of 47 % (p = 0.042) compared to control condition. Moreover, the bioluminescence signal of the tumours harbouring IK NF-κB-LUC cells was significantly reduced in NVP-AUY922-treated animals compared to untreated ones. CONCLUSIONS NVP-AUY922 reduced EC tumour growth and NF-κB signalling both in vitro and in vivo. As therapeutic resistance of EC remains a challenge for oncologists nowadays, we think that NVP-AUY922 represents a valid alternative to conventional chemotherapy, and we believe that this approach for assessing and tracking the activation of NF-κB pathway may be of therapeutic benefit.
Collapse
Affiliation(s)
- Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain.
| | - Virginia García
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Laura Bergadà
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Mónica Domingo
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Joan Valls
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Montserrat Martinez-Alonso
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - José-Antonio Carceller
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Antonio Llombart Cussac
- Department of Oncology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| |
Collapse
|
104
|
Park HK, Jeong H, Ko E, Lee G, Lee JE, Lee SK, Lee AJ, Im JY, Hu S, Kim SH, Lee JH, Lee C, Kang S, Kang BH. Paralog Specificity Determines Subcellular Distribution, Action Mechanism, and Anticancer Activity of TRAP1 Inhibitors. J Med Chem 2017; 60:7569-7578. [DOI: 10.1021/acs.jmedchem.7b00978] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hye-Kyung Park
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hanbin Jeong
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Eunhwa Ko
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Geumwoo Lee
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji-Eun Lee
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sang Kwang Lee
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - An-Jung Lee
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Jin Young Im
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sung Hu
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Seong Heon Kim
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Hoon Lee
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Changwook Lee
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Soosung Kang
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Byoung Heon Kang
- Department
of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
105
|
STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway. Oncotarget 2017; 8:77474-77488. [PMID: 29100402 PMCID: PMC5652794 DOI: 10.18632/oncotarget.20535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022] Open
Abstract
Lately, the HSP90 client serine/threonine kinase STK33 emerged to be required by cancer cells for their viability and proliferation. However, its mechanistic contribution to carcinogenesis is not clearly understood. Here we report that elevated STK33 expression correlates with advanced stages of human pancreatic and colorectal carcinomas. Impaired proliferation and augmented apoptosis associated with genetic abrogation of STK33 were paralleled by decreased vascularization in tumor xenografts. In line with this, ectopic STK33 not only promoted tumor growth after pharmacologic inhibition of HSP90 using structurally divergent small molecules currently in clinical development, but also restored blood vessel formation in vivo. Mechanistic studies demonstrated that HSP90-stabilized STK33 interacts with and regulates hypoxia-driven accumulation and activation of HIF-1α as well as secretion of VEGF-A in hypoxic cancer cells. In addition, our study reveals a putative cooperation between STK33 and other HSP90 client protein kinases involved in molecular and cellular events through which cancer cells ensure their survival by securing the oxygen and nutrient supply. Altogether, our findings indicate that STK33 interferes with signals from hypoxia and HSP90 to promote tumor angiogenesis and tumor growth.
Collapse
|
106
|
A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia. Genomics 2017; 109:165-176. [DOI: 10.1016/j.ygeno.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/03/2017] [Accepted: 02/25/2017] [Indexed: 02/07/2023]
|
107
|
Chen B, Wei W, Ma L, Yang B, Gill RM, Chua MS, Butte AJ, So S. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Gastroenterology 2017; 152:2022-2036. [PMID: 28284560 PMCID: PMC5447464 DOI: 10.1053/j.gastro.2017.02.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Drug repositioning offers a shorter approval process than new drug development. We therefore searched large public datasets of drug-induced gene expression signatures to identify agents that might be effective against hepatocellular carcinoma (HCC). METHODS We searched public databases of messenger RNA expression patterns reported from HCC specimens from patients, HCC cell lines, and cells exposed to various drugs. We identified drugs that might specifically increase expression of genes that are down-regulated in HCCs and reduce expression of genes up-regulated in HCCs using a nonparametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic. We evaluated the anti-tumor activity of niclosamide and its ethanolamine salt (NEN) in HCC cell lines (HepG2, Huh7, Hep3B, Hep40, and PLC/PRF/5), primary human hepatocytes, and 2 mouse models of HCC. In one model of HCC, liver tumor development was induced by hydrodynamic delivery of a sleeping beauty transposon expressing an activated form of Ras (v12) and truncated β-catenin (N90). In another mouse model, patient-derived xenografts were established by implanting HCC cells from patients into livers of immunocompromised mice. Tumor growth was monitored by bioluminescence imaging. Tumor-bearing mice were fed a regular chow diet or a chow diet containing niclosamide or NEN. In a separate experiment using patient-derived xenografts, tumor-bearing mice were given sorafenib (the standard of care for patients with advanced HCC), NEN, or niclosamide alone; a combination of sorafenib and NEN; or a combination sorafenib and niclosamide in their drinking water, or regular water (control), and tumor growth was monitored. RESULTS Based on gene expression signatures, we identified 3 anthelmintics that significantly altered the expression of genes that are up- or down-regulated in HCCs. Niclosamide and NEN specifically reduced the viability of HCC cells: the agents were at least 7-fold more cytotoxic to HCCs than primary hepatocytes. Oral administration of NEN to mice significantly slowed growth of genetically induced liver tumors and patient-derived xenografts, whereas niclosamide did not, coinciding with the observed greater bioavailability of NEN compared with niclosamide. The combination of NEN and sorafenib was more effective at slowing growth of patient-derived xenografts than either agent alone. In HepG2 cells and in patient-derived xenografts, administration of niclosamide or NEN increased expression of 20 genes down-regulated in HCC and reduced expression of 29 genes up-regulated in the 274-gene HCC signature. Administration of NEN to mice with patient-derived xenografts reduced expression of proteins in the Wnt-β-catenin, signal transducer and activator of transcription 3, AKT-mechanistic target of rapamycin, epidermal growth factor receptor-Ras-Raf signaling pathways. Using immunoprecipitation assays, we found NEN to bind cell division cycle 37 protein and disrupt its interaction with heat shock protein 90. CONCLUSIONS In a bioinformatics search for agents that alter the HCC-specific gene expression pattern, we identified the anthelmintic niclosamide as a potential anti-tumor agent. Its ethanolamine salt, with greater bioavailability, was more effective than niclosamide at slowing the growth of genetically induced liver tumors and patient-derived xenografts in mice. Both agents disrupted interaction between cell division cycle 37 and heat shock protein 90 in HCC cells, with concomitant inhibition of their downstream signaling pathways. NEN might be effective for treatment of patients with HCC.
Collapse
Affiliation(s)
- Bin Chen
- Institute for Computational Health Sciences and Department of Pediatrics, University of California, San Francisco, California
| | - Wei Wei
- Asian Liver Center and Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Li Ma
- Asian Liver Center and Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Bin Yang
- Department of Interventional Radiology, Beijing 302 Hospital, Beijing, China
| | - Ryan M Gill
- Department of Pathology, University of California, San Francisco, California
| | - Mei-Sze Chua
- Asian Liver Center and Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California.
| | - Atul J Butte
- Institute for Computational Health Sciences and Department of Pediatrics, University of California, San Francisco, California.
| | - Samuel So
- Asian Liver Center and Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
108
|
Le B, Powers GL, Tam YT, Schumacher N, Malinowski RL, Steinke L, Kwon G, Marker PC. Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer. PLoS One 2017; 12:e0174658. [PMID: 28350865 PMCID: PMC5370140 DOI: 10.1371/journal.pone.0174658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Advanced prostate cancers that are resistant to all current therapies create a need for new therapeutic strategies. One recent innovative approach to cancer therapy is the simultaneous use of multiple FDA-approved drugs to target multiple pathways. A challenge for this approach is caused by the different solubility requirements of each individual drug, resulting in the need for a drug vehicle that is non-toxic and capable of carrying multiple water-insoluble antitumor drugs. Micelles have recently been shown to be new candidate drug solubilizers for anti cancer therapy. METHODS This study set out to examine the potential use of multi-drug loaded micelles for prostate cancer treatment in preclinical models including cell line and mouse models for prostate cancers with Pten deletions. Specifically antimitotic agent docetaxel, mTOR inhibitor rapamycin, and HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin were incorporated into the micelle system (DR17) and tested for antitumor efficacy. RESULTS In vitro growth inhibition of prostate cancer cells was greater when all three drugs were used in combination compared to each individual drug, and packaging the drugs into micelles enhanced the cytotoxic effects. At the molecular level DR17 targeted simultaneously several molecular signaling axes important in prostate cancer including androgen receptor, mTOR, and PI3K/AKT. In a mouse genetic model of prostate cancer, DR17 treatment decreased prostate weight, which was achieved by both increasing caspase-dependent cell death and decreasing cell proliferation. Similar effects were also observed when DR17 was administered to nude mice bearing prostate cancer cells xenografts. CONCLUSION These results suggest that combining these three cancer drugs in multi-drug loaded micelles may be a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Bao Le
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ginny L. Powers
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yu Tong Tam
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Schumacher
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rita L. Malinowski
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura Steinke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Glen Kwon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul C. Marker
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
109
|
Chang WC, Tsai PT, Lin CK, Shieh YS, Chen YW. Expression pattern of heat shock protein 90 in patients with oral squamous cell carcinoma in northern Taiwan. Br J Oral Maxillofac Surg 2017; 55:281-286. [PMID: 28209383 DOI: 10.1016/j.bjoms.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 01/15/2017] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), which is expressed in cancer cells, profoundly affects progression, invasion, and metastasis. However, to our knowledge, in East Asia, the correlation between the expression of HSP90 and clinicopathological variables has seldom been discussed. We therefore investigated this and its prognostic value in 36 patients newly diagnosed with oral squamous cell carcinoma (SCC) in northern Taiwan. Samples of tumour and normal samples from the patients were compared immunohistochemically. HSP90 was expressed mainly in the samples of tumour, and was significantly higher in these than in the normal epithelium (p<0.001). Metastases to the lymph nodes in the 36 patients also correlated with expression of HSP90. Correlation between expression of HSP90 and the size of the tumour or pathological staging was not significant, but strong expression correlated with poor survival. In general, expression was low among our samples (30/36). It was significantly higher in the tumour samples than in normal samples, and correlated with metastases to lymph nodes in the neck.
