101
|
Mei Kwei JS, Kuraoka I, Horibata K, Ubukata M, Kobatake E, Iwai S, Handa H, Tanaka K. Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochem Biophys Res Commun 2004; 320:1133-8. [PMID: 15249207 DOI: 10.1016/j.bbrc.2004.06.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Indexed: 11/29/2022]
Abstract
The blockage of transcription elongation by RNA polymerase II (pol II) at a DNA damage site on the transcribed strand triggers a transcription-coupled DNA repair (TCR), which rapidly removes DNA damage on the transcribed strand of the expressed gene and allows the resumption of transcription. To analyze the effect of UV-induced DNA damage on transcription elongation, an in vitro transcription elongation system using pol II and oligo(dC)-tailed templates containing a cyclobutane pyrimidine dimer (CPD) or 6-4 photoproduct (6-4PP) at a specific site was employed. The results showed that pol II incorporated nucleotides opposite the CPD and 6-4PP and then stalled. Pol II formed a stable ternary complex consisting of pol II, the DNA damage template, and the nascent transcript. Furthermore, atomic force microscopy imaging revealed that pol II stalled at the damaged region. These findings may provide the basis for analysis of the initiation step of TCR.
Collapse
Affiliation(s)
- Joan Seah Mei Kwei
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Franklin A, Milburn PJ, Blanden RV, Steele EJ. Human DNA polymerase‐η, an A‐T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol Cell Biol 2004; 82:219-25. [PMID: 15061777 DOI: 10.1046/j.0818-9641.2004.01221.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have proposed previously that error-prone reverse transcription using pre-mRNA of rearranged immunoglobulin variable (IgV) regions as templates is involved in the antibody diversifying mechanism of somatic hypermutation (SHM). As patients deficient in DNA polymerase-eta exhibit an abnormal spectrum of SHM, we postulated that this recently discovered Y-family polymerase is a reverse transcriptase (RT). This possibility was tested using a product-enhanced RT (PERT) assay that uses a real time PCR step with a fluorescent probe to detect cDNA products of at least 27-37 nucleotides. Human pol-eta and two other Y-family enzymes that are dispensable for SHM, human pols-iota and -kappa, copied a heteropolymeric DNA-primed RNA template in vitro under conditions with substantial excesses of template. Repeated experiments gave highly reproducible results. The RT activity detected using one aliquot of human pol-eta was confirmed using a second sample from an independent source. Human DNA pols-beta and -mu, and T4 DNA polymerase repeatedly demonstrated no RT activity. Pol-eta was the most efficient RT of the Y-family enzymes assayed but was much less efficient than an HIV-RT standard in vitro. It is thus feasible that pol-eta acts as both a RNA- and a DNA-dependent DNA polymerase in SHM in vivo, and that Y-family RT activity participates in other mechanisms of physiological importance.
Collapse
Affiliation(s)
- Andrew Franklin
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
103
|
Kathe SD, Shen GP, Wallace SS. Single-Stranded Breaks in DNA but Not Oxidative DNA Base Damages Block Transcriptional Elongation by RNA Polymerase II in HeLa Cell Nuclear Extracts. J Biol Chem 2004; 279:18511-20. [PMID: 14978042 DOI: 10.1074/jbc.m313598200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription and repair of many DNA helix-distorting lesions such as cyclobutane pyrimidine dimers have been shown to be coupled in cells across phyla from bacteria to humans. The signal for transcription-coupled repair appears to be a stalled transcription complex at the lesion site. To determine whether oxidative DNA lesions can block correctly initiated human RNA polymerase II, we examined the effect of site-specifically introduced oxidative damages on transcription in HeLa cell nuclear extracts. We found that transcription was blocked by single-stranded breaks, common oxidative DNA lesions, when present in the transcribed strand of the transcription template. Cyclobutane pyrimidine dimers, which have been previously shown to block transcription both in vitro and in vivo, also blocked transcription in the HeLa cell nuclear transcription assay. In contrast, the oxidative DNA base lesions, 8-oxoguanine, 5-hydroxycytosine, and thymine glycol did not inhibit transcription, although pausing was observed with the thymine glycol lesion. Thus, DNA strand breaks but not oxidative DNA base damages blocked transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Scott D Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
104
|
Steele EJ, Franklin A, Blanden RV. Genesis of the strand‐biased signature in somatic hypermutation of rearranged immunoglobulin variable genes. Immunol Cell Biol 2004; 82:209-18. [PMID: 15061776 DOI: 10.1046/j.0818-9641.2004.01224.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The history and current development of the reverse transcriptase model of somatic hypermutation (RT-model) is reviewed with particular reference to the genesis of strand-biased mutation signatures in rearranged immunoglobulin variable genes (V(D)J). The recent disagreement in the field as to whether strand bias really exists or not has been critically analysed and the confusion traced to the putative presence, in some mutated V(D)J sequence collections, of polymerase chain reaction (PCR)-recombinant artefacts. Recent analysis of somatic hypermutation in xeroderma pigmentosum variant patients, by the group of PJ Gearhart and others, has established that the Y-family translesion DNA repair enzyme, DNA polymerase eta (eta), is responsible for the striking A-T targeted strand-bias mutation signature seen in all mouse and human collections of somatically mutated V(D)J sequences. This evidence, together with our own recent demonstration that human DNA polymerase eta is a reverse transcriptase, leads to the conclusion that the strand-biased A-T mutation signature is caused either by: (i) error-prone DNA-dependent DNA repair synthesis by pol-eta of single-strand nicks preferentially in the non-transcribed strand; and/or (ii) by error-prone cDNA synthesis of the transcribed strand by pol-eta using the pre-mRNA as the copying template, primed by the nicked transcribed DNA strand, followed by replacement of the original transcribed strand by cDNA. Analysis of the total mutation pattern also suggests that the major transitions observed in SHM (A-->G, C-->T and G-->A) can be explained by known RNA editing mechanisms active on pre-mRNA which are then written into cDNA during synthesis of the transcribed strand by error-prone cellular reverse transcriptases such as pol-eta.