Collapse
Affiliation(s)
- W-C Chang
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China; School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - P-T Tsai
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China; School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - C-K Lin
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China; School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Y-S Shieh
- Department of Operative Dentistry and Endodontology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China; School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Y-W Chen
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China; School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
110
|
Lai X, Friedman A. Exosomal microRNA concentrations in colorectal cancer: A mathematical model. J Theor Biol 2017; 415:70-83. [DOI: 10.1016/j.jtbi.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022]
|
111
|
Wang Z, Hu Y, Xiao D, Wang J, Liu C, Xu Y, Shi X, Jiang P, Huang L, Li P, Liu H, Qing G. Stabilization of Notch1 by the Hsp90 Chaperone is Crucial for T-Cell Leukemogenesis. Clin Cancer Res 2017; 23:3834-3846. [PMID: 28143869 DOI: 10.1158/1078-0432.ccr-16-2880] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/22/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaojing Wang
- Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Medical Research Institute, Wuhan University, Wuhan, PR China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Daibiao Xiao
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| | - Jingchao Wang
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| | - Chuntao Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yisheng Xu
- Protein Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, PR China
| | - Xiaomeng Shi
- Protein Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, PR China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Liang Huang
- Department of Hematology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Li
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Hudan Liu
- Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| | - Guoliang Qing
- Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| |
Collapse
|
112
|
Li R, Yuan F, Fu W, Zhang L, Zhang N, Wang Y, Ma K, Li X, Wang L, Zhu WG, Zhao Y. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins. J Biol Chem 2017; 292:2830-2841. [PMID: 28073914 DOI: 10.1074/jbc.m116.762443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
The serine/threonine kinase Unc-51-like kinase-1 (Ulk1) is thought to be essential for induction of autophagy, an intracellular bulk degradation process that is activated by various stresses. Although several proteins have been suggested as Ulk1 substrates during autophagic process, it still remains largely unknown about Ulk1's physiological substrates. Here, by performing in vitro and in vivo phosphorylation assay, we report that the co-chaperone cell division cycle protein 37 (Cdc37) is a Ulk1 substrate. Ulk1-mediated phosphorylation of Ser-339 in Cdc37 compromised the recruitment of client kinases to a complex comprising Cdc37 and heat shock protein 90 (Hsp90) but only modestly affected Cdc37 binding to Hsp90. Because the recruitment of protein kinase clients to the Hsp90 complex is essential for their stability and functions, Ser-339 phosphorylation of Cdc37 disrupts its ability as a co-chaperone to coordinate Hsp90. Hsp90 inhibitors are cancer chemotherapeutic agents by inducing depletion of clients, many of which are oncogenes. Upon treatment with an Hsp90 inhibitor in cancer cells, Ulk1 promoted the degradation of Hsp90-Cdc37 client kinases, resulting in increased cellular sensitivity to Hsp90 inhibitors. Thus, our study provides evidence for an anti-proliferative role of Ulk1 in response to Hsp90 inhibition in cancer cells.
Collapse
Affiliation(s)
- Ran Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengjie Yuan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wan Fu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyao Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanan Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ke Ma
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,the Center for Life Sciences, Peking-Tsinghua University, Beijing 100871, China, and.,the Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ying Zhao
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China,
| |
Collapse
|
113
|
Chou ST, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, Ljubimov VA, Chesnokova A, Kramerov AA, Ding H, Falahatian V, Mashouf L, Fox I, Black KL, Holler E, Ljubimov AV, Ljubimova JY. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release 2016; 244:14-23. [PMID: 27825958 PMCID: PMC5308909 DOI: 10.1016/j.jconrel.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) remains the deadliest brain tumor in adults. GBM tumors are also notorious for drug and radiation resistance. To inhibit GBMs more effectively, polymalic acid-based blood-brain barrier crossing nanobioconjugates were synthesized that are delivered to the cytoplasm of cancer cells and specifically inhibit the master regulator serine/threonine protein kinase CK2 and the wild-type/mutated epidermal growth factor receptor (EGFR/EGFRvIII), which are overexpressed in gliomas according to The Cancer Genome Atlas (TCGA) GBM database. Two xenogeneic mouse models bearing intracranial human GBMs from cell lines LN229 and U87MG that expressed both CK2 and EGFR at different levels were used. Simultaneous knockdown of CK2α and EGFR/EGFRvIII suppressed their downstream prosurvival signaling. Treatment also markedly reduced the expression of programmed death-ligand 1 (PD-L1), a negative regulator of cytotoxic lymphocytes. Downregulation of CK2 and EGFR also caused deactivation of heat shock protein 90 (Hsp90) co-chaperone Cdc37, which may suppress the activity of key cellular kinases. Inhibition of either target was associated with downregulation of the other target as well, which may underlie the increased efficacy of the dual nanobioconjugate that is directed against both CK2 and EGFR. Importantly, the single nanodrugs, and especially the dual nanodrug, markedly suppressed the expression of the cancer stem cell markers c-Myc, CD133, and nestin, which could contribute to the efficacy of the treatments. In both tumor models, the nanobioconjugates significantly increased (up to 2-fold) animal survival compared with the PBS-treated control group. The versatile nanobioconjugates developed in this study, with the abilities of anti-cancer drug delivery across biobarriers and the inhibition of key tumor regulators, offer a promising nanotherapeutic approach to treat GBMs, and to potentially prevent drug resistance and retard the recurrence of brain tumors.
Collapse
Affiliation(s)
- Szu-Ting Chou
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rameshwar Patil
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pallavi R. Gangalum
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA
| | - Vladimir A. Ljubimov
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexandra Chesnokova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrei A. Kramerov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistic and Bioinformatics Clinical Research Training Program ( CRTP )
| | | | - Irving Fox
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Keith L. Black
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexander V. Ljubimov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Julia Y. Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
114
|
Lai X, Friedman A. Exosomal miRs in Lung Cancer: A Mathematical Model. PLoS One 2016; 11:e0167706. [PMID: 28002496 PMCID: PMC5176278 DOI: 10.1371/journal.pone.0167706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/18/2016] [Indexed: 01/11/2023] Open
Abstract
Lung cancer, primarily non-small-cell lung cancer (NSCLC), is the leading cause of cancer deaths in the United States and worldwide. While early detection significantly improves five-year survival, there are no reliable diagnostic tools for early detection. Several exosomal microRNAs (miRs) are overexpressed in NSCLC, and have been suggested as potential biomarkers for early detection. The present paper develops a mathematical model for early stage of NSCLC with emphasis on the role of the three highest overexpressed miRs, namely miR-21, miR-205 and miR-155. Simulations of the model provide quantitative relationships between the tumor volume and the total mass of each of the above miRs in the tumor. Because of the positive correlation between these miRs in the tumor tissue and in the blood, the results of the paper may be viewed as a first step toward establishing a combination of miRs 21, 205, 155 and possibly other miRs as serum biomarkers for early detection of NSCLC.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, P. R. China
| | - Avner Friedman
- Mathematical Bioscience Institute & Department of Mathematics, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
115
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
116
|
de Araujo WM, Robbs BK, Bastos LG, de Souza WF, Vidal FCB, Viola JPB, Morgado-Diaz JA. PTEN Overexpression Cooperates With Lithium to Reduce the Malignancy and to Increase Cell Death by Apoptosis via PI3K/Akt Suppression in Colorectal Cancer Cells. J Cell Biochem 2016. [PMID: 26224641 DOI: 10.1002/jcb.25294] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lithium is a well-established non-competitive inhibitor of glycogen synthase kinase-3β (GSK-3β), a kinase that is involved in several cellular processes related to cancer progression. GSK-3β is regulated upstream by PI3K/Akt, which is negatively modulated by PTEN. The role that lithium plays in cancer is controversial because lithium can activate or inhibit survival signaling pathways depending on the cell type. In this study, we analyzed the mechanisms by which lithium can modulate events related to colorectal cancer (CRC) progression and evaluated the role that survival signaling pathways such as PI3K/Akt and PTEN play in this context. We show that the administration of lithium decreased the proliferative potential of CRC cells in a GSK-3β-independent manner but induced the accumulation of cells in G2/M phase. Furthermore, high doses of lithium increased apoptosis, which was accompanied by decreased proteins levels of Akt and PTEN. Then, cells that were induced to overexpress PTEN were treated with lithium; we observed that low doses of lithium strongly increased apoptosis. Additionally, PTEN overexpression reduced proliferation, but this effect was minor compared with that in cells treated with lithium alone. Furthermore, we demonstrated that PTEN overexpression and lithium treatment separately reduced cell migration, colony formation, and invasion, and these effects were enhanced when lithium treatment and PTEN overexpression were combined. In conclusion, our findings indicate that PTEN overexpression and lithium treatment cooperate to reduce the malignancy of CRC cells and highlight lithium and PTEN as potential candidates for studies to identify new therapeutic approaches for CRC treatment.
Collapse
Affiliation(s)
- Wallace Martins de Araujo
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Bruno Kaufmann Robbs
- Departamento de Ciências Básicas, Campus Universitário de Nova Friburgo, Universidade Federal Fluminense, UFF, Nova Friburgo, Rio de Janeiro, Brasil
| | - Lilian G Bastos
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Waldemir F de Souza
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Flávia C B Vidal
- Banco de Tumores e DNA do Maranhão, Universidade Federal do Maranhão, Rua Coelho Neto, 311, São Luís, MA, Brasil
| | - João P B Viola
- Grupo de Regulação Gênica, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Jose A Morgado-Diaz
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| |
Collapse
|
117
|
Han SY, Ko A, Kitano H, Choi CH, Lee MS, Seo J, Fukuoka J, Kim SY, Hewitt SM, Chung JY, Song J. Molecular Chaperone HSP90 Is Necessary to Prevent Cellular Senescence via Lysosomal Degradation of p14ARF. Cancer Res 2016; 77:343-354. [PMID: 27793846 DOI: 10.1158/0008-5472.can-16-0613] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/13/2016] [Accepted: 10/01/2016] [Indexed: 01/09/2023]
Abstract
The tumor suppressor function of p14ARF is regulated at a posttranslational level via mechanisms yet to be fully understood. Here, we report the identification of an unconventional p14ARF degradation pathway induced by the chaperone HSP90 in association with the E3 ubiquitin ligase C-terminus of HSP70-interacting protein (CHIP). The ternary complex of HSP90, CHIP, and p14ARF was required to induce the lysosomal degradation of p14ARF by an ubiquitination-independent but LAMP2A-dependent mechanism. Depletion of HSP90 or CHIP induced p14ARF-dependent senescence in human fibroblasts. Premature senescence observed in cells genetically deficient in CHIP was rescued in cells that were doubly deficient in CHIP and p14ARF. Notably, non-small cell lung cancer cells (NSCLC) positive for p14ARF were sensitive to treatment with the HSP90 inhibitor geldanamycin. Furthermore, overexpression of HSP90 and CHIP with a concomitant loss of p14ARF correlated with poor prognosis in patients with NSCLC. Our findings identify a relationship between p14ARF and its chaperones that suggest new therapeutic strategies in cancers that overexpress HSP90. Cancer Res; 77(2); 343-54. ©2016 AACR.
Collapse
Affiliation(s)
- Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Haruhisa Kitano
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (South)
| | - Min-Sik Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea (South)
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South).
| |
Collapse
|
118
|
Faridi U, Dhawan SS, Pal S, Gupta S, Shukla AK, Darokar MP, Sharma A, Shasany AK. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:53-64. [PMID: 26760959 DOI: 10.1089/omi.2015.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of the present study was to repurpose L-menthol, which is frequently used in oral health and topical formulations, for cancer therapeutics. In this article, we argue that monoterpenes such as L-menthol might offer veritable potentials in systems medicine, for example, as cheaper anti-cancer compounds. Other monoterpenes such as limonene, perillyl alcohol, and geraniol have been shown to induce apoptosis in various cancer cell lines, but their mechanisms of action are yet to be completely elucidated. Earlier, we showed that L-menthol modulates tubulin polymerization and apoptosis to inhibit cancer cell proliferation. In the present report, we used an apoptosis-related gene microarray in conjunction with proteomics analyses, as well as in silico interpretations, to study gene expression modulation in human adenocarcinoma Caco-2 cell line in response to L-menthol treatment. The microarray analysis identified caspase 10 as the important initiator caspase, instead of caspase 8. The proteomics analyses showed downregulation of HSP90 protein (also corroborated by its low transcript abundance), which in turn indicated inhibition of AKT-mediated survival pathway, release of pro-apoptotic factor BAD from BAD and BCLxL complex, besides regulation of other factors related to apoptosis. Based on the combined microarray, proteomics, and in silico data, a signaling pathway for L-menthol-induced apoptosis is being presented for the first time here. These data and literature analysis have significant implications for "repurposing" L-menthol beyond oral medicine, and in understanding the mode of action of plant-derived monoterpenes towards development of cheaper anticancer drugs in future.
Collapse
Affiliation(s)
- Uzma Faridi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sunita S Dhawan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sanchita Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| |
Collapse
|
119
|
Mitra S, Ghosh B, Gayen N, Roy J, Mandal AK. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem 2016; 291:24579-24593. [PMID: 27703006 DOI: 10.1074/jbc.m116.746420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Indexed: 01/27/2023] Open
Abstract
CRAF kinase maintains cell viability, growth, and proliferation by participating in the MAPK pathway. Unlike BRAF, CRAF requires continuous chaperoning by Hsp90 to retain MAPK signaling. However, the reason behind the continuous association of Hsp90 with CRAF is still elusive. In this study, we have identified the bipartite role of Hsp90 in chaperoning CRAF kinase. Hsp90 facilitates Ser-621 phosphorylation of CRAF and prevents the kinase from degradation. Co-chaperone Cdc37 assists in this phosphorylation event. However, after folding, the stability of the kinase becomes insensitive to Hsp90 inhibition, although the physical association between Hsp90 and CRAF remains intact. We observed that overexpression of Hsp90 stimulates MAPK signaling by activating CRAF. The interaction between Hsp90 and CRAF is substantially increased under an elevated level of cellular Hsp90 and in the presence of either active Ras (RasV12) or EGF. Surprisingly, enhanced binding of Hsp90 to CRAF occurs prior to the Ras-CRAF association and facilitates actin recruitment to CRAF for efficient Ras-CRAF interaction, which is independent of the ATPase activity of Hsp90. However, monomeric CRAF (CRAFR401H) shows abrogated interaction with both Hsp90 and actin, thereby affecting Hsp90-dependent CRAF activation. This finding suggests that stringent assemblage of Hsp90 keeps CRAF kinase equipped for participating in the MAPK pathway. Thus, the role of Hsp90 in CRAF maturation and activation acts as a limiting factor to maintain the function of a strong client like CRAF kinase.
Collapse
Affiliation(s)
- Shahana Mitra
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Baijayanti Ghosh
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Nilanjan Gayen
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Joydeep Roy
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Atin K Mandal
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
120
|
Khan MSS, Majid AMSA, Iqbal MA, Majid ASA, Al-Mansoub M, Haque RSMA. Designing the angiogenic inhibitor for brain tumor via disruption of VEGF and IL17A expression. Eur J Pharm Sci 2016; 93:304-18. [PMID: 27552907 DOI: 10.1016/j.ejps.2016.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/30/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3μg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.