Collapse
Affiliation(s)
- Edward J Steele
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
105
|
Inukai N, Yamaguchi Y, Kuraoka I, Yamada T, Kamijo S, Kato J, Tanaka K, Handa H. A Novel Hydrogen Peroxide-induced Phosphorylation and Ubiquitination Pathway Leading to RNA Polymerase II Proteolysis. J Biol Chem 2004; 279:8190-5. [PMID: 14662762 DOI: 10.1074/jbc.m311412200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage-induced ubiquitination of the largest subunit of RNA polymerase II, Rpb1, has been implicated in transcription-coupled repair for years. The studies so far, however, have been limited to the use of bulky helix-distorting DNA damages caused by UV light and cisplatin, which are corrected by the nucleotide excision repair pathway. Non-bulky, non-helix-distorting damages are caused at high frequency by reactive oxygen species in cells and corrected by the base excision repair pathway. Contrary to a classic view, we recently found that the second type of DNA lesions also causes RNA polymerase II stalling in vitro. In this paper, we show that hydrogen peroxide (H(2)O(2)) causes significant ubiquitination and proteasomal degradation of Rpb1 by mechanisms that are distinct from those employed after UV irradiation. UV irradiation and H(2)O(2) treatment cause characteristic changes in protein kinases phosphorylating the carboxyl-terminal domain at Ser-2 and -5. The H(2)O(2)-induced ubiquitination is likely dependent on unusual Ser-5 phosphorylation by ERK1/2. Moreover, the H(2)O(2)-induced ubiquitination occurs on transcriptionally engaged polymerases without the help of Cockayne syndrome A and B proteins and von Hippel-Lindau tumor suppressor proteins, which are all required for the UV-induced ubiquitination. These results suggest that stalled polymerases are recognized and ubiquitinated differentially depending on the types of DNA lesions. Our findings may have general implications in the basic mechanism of transcription-coupled nucleotide excision repair and base excision repair.
Collapse
Affiliation(s)
- Naoto Inukai
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology and PRESTO, Japan Science and Technology Agency, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Seeberg E, Klungland A. Better late than never for repair of miscoding lesions within a transcribed template. Mol Cell 2003; 12:799-800. [PMID: 14580331 DOI: 10.1016/s1097-2765(03)00403-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription does not always stall at base damage in DNA and can create mutated transcripts from miscoding lesions. In this issue of Molecular Cell, present genetic analysis of E. coli to indicate that the highly mutagenic purine modification, 8-oxoguanine, is subject to transcription-coupled repair despite transcriptional bypass and generation of mutant transcripts.
Collapse
Affiliation(s)
- Erling Seeberg
- Centre of Molecular Biology and Neuroscience and Department of Molecular Biology, Institute of Medical Microbiology, University of Oslo, The National Hospital, 0027 Oslo, , Norway
| | | |
Collapse
|
107
|
Brégeon D, Doddridge ZA, You HJ, Weiss B, Doetsch PW. Transcriptional Mutagenesis Induced by Uracil and 8-Oxoguanine in Escherichia coli. Mol Cell 2003; 12:959-70. [PMID: 14580346 DOI: 10.1016/s1097-2765(03)00360-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cells exposed to DNA damaging agents in their natural environment do not undergo continuous cycles of replication but are more frequently engaged in gene transcription. Luciferase gene expression analysis with DNA templates containing uracil or 8-oxoguanine, placed at a defined position, indicated that in nondividing Escherichia coli cells, efficient mutagenic lesion bypass does occur in vivo during transcription. Sequence analyses of the transcript population revealed that RNA polymerase inserts adenine opposite to uracil, and adenine or cytosine opposite to 8-oxoguanine. Surprisingly, deletions were also detected for 8-oxoguanine-containing templates, indicating RNA polymerase slippage over this lesion. Genetic analyses showed that, in E. coli, 8-oxoguanine is subject to transcription-coupled repair. Consequently, DNA damages alter transcription fidelity in vivo, which may lead to the production of mutant proteins that have the potential to change the phenotype of nondividing cells.
Collapse
Affiliation(s)
- Damien Brégeon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
108
|
Dou H, Mitra S, Hazra TK. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 2003; 278:49679-84. [PMID: 14522990 DOI: 10.1074/jbc.m308658200] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of oxidatively damaged bases in the genome via the base excision repair pathway is initiated with excision of these lesions by DNA glycosylases with broad substrate range. The newly discovered human DNA glycosylases, NEIL1 and NEIL2, are distinct in structural features and reaction mechanism from the previously characterized NTH1 and OGG1 but act on many of the same substrates. However, NEIL2 shows a unique preference for excising lesions from a DNA bubble, whereas NTH1 and OGG1 are only active with duplex DNA. NEIL1 also excises efficiently 5-hydroxyuracil, an oxidation product of cytosine, from the bubble