Collapse
Affiliation(s)
- Md Shamsuddin Sultan Khan
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia.
| | - Amin Malik Shah Abdul Majid
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia.
| | - Muhammad Adnan Iqbal
- The School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Aman Shah Abdul Majid
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia; QUEST International University, Ipoh, Perak, Malaysia
| | - Majed Al-Mansoub
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | | |
Collapse
|
121
|
Mostafa DK, Ismail CA, Ghareeb DA. Differential metformin dose-dependent effects on cognition in rats: role of Akt. Psychopharmacology (Berl) 2016; 233:2513-24. [PMID: 27113224 DOI: 10.1007/s00213-016-4301-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
RATIONAL Epidemiological evidence suggests that individuals with diabetes mellitus are at greater risk of developing Alzheimer's disease, and controversy overwhelms the usefulness of the widely prescribed insulin-sensitizing drug, metformin, on cognition. OBJECTIVES Through the scopolamine-induced memory deficit model, we investigated metformin influence on cognitive dysfunction and explored underlying mechanisms. METHODS Sixty adult male Wistar rats were randomly assigned into 5 groups (12 rats each) to receive either normal saline, scopolamine 1 mg/kg intraperitoneally once daily, scopolamine + oral metformin (100 mg/kg/day), scopolamine + oral metformin (300 mg/kg/day) or scopolamine + oral rivastigmine (0.75 mg/kg/day) for 14 days. Cognitive behaviours were tested using Morris water maze and passive avoidance tasks. Biochemically, brain oxidative (malondialdehyde) and inflammatory (TNF-α) markers, nitric oxide, Akt, phospho-Akt, phospho-tau and acetyl cholinesterase activity in hippocampal and cortical tissues were assessed. RESULTS The lower dose of metformin (100 mg/kg) ameliorated scopolamine-induced impaired performance in both Morris water maze and passive avoidance tasks, and was associated with significant reduction of inflammation and to a lesser extent oxidative stress versus rivastigmine. Given the role of total Akt in regulation of abnormal tau accumulation and degradation, our finding that metformin 100 decreased the elevated total Akt while increasing its phosphorylated form explains its beneficial modulatory effect on phosphorylated tau in both tissues, and could further clarify its protection against memory impairment. CONCLUSION Metformin, only in the average human antidiabetic dose, offers a protective effect against scopolamine-induced cognitive impairment, while no deleterious effect was observed with the higher dose, which may support a bonus effect of metformin in type 2 diabetic patients.
Collapse
Affiliation(s)
- Dalia K Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Almoassat medical Campus, Alexandria, Egypt
| | - Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Almoassat medical Campus, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
122
|
McKenna MK, Gachuki BW, Alhakeem SS, Oben KN, Rangnekar VM, Gupta RC, Bondada S. Anti-cancer activity of withaferin A in B-cell lymphoma. Cancer Biol Ther 2016; 16:1088-98. [PMID: 26020511 DOI: 10.1080/15384047.2015.1046651] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90.
Collapse
Affiliation(s)
- M K McKenna
- a Department of Microbiology, Immunology and Molecular Genetics; Markey Cancer Center; University of Kentucky ; Lexington , KY , USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Gao F, Hu X, Xie X, Liu X, Wang J. Heat shock protein 90 stimulates rat mesenchymal stem cell migration via PI3K/Akt and ERK1/2 pathways. Cell Biochem Biophys 2016; 71:481-9. [PMID: 25287672 DOI: 10.1007/s12013-014-0228-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to determine the role of Hsp90α in regulating the migration of mesenchymal stem cells (MSCs) and to investigate the underlying mechanisms of this effect. MSCs migration was assessed by wound healing assay and transwell migration assay. Hsp90α expression was silenced in MSC by siRNA (sirHsp90α). The activity of secreted metalloproteases MMP-2 and MMP-9, and their expression levels in MSC were evaluated using gelatin zymography, Western blot analysis and real-time PCR. Gene expression of VCAM-1 and CXCR4 cytokines was evaluated by real-time PCR. Akt and ERK activity were analyzed by Western blotting using antibodies against phosphorylated forms of these proteins. Treatment with Hsp90α significantly enhanced MSC migration, and this effect was blocked by transfecting MSC with sirHsp90α. Treating the cells with recombinant human Hsp90α (rhHsp90α) enhanced gene expression and protein levels of MMP-2 and MMP-9, as well as their secretion and activity. MSC incubated with rhHsp90α exhibited increased gene expression of CXCR4 and VCAM-1. Finally, the levels of phosphorylated Akt and Erk were markedly increased by rhHsp90α treatment. These findings indicate that Hsp90α promotes MSCs migration via PI3K/Akt and ERK signaling pathways, and that this effect is possibly mediated by MMPs, SDF-1/CXCR4 pathway, and VCAM-1.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, People's Republic of China
| | | | | | | | | |
Collapse
|
124
|
Rebolleda N, Losada-Fernandez I, Perez-Chacon G, Castejon R, Rosado S, Morado M, Vallejo-Cremades MT, Martinez A, Vargas-Nuñez JA, Perez-Aciego P. Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model. PLoS One 2016; 11:e0154159. [PMID: 27101369 PMCID: PMC4839760 DOI: 10.1371/journal.pone.0154159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/08/2016] [Indexed: 12/02/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) remains an incurable disease, and despite the improvement achieved by therapeutic regimes developed over the last years still a subset of patients face a rather poor prognosis and will eventually relapse and become refractory to therapy. The natural rotenoid deguelin has been shown to induce apoptosis in several cancer cells and cell lines, including primary human CLL cells, and to act as a chemopreventive agent in animal models of induced carcinogenesis. In this work, we show that deguelin induces apoptosis in vitro in primary human CLL cells and in CLL-like cells from the New Zealand Black (NZB) mouse strain. In both of them, deguelin dowregulates AKT, NFκB and several downstream antiapoptotic proteins (XIAP, cIAP, BCL2, BCL-XL and survivin), activating the mitochondrial pathway of apoptosis. Moreover, deguelin inhibits stromal cell-mediated c-Myc upregulation and resistance to fludarabine, increasing fludarabine induced DNA damage. We further show that deguelin has activity in vivo against NZB CLL-like cells in an experimental model of CLL in young NZB mice transplanted with spleen cells from aged NZB mice with lymphoproliferation. Moreover, the combination of deguelin and fludarabine in this model prolonged the survival of transplanted mice at doses of both compounds that were ineffective when administered individually. These results suggest deguelin could have potential for the treatment of human CLL.
Collapse
MESH Headings
- Age Factors
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Cells, Cultured
- Drug Synergism
- Female
- Humans
- Immunoblotting
- Immunohistochemistry
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Mice, Inbred NZB
- NF-kappa B/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Rotenone/administration & dosage
- Rotenone/analogs & derivatives
- Rotenone/pharmacology
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
| | | | - Gema Perez-Chacon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Raquel Castejon
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, Universidad Autonoma de Madrid, Madrid, Spain
| | - Silvia Rosado
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Morado
- Servicio de Hematologia y Hemoterapia, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Juan A. Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, Universidad Autonoma de Madrid, Madrid, Spain
| | | |
Collapse
|
125
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
126
|
Kao CY, Yang PM, Wu MH, Huang CC, Lee YC, Lee KH. Heat shock protein 90 is involved in the regulation of HMGA2-driven growth and epithelial-to-mesenchymal transition of colorectal cancer cells. PeerJ 2016; 4:e1683. [PMID: 26893968 PMCID: PMC4756735 DOI: 10.7717/peerj.1683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 01/05/2023] Open
Abstract
High Mobility Group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein which acts as a transcriptional regulating factor involved in gene transcription. In particular, overexpression of HMGA2 has been demonstrated to associate with neoplastic transformation and tumor progression in Colorectal Cancer (CRC). Thus, HMGA2 is a potential therapeutic target in cancer therapy. Heat Shock Protein 90 (Hsp90) is a chaperone protein required for the stability and function for a number of proteins that promote the growth, mobility, and survival of cancer cells. Moreover, it has shown strong positive connections were observed between Hsp90 inhibitors and CRC, which indicated their potential for use in CRC treatment by using combination of data mining and experimental designs. However, little is known about the effect of Hsp90 inhibition on HMGA2 protein expression in CRC. In this study, we tested the hypothesis that Hsp90 may regulate HMGA2 expression and investigated the relationship between Hsp90 and HMGA2 signaling. The use of the second-generation Hsp90 inhibitor, NVP-AUY922, considerably knocked down HMGA2 expression, and the effects of Hsp90 and HMGA2 knockdown were similar. In addition, Hsp90 knockdown abrogates colocalization of Hsp90 and HMGA2 in CRC cells. Moreover, the suppression of HMGA2 protein expression in response to NVP-AUY922 treatment resulted in ubiquitination and subsequent proteasome-dependant degradation of HMGA2. Furthermore, RNAi-mediated silencing of HMGA2 reduced the survival of CRC cells and increased the sensitivity of these cells to chemotherapy. Finally, we found that the NVP-AUY922-dependent mitigation of HMGA2 signaling occurred also through indirect reactivation of the tumor suppressor microRNA (miRNA), let-7a, or the inhibition of ERK-regulated HMGA2 involved in regulating the growth of CRC cells. Collectively, our studies identify the crucial role for the Hsp90-HMGA2 interaction in maintaining CRC cell survival and migration. These findings have significant implications for inhibition HMGA2-dependent tumorigenesis by clinically available Hsp90 inhibitors.
Collapse
Affiliation(s)
- Chun-Yu Kao
- Department of Pediatric Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Heng Wu
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chen Huang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
127
|
Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 2016; 13:27. [PMID: 26838598 PMCID: PMC4736186 DOI: 10.1186/s12974-016-0486-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background IL-1β, also known as “the master regulator of inflammation”, is a potent pro-inflammatory cytokine secreted by activated microglia in response to pathogenic invasions or neurodegeneration. It initiates a vicious cycle of inflammation and orchestrates various molecular mechanisms involved in neuroinflammation. The role of IL-1β has been extensively studied in neurodegenerative disorders; however, molecular mechanisms underlying inflammation induced by IL-1β are still poorly understood. The objective of our study is the comprehensive identification of molecular circuitry involved in IL-1β-induced inflammation in microglia through protein profiling. Methods To achieve our aim, we performed the proteomic analysis of N9 microglial cells with and without IL-1β treatment at different time points. Expression of HSP60 in response to IL-1β administration was checked by quantitative real-time PCR, immunoblotting, and immunofluorescence. Interaction of HSP60 with TLR4 was determined by co-immunoprecipitation. Inhibition of TLR4 was done using TLR4 inhibitor to reveal its effect on IL-1β-induced inflammation. Further, effect of HSP60 knockdown and overexpression were assessed on the inflammation in microglia. Specific MAPK inhibitors were used to reveal the downstream MAPK exclusively involved in HSP60-induced inflammation in microglia. Results Total 21 proteins were found to be differentially expressed in response to IL-1β treatment in N9 microglial cells. In silico analysis of these proteins revealed unfolded protein response as one of the most significant molecular functions, and HSP60 turned out to be a key hub molecule. IL-1β induced the expression as well as secretion of HSP60 in extracellular milieu during inflammation of N9 cells. Secreted HSP60 binds to TLR4 and inhibition of TLR4 suppressed IL-1β-induced inflammation to a significant extent. Our knockdown and overexpression studies demonstrated that HSP60 increases the phosphorylation of ERK, JNK, and p38 MAPKs in N9 cells during inflammation. Specific inhibition of p38 by inhibitors suppressed HSP60-induced inflammation, thus pointed towards the major role of p38 MAPK rather than ERK1/2 and JNK in HSP60-induced inflammation. Furthermore, silencing of upstream modulator of p38, i.e., MEK3/6 also reduced HSP60-induced inflammation. Conclusions IL-1β induces expression of HSP60 in N9 microglial cells that further augments inflammation via TLR4-p38 MAPK axis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0486-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shalini Swaroop
- National Brain Research Centre, Manesar, Haryana, 122051, India
| | | | | | - Yogita K Adlakha
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| |
Collapse
|
128
|
Wang CY, Guo ST, Wang JY, Liu F, Zhang YY, Yari H, Yan XG, Jin L, Zhang XD, Jiang CC. Inhibition of HSP90 by AUY922 Preferentially Kills Mutant KRAS Colon Cancer Cells by Activating Bim through ER Stress. Mol Cancer Ther 2016; 15:448-59. [PMID: 26832792 DOI: 10.1158/1535-7163.mct-15-0778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022]
Abstract
Oncogenic mutations of KRAS pose a great challenge in the treatment of colorectal cancer. Here we report that mutant KRAS colon cancer cells are nevertheless more susceptible to apoptosis induced by the HSP90 inhibitor AUY922 than those carrying wild-type KRAS. Although AUY922 inhibited HSP90 activity with comparable potency in colon cancer cells irrespective of their KRAS mutational statuses, those with mutant KRAS were markedly more sensitive to AUY922-induced apoptosis. This was associated with upregulation of the BH3-only proteins Bim, Bik, and PUMA. However, only Bim appeared essential, in that knockdown of Bim abolished, whereas knockdown of Bik or PUMA only moderately attenuated apoptosis induced by AUY922. Mechanistic investigations revealed that endoplasmic reticulum (ER) stress was responsible for AUY922-induced upregulation of Bim, which was inhibited by a chemical chaperone or overexpression of GRP78. Conversely, siRNA knockdown of GRP78 or XBP-1 enhanced AUY922-induced apoptosis. Remarkably, AUY922 inhibited the growth of mutant KRAS colon cancer xenografts through activation of Bim that was similarly associated with ER stress. Taken together, these results suggest that AUY922 is a promising drug in the treatment of mutant KRAS colon cancers, and the agents that enhance the apoptosis-inducing potential of Bim may be useful to improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Chun Yan Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, The Affiliated Cancer Hospital of Shanxi Medical University, Shanxi, China
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, The Affiliated Cancer Hospital of Shanxi Medical University, Shanxi, China
| | - Jia Yu Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Fen Liu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yuan Yuan Zhang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia.
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| |
Collapse
|
129
|
Aguilà M, Cheetham ME. Hsp90 as a Potential Therapeutic Target in Retinal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:161-7. [PMID: 26427407 PMCID: PMC5044979 DOI: 10.1007/978-3-319-17121-0_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is a pivotal cellular regulator involved in the folding, activation and assembly of a wide range of proteins. Hsp90 has multiple roles in the retina and the use of different Hsp90 inhibitors has been shown to prevent retinal degeneration in models of retinitis pigmentosa and age-related macular degeneration. Hsp90 is also a potential target in uveal melanoma. Mechanistically, Hsp90 inhibition can evoke a dual response in the retina; stimulating a stress response with molecular chaperone expression. Thereby leading to an improvement in visual function and photoreceptor survival; however, prolonged inhibition can also stimulate the degradation of Hsp90 client proteins potentially deleteriously affect vision. Here, we review the multiple roles of Hsp90 in the retina and the therapeutic potential of Hsp90 as a target.
Collapse
Affiliation(s)
- Mònica Aguilà
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK.
| | - Michael E Cheetham
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK.
| |
Collapse
|
130
|
Gild ML, Bullock M, Pon CK, Robinson BG, Clifton-Bligh RJ. Destabilizing RET in targeted treatment of thyroid cancers. Endocr Connect 2016; 5:10-9. [PMID: 26574568 PMCID: PMC4674629 DOI: 10.1530/ec-15-0098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
Metastatic differentiated thyroid cancers (DTC) are resistant to traditional chemotherapy. Kinase inhibitors have shown promise in patients with progressive DTC, but dose-limiting toxicity is commonplace. HSP90 regulates protein degradation of several growth-mediating kinases such as RET, and we hypothesized that HSP90 inhibitor (AUY922) could inhibit RET-mediated medullary thyroid cancer (MTC) as well as papillary thyroid cancer (PTC) cell growth and also radioactive iodine uptake by PTC cells. Studies utilized MTC cell lines TT (C634W) and MZ-CRC-1 (M918T) and the PTC cell line TPC-1 (RET/PTC1). Cell viability was assessed with MTS assays and apoptosis by flow cytometry. Signaling target expression was determined by western blot and radioiodine uptake measured with a gamma counter. Prolonged treatment of both MTC cell lines with AUY922 simultaneously inhibited both MAPK and mTOR pathways and significantly induced apoptosis (58.7 and 78.7% reduction in MZ-CRC-1 and TT live cells respectively, following 1 μM AUY922; P<0.02). Similarly in the PTC cell line, growth and signaling targets were inhibited, and also a 2.84-fold increase in radioiodine uptake was observed following AUY922 administration (P=0.015). AUY922 demonstrates in vitro activity against MTC and PTC cell lines. We observed a potent dose-dependent increase in apoptosis in MTC cell lines following drug administration confirming its anti-tumorigenic effects. Western blots confirm inhibition of pro-survival proteins including AKT suggesting this as the mechanism of cell death. In a functional study, we observed an increase in radioiodine uptake in the PTC cell line following AUY922 treatment. We believe HSP90 inhibition could be a viable alternative for treatment of RET-driven chemo-resistant thyroid cancers.
Collapse
Affiliation(s)
- M L Gild
- Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| | - M Bullock
- Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| | - C K Pon
- Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| | - B G Robinson
- Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| | - R J Clifton-Bligh
- Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia Cancer Genetics LaboratoryKolling Institute of Medical Research, Sydney, New South Wales, AustraliaDepartment of EndocrinologyRoyal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| |
Collapse
|
131
|
Hsp90 Co-chaperones as Drug Targets in Cancer: Current Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
132
|
Liu M, Zhang W, Wang G, Song X, Zhao X, Wang X, Qi X, Li J. 13-Oxyingenol dodecanoate, a cytotoxic ingenol derivative, induces mitochondrial apoptosis and caspase-dependent Akt decrease in K562 cells. Tumour Biol 2015; 37:6227-38. [PMID: 26615422 DOI: 10.1007/s13277-015-4495-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
13-Oxyingenol dodecanoate (13OD) is an ingenol derivative prepared from Chinese traditional medicine Euphorbia kansui without any report about its bioactivity. The present study demonstrated for the first time that 13OD displayed potent cytotoxicity against chronic myeloid leukemia K562 cells in vitro. 13OD inhibited proliferation, induced G2/M phase arrest, and exhibited potent apoptotic activity in K562 cells. In K562 cells, 13OD disrupted the mitochondrial membrane potential and induced high level of ROS, which played an indispensable role in 13OD-induced apoptosis. Further investigations on the molecular mechanisms revealed that total Akt protein level was decreased in a caspase-dependent way after treatment with 13OD; in addition, ERK was activated by 13OD, and this activation played a protective role in 13OD stimulation. Altogether, these results revealed that the cytotoxic ingenol derivative 13OD induced apoptosis with novel mechanisms for the proapoptotic function in cancer cells, and suggested that 13OD may serve as a lead template for rational drug design and for future anticancer agent development.
Collapse
MESH Headings
- Apoptosis/drug effects
- Caspases/genetics
- Cell Proliferation/drug effects
- Diterpenes/administration & dosage
- G2 Phase Cell Cycle Checkpoints/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria/drug effects
- Proto-Oncogene Proteins c-akt/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Weiyi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Genzhu Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiaoping Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xingzeng Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-sen), Nanjing, 210014, China
| | - Xiangyun Wang
- Nanjing Spring & Autumn Biological Engineering Co., Ltd, China, Nanjing, 210014, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
133
|
Hsp90 as a "Chaperone" of the Epigenome: Insights and Opportunities for Cancer Therapy. Adv Cancer Res 2015; 129:107-40. [PMID: 26916003 DOI: 10.1016/bs.acr.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cellular functions of Hsp90 have historically been attributed to its ability to chaperone client proteins involved in signal transduction. Although numerous stimuli and the signaling cascades they activate contribute to cancer progression, many of these pathways ultimately require transcriptional effectors to elicit tumor-promoting effects. Despite this obvious connection, the majority of studies evaluating Hsp90 function in malignancy have focused upon its regulation of cytosolic client proteins, and particularly members of receptor and/or kinase families. However, in recent years, Hsp90 has emerged as a pivotal orchestrator of nuclear events. Discovery of an expanding repertoire of Hsp90 clients has illuminated a vital role for Hsp90 in overseeing nuclear events and influencing gene transcription. Hence, this chapter will cast a spotlight upon several regulatory themes involving Hsp90-dependent nuclear functions. Highlighted topics include a summary of chaperone-dependent regulation of key transcription factors (TFs) and epigenetic effectors in malignancy, as well as a discussion of how the complex interplay among a subset of these TFs and epigenetic regulators may generate feed-forward loops that further support cancer progression. This chapter will also highlight less recognized indirect mechanisms whereby Hsp90-supported signaling may impinge upon epigenetic regulation. Finally, the relevance of these nuclear events is discussed within the framework of Hsp90's capacity to enable phenotypic variation and drug resistance. These newly acquired insights expanding our understanding of Hsp90 function support the collective notion that nuclear clients are major beneficiaries of Hsp90 action, and their impairment is likely responsible for many of the anticancer effects elicited by Hsp90-targeted approaches.
Collapse
|
134
|
Jhaveri K, Chandarlapaty S, Iyengar N, Morris PG, Corben AD, Patil S, Akram M, Towers R, Sakr RA, King TA, Norton L, Rosen N, Hudis C, Modi S. Biomarkers That Predict Sensitivity to Heat Shock Protein 90 Inhibitors. Clin Breast Cancer 2015; 16:276-83. [PMID: 26726007 DOI: 10.1016/j.clbc.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Heat shock protein (HSP) 90, a viable target for cancer treatment, mediates the maturation and stabilization of client oncoproteins. HSP90 inhibitors (HSP90i) are potentially active in a variety of tumors, but therapeutic benefit is confirmed in only a small subset. We explored potential biomarkers across multiple studies of HSP90i in advanced solid tumors. PATIENTS AND METHODS Archived tumor specimens from patients treated with HSP90i in 7 different phase I/II trials at Memorial Sloan Kettering Cancer Center were identified. Tumor tissue was tested using immunohistochemistry; estrogen, progesterone, and androgen receptors ≥ 1% positive and < 1% negative; HSP90 and HSP70: 0, 1 + negative, and 2+, 3 + positive; phosphatase and tensin homolog: 0 negative, 1 reduced, and 2 positive; HER2: 0, 1 + negative, 2 + equivocal, 3 + positive; and epidermal growth factor receptor: 0 negative, and 1+, 2+, 3 + positive. The expression of the biomarker panel was correlated with clinical benefit (CB) (defined by overall response [ORR] or CB by the "8-week" scan) using Fisher exact test. RESULTS Adequate tissue was available for 51 of 158 patients (32%), including 10 different solid tumors. Of these, 71% (36 of 51) and 51% (26 of 51) patients met the criteria to assess CB by best ORR or by the "8-week scan" assessment, respectively. Breast was the most frequent tumor. The mean duration of HSP90i therapy was 55 days (range, 16-411 days). There were 16 responses (4 partial response; 12 stable disease); 13 of 16 responses strongly correlated with HER2-positive status (P = .001). CONCLUSION Our findings suggest HER2 as a sensitive client and perhaps the only effective biomarker for sensitivity to these HSP90i.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.
| | | | - Neil Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Patrick G Morris
- Memorial Sloan Kettering Cancer Center, New York, NY; Beaumont Hospital, Dublin, Ireland
| | | | - Sujata Patil
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Rita A Sakr
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tari A King
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Larry Norton
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neal Rosen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Shanu Modi
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
135
|
Bekki H, Kohashi K, Maekawa A, Yamada Y, Yamamoto H, Harimaya K, Hakozaki M, Nabeshima K, Iwamoto Y, Oda Y. Elevated expression of HSP90 and the antitumor effect of an HSP90 inhibitor via inactivation of the Akt/mTOR pathway in undifferentiated pleomorphic sarcoma. BMC Cancer 2015; 15:804. [PMID: 26502919 PMCID: PMC4623920 DOI: 10.1186/s12885-015-1830-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Undifferentiated pleomorphic sarcoma (UPS) is a heterogeneous tumor group, and little is known about molecular target therapy for UPS. Heat shock protein 90 (HSP90) is an expressed chaperone that refolds certain denatured proteins under stress conditions. One of these proteins is Akt. The disruption of Akt signaling plays an important role in tumor progression. The present study's purpose was to analyze the HSP90 expression, Akt/mTOR pathway activation and the correlation between HSP90 expression and its pathway activation in UPS. METHODS The status of HSP90 and the profiles of the Akt/ mTOR pathway were assessed by immunohistochemistry in 79 samples of UPS, and these data were compared with clinicopathological and histopathological findings. The expressions of indicated proteins were assessed by Western blotting in five frozen samples. After treating UPS cells with the HSP90 inhibitor, we assessed the antitumor effect of the inhibitor. RESULTS Immunohistochemically, phosphorylated Akt (p-Akt), p-mTOR, p-S6RP and p-4EBP were positive in 57.3, 51.9, 54.5 and 57.1% of the UPS samples, respectively. The expressions of those phosphorylated proteins were correlated with each other. HSP90 expression was elevated in 56.4% of the samples and was correlated with p-Akt, p-mTOR and p-S6RP. The immunohistochemical results were confirmed by Western blotting. The HSP90 inhibitor led to decreased viability and invasiveness of the cells and inactivated the AKT/mTOR pathway in vitro. CONCLUSION Elevated expression of HSP90 is a poor-prognosis factor and is involved in the activation of the Akt/mTOR pathway in UPS. HSP90 inhibition is a potential treatment option for UPS.
Collapse
Affiliation(s)
- Hirofumi Bekki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Katsumi Harimaya
- Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| | - Michiyuki Hakozaki
- Department of Orthopaedic Surger, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Kazuki Nabeshima
- Department of Pathology, Graduate School of Medical Science, Fukuoka University, Fukuoka, Japan.
| | - Yukihide Iwamoto
- Orthopaedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
136
|
Chen H, Li LQ, Pan D. Geldanamycin induces apoptosis in human gastric carcinomas by affecting multiple oncogenic kinases that have synergic effects with TNF-related apoptosis-inducing ligand. Oncol Lett 2015; 10:3732-3736. [PMID: 26788199 DOI: 10.3892/ol.2015.3807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/14/2015] [Indexed: 01/27/2023] Open
Abstract
The aim of the present study was to evaluate the effect of geldanamycin (GA) on the treatment of human gastric carcinomas and to investigate the molecular mechanism that provides the basis for the combination of GA with the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induction strategy. The expression of target proteins at the mRNA level was determined using reverse transcription-polymerase chain reaction (RT-PCR), and apoptosis was evaluated with the terminal deoxynucleotidyl transferase mediated digoxigenin-dUTP nick-end labeling and Annexin V/propidium iodide (PI) staining methods. Phosphorylation of targeted kinases was studied using immunocytochemistry methods, and malignant phenotypes were studied using in vitro assays. GA treatment inhibits proliferation, migration and invasion, and induces apoptosis in human gastric cancer SGC-7901 cells, most likely by decreasing the expression of B-RAF and by phosphorylation of protein kinase B (AKT) and ERK. The inhibitory role of AKT in TRAIL regulation holds considerable potential for achieving a synergic effect in clinical therapy, using a combination of GA treatment and TRAIL induction. The present study provides a basis for the future application of heat shock protein 90 (Hsp90) inhibitors, such as GA, in the clinical treatment of gastric cancer, particularly in combination therapies with TRAIL inducers.
Collapse
Affiliation(s)
- Hui Chen
- Department of Gastrointestinal Surgery, The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liang-Qing Li
- Department of Gastrointestinal Surgery, The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
137
|
Kim HS, Hong M, Lee SC, Lee HY, Suh YG, Oh DC, Seo JH, Choi H, Kim JY, Kim KW, Kim JH, Kim J, Kim YM, Park SJ, Park HJ, Lee J. Ring-truncated deguelin derivatives as potent Hypoxia Inducible Factor-1α (HIF-1α) inhibitors. Eur J Med Chem 2015; 104:157-64. [PMID: 26457742 DOI: 10.1016/j.ejmech.2015.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022]
Abstract
A series of fluorophenyl and pyridine analogues of 1 and 2 were synthesized as ring-truncated deguelin surrogates and evaluated for their HIF-1α inhibition. Their structure-activity relationship was systematically investigated based on the variation of the linker B-region moiety. Among the inhibitors, compound 25 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in H1299 with less toxicity than deguelin. It also inhibited in vitro hypoxia-mediated angiogenic processes in HRMECs. The docking study indicates that 25 occupied the C-terminal ATP-binding pocket of HSP90 in a similar mode as 1, which implies that the anticancer and antiangiogenic activities of 25 are derived from HIF-1α destabilization by binding to the C-terminal ATP-binding site of hHSP90.
Collapse
Affiliation(s)
- Ho Shin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Mannkyu Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Su-Chan Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Ho-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Young-Ger Suh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Hoon Choi
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Jun Yong Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742, South Korea
| | - Jeong Hun Kim
- College of Medicine, Seoul National University, Seoul, 151-742, South Korea
| | - Joohwan Kim
- School of Medicine, Kangwon National University, Kangwon-do, 200-701, South Korea
| | - Young-Myeong Kim
- School of Medicine, Kangwon National University, Kangwon-do, 200-701, South Korea
| | - So-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
138
|
Shetake NG, Kumar A, Gaikwad S, Ray P, Desai S, Ningthoujam RS, Vatsa RK, Pandey BN. Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation. Int J Hyperthermia 2015; 31:909-19. [DOI: 10.3109/02656736.2015.1075072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
139
|
Wu BX, Hong F, Zhang Y, Ansa-Addo E, Li Z. GRP94/gp96 in Cancer: Biology, Structure, Immunology, and Drug Development. Adv Cancer Res 2015; 129:165-90. [PMID: 26916005 DOI: 10.1016/bs.acr.2015.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As an endoplasmic reticulum heat-shock protein 90 (HSP90) paralog, GRP94 (glucose-regulated protein 94)/gp96 (hereafter referred to as GRP94) has been shown to be an essential master chaperone for multiple receptors including Toll-like receptors, Wnt coreceptors, and integrins. Clinically, expression of GRP94 correlates with advanced stage and poor survival in a variety of cancers. Recent preclinical studies have also revealed that GRP94 expression is closely linked to cancer growth and metastasis in melanoma, ovarian cancer, multiple myeloma, lung cancer, and inflammation-associated colon cancer. Thus, GRP94 is an attractive therapeutic target in a number of malignancies. The chaperone function of GRP94 depends on its ATPase domain, which is structurally distinct from HSP90, allowing design of highly selective GRP94-targeted inhibitors. In this chapter, we discuss the biology and structure-function relationship of GRP94. We also summarize the immunological roles of GRP94 based on the studies documented over the last two decades, as these pertain to tumorigenesis and cancer progression. Finally, the structure-based rationale for the design of selective small-molecule inhibitors of GRP94 and their potential application in the treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Bill X Wu
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Feng Hong
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongliang Zhang
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ephraim Ansa-Addo
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
140
|
Lee KH, Jang AH, Yoo CG. 17-Allylamino-17-Demethoxygeldanamycin and the Enhancement of PS-341–Induced Lung Cancer Cell Death by Blocking the NF-κB and PI3K/Akt Pathways. Am J Respir Cell Mol Biol 2015; 53:412-421. [DOI: 10.1165/rcmb.2014-0186oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Medical Research Center, Seoul National University College of Medicine, Seoul South Korea
| | - An-Hee Jang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Medical Research Center, Seoul National University College of Medicine, Seoul South Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Medical Research Center, Seoul National University College of Medicine, Seoul South Korea
| |
Collapse
|
141
|
Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, Qin W. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer 2015; 138:1824-34. [PMID: 26853533 DOI: 10.1002/ijc.29723] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
142
|
Berges C, Bedke T, Stuehler C, Khanna N, Zehnter S, Kruhm M, Winter N, Bargou RC, Topp MS, Einsele H, Chatterjee M. Combined PI3K/Akt and Hsp90 targeting synergistically suppresses essential functions of alloreactive T cells and increases Tregs. J Leukoc Biol 2015; 98:1091-105. [PMID: 26265781 DOI: 10.1189/jlb.5a0814-413r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 07/23/2015] [Indexed: 12/24/2022] Open
Abstract
Acute graft-versus-host disease is still a major cause of transplant-related mortality after allogeneic stem cell transplantation. It requires immunosuppressive treatments that broadly abrogate T cell responses, including beneficial ones directed against tumor cells or infective pathogens. Inhibition of the heat shock protein of 90 kDa has been demonstrated to eliminate tumor cells, as well as alloreactive T cells while preserving antiviral T cell immunity. Here, we show that the suppressive effects of heat shock protein of 90 kDa inhibition on alloreactive T cells were synergistically enhanced by concomitant inhibition of the PI3K/Akt signaling pathway, which is also strongly activated upon allogeneic stimulation. Molecular analyses revealed that this antiproliferative effect was mainly mediated by induction of cell-cycle arrest and apoptosis. In addition, we observed an increased proportion of activated regulatory T cells, which critically contribute to acute graft-versus-host disease control, upon combined heat shock protein of 90 kDa/Akt isoforms 1 and 2 or heat shock protein of 90 kDa/PI3K/p110δ isoform inhibition. Moreover, antiviral T cell immunity was functionally preserved after combined heat shock protein of 90 kDa/Akt isoforms 1 and 2 inhibition. Taken together, our data suggest that the combined heat shock protein of 90 kDa/PI3K/Akt inhibition approach represents a reasonable dual strategy to suppress residual tumor growth and efficiently deplete alloreactive T cells and thus, provide a rationale to prevent and treat acute graft-versus-host disease selectively without impairing pathogen-specific T cell immunity.
Collapse
Affiliation(s)
- Carsten Berges
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Tanja Bedke
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Claudia Stuehler
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Sarah Zehnter
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michaela Kruhm
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Nadine Winter
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ralf C Bargou
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Max S Topp
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hermann Einsele
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Manik Chatterjee
- *Department of Internal Medicine II, Division of Hematology and Oncology, and Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany; Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Laboratory of Infection Biology, Division of Infectious Diseases and Hospital Epidemiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
143
|
Shirota T, Ojima H, Hiraoka N, Shimada K, Rokutan H, Arai Y, Kanai Y, Miyagawa S, Shibata T. Heat Shock Protein 90 Is a Potential Therapeutic Target in Cholangiocarcinoma. Mol Cancer Ther 2015; 14:1985-93. [PMID: 26141945 DOI: 10.1158/1535-7163.mct-15-0069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022]
Abstract
Cholangiocarcinoma is an aggressive malignancy with a poor prognosis, with no effective therapy other than surgical resection. Heat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the posttranslational folding of a number of client proteins, many of which play essential roles in tumorigenesis. Here, we attempted to clarify its prognostic significance and potential utility as a therapeutic target in cholangiocarcinoma. Immunohistochemical expression of HSP90 was assessed retrospectively in 399 cholangiocarcinoma cases and 17 human cholangiocarcinoma cell lines, along with the effect of a small-molecule HSP90 inhibitor (NVP-AUY922) on cholangiocarcinoma tumor growth and angiogenesis in human cholangiocarcinoma cell lines and xenografts. The positivity of HSP90 was 44.6% in intrahepatic cholangiocarcinoma (IHCC) and 32.8% in extrahepatic cholangiocarcinoma (EHCC), respectively. HSP90 expression was significantly associated with the 5-year survival rate for IHCC (P < 0.001) and EHCC (P < 0.001). HSP90 inhibition showed potent antiproliferative activity and reduced growth-associated signaling in human cholangiocarcinoma cells in vitro. Furthermore, treatment of cholangiocarcinoma xenograft-bearing mice with NVP-AUY922 significantly inhibited growth at doses far below the maximum-tolerated dose. HSP90 overexpression is a prognostic marker for cholangiocarcinoma. HSP90-targeted therapy may be an option for a subset of cholangiocarcinoma.
Collapse
Affiliation(s)
- Tomoki Shirota
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. Division of Surgery, Shinshu University School of Medicine, Nagano, Japan
| | - Hidenori Ojima
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuaki Shimada
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Hirofumi Rokutan
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinichi Miyagawa
- Division of Surgery, Shinshu University School of Medicine, Nagano, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
144
|
Qin DJ, Tang CX, Yang L, Lei H, Wei W, Wang YY, Ma CM, Gao FH, Xu HZ, Wu YL. Hsp90 Is a Novel Target Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian Cancer Cells. PLoS One 2015; 10:e0132337. [PMID: 26134508 PMCID: PMC4489813 DOI: 10.1371/journal.pone.0132337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022] Open
Abstract
Synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oate (CDDO-Me) has been shown as a promising agent against ovarian cancer. However, the underlying mechanism is not well understood. Here, we demonstrate that CDDO-Me directly interacts with Hsp90 in cells by cellular thermal shift assay. CDDO-Me treatment leads to upregulation of Hsp70 and degradation of Hsp90 clients (ErbB2 and Akt), indicating the inhibition of Hsp90 by CDDO-Me in cells. Knockdown of Hsp90 significantly inhibits cell proliferation and enhances the anti-proliferation effect of CDDO-Me in H08910 ovarian cancer cells. Dithiothreitol inhibits the interaction of CDDO-Me with Hsp90 in cells and abrogates CDDO-Me induced upregulation of Hsp70, degradation of Akt and cell proliferation inhibition. This suggests the anti-ovarian cancer effect of CDDO-Me is possibly mediated by the formation of Michael adducts between CDDO-Me and reactive nucleophiles on Hsp90. This study identifies Hsp90 as a novel target protein of CDDO-Me, and provides a novel insight into the mechanism of action of CDDO-Me in ovarian cancer cells.
Collapse
Affiliation(s)
- Dong-Jun Qin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Xia Tang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Min Ma
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, China
| | - Han-Zhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (HZX); (YLW)
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (HZX); (YLW)
| |
Collapse
|
145
|
Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells. PLoS One 2015; 10:e0129214. [PMID: 26017782 PMCID: PMC4445914 DOI: 10.1371/journal.pone.0129214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus.
Collapse
|
146
|
Abstract
Akt/PKB, a serine/threonine kinase member of the AGC family of proteins, is involved in the regulation of a plethora of cellular processes triggered by a wide diversity of extracellular signals and is thus considered a key signalling molecule in higher eukaryotes. Deregulation of Akt signalling is associated with a variety of human diseases, revealing Akt-dependent pathways as an attractive target for therapeutic intervention. Since its discovery in the early 1990s, a large body of work has focused on Akt phosphorylation of two residues, Thr308 and Ser473, and modification of these two sites has been established as being equivalent to Akt activation. More recently, Akt has been identified as a substrate for many different post-translational modifications, including not only phosphorylation of other residues, but also acetylation, glycosylation, oxidation, ubiquitination and SUMOylation. These modifications could provide additional regulatory steps for fine-tuning Akt function, Akt trafficking within the cell and/or for determining the substrate specificity of this signalling molecule. In the present review, we provide an overview of these different post-translational modifications identified for Akt, focusing on their consequences for this kinase activity.
Collapse
|
147
|
Chehab M, Caza T, Skotnicki K, Landas S, Bratslavsky G, Mollapour M, Bourboulia D. Targeting Hsp90 in urothelial carcinoma. Oncotarget 2015; 6:8454-73. [PMID: 25909217 PMCID: PMC4496161 DOI: 10.18632/oncotarget.3502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma, or transitional cell carcinoma, is the most common urologic malignancy that carries significant morbidity, mortality, recurrence risk and associated health care costs. Despite use of current chemotherapies and immunotherapies, long-term remission in patients with muscle-invasive or metastatic disease remains low, and disease recurrence is common. The molecular chaperone Heat Shock Protein-90 (Hsp90) may offer an ideal treatment target, as it is a critical signaling hub in urothelial carcinoma pathogenesis and potentiates chemoradiation. Preclinical testing with Hsp90 inhibitors has demonstrated reduced proliferation, enhanced apoptosis and synergism with chemotherapies and radiation. Despite promising preclinical data, clinical trials utilizing Hsp90 inhibitors for other malignancies had modest efficacy. Therefore, we propose that Hsp90 inhibition would best serve as an adjuvant treatment in advanced muscle-invasive or metastatic bladder cancers to potentiate other therapies. An overview of bladder cancer biology, current treatments, molecular targeted therapies, and the role for Hsp90 inhibitors in the treatment of urothelial carcinoma is the focus of this review.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Antineoplastic Agents/therapeutic use
- Apoptosis
- BCG Vaccine/therapeutic use
- Carcinoma, Transitional Cell/epidemiology
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Carcinoma, Transitional Cell/therapy
- Cell Cycle/drug effects
- Cell Division
- Cell Transformation, Neoplastic
- Chemoradiotherapy
- Chemotherapy, Adjuvant
- Clinical Trials as Topic
- Combined Modality Therapy
- Cystectomy
- Drug Resistance, Neoplasm
- Drugs, Investigational/therapeutic use
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/chemistry
- HSP90 Heat-Shock Proteins/physiology
- Histone Code/drug effects
- Humans
- Models, Biological
- Molecular Targeted Therapy
- Muscle, Smooth/pathology
- Neoplasm Invasiveness
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Transcription, Genetic/drug effects
- Urologic Neoplasms/epidemiology
- Urologic Neoplasms/metabolism
- Urologic Neoplasms/pathology
- Urologic Neoplasms/therapy
Collapse
Affiliation(s)
- Mahmoud Chehab
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tiffany Caza
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kamil Skotnicki
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Steve Landas
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Research Institute, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
148
|
Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol 2015; 89:6352-63. [PMID: 25855731 PMCID: PMC4474317 DOI: 10.1128/jvi.00315-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5' and 3' extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces infectious virus production. Given the considerable interest in the development of Hsp90 inhibitors for use in cancer therapeutics, we identify here a new target that could be explored for the development of antiviral strategies to control norovirus outbreaks and treat chronic norovirus infection in immunosuppressed patients.
Collapse
|
149
|
Barabutis N, Dimitropoulou C, Birmpas C, Joshi A, Thangjam G, Catravas JD. p53 protects against LPS-induced lung endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2015; 308:L776-87. [PMID: 25713322 DOI: 10.1152/ajplung.00334.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
New therapies toward heart and blood vessel disorders may emerge from the development of Hsp90 inhibitors. Several independent studies suggest potent anti-inflammatory activities of those agents in human tissues. The molecular mechanisms responsible for their protective effects in the vasculature remain unclear. The present study demonstrates that the transcription factor p53, an Hsp90 client protein, is crucial for the maintenance of vascular integrity, protects again LPS-induced endothelial barrier dysfunction, and is involved in the mediation of the anti-inflammatory activity of Hsp90 inhibitors in lung tissues. p53 silencing by siRNA decreased transendothelial resistance (a measure of endothelial barrier function). A similar effect was induced by the p53 inhibitor pifithrin, which also potentiated the LPS-induced hyperpermeability in human lung microvascular endothelial cells (HLMVEC). On the other hand, p53 induction by nutlin suppressed the LPS-induced vascular barrier dysfunction. LPS decreased p53 expression in lung tissues and that effect was blocked by pretreatment with Hsp90 inhibitors both in vivo and in vitro. Furthermore, the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin suppressed the LPS-induced overexpression of the p53 negative regulator MDMX as well as p53 and MDM2 (another p53 negative regulator) phosphorylation in HLMVEC. Both negative p53 regulators were downregulated by LPS in vivo. Chemically induced p53 overexpression resulted in the suppression of LPS-induced RhoA activation and MLC2 phosphorylation, whereas p53 suppression caused the opposite effects. These observations reveal new mechanisms for the anti-inflammatory actions of Hsp90 inhibitors, i.e., the induction of the transcription factor p53, which in turn can orchestrate robust vascular anti-inflammatory responses both in vivo and in vitro.
Collapse
Affiliation(s)
| | | | | | - Atul Joshi
- Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia; and
| | - Gagan Thangjam
- Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia; and School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
150
|
E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 2015; 6:e02068-14. [PMID: 25691589 PMCID: PMC4337564 DOI: 10.1128/mbio.02068-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. HPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicing cis elements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.
Collapse
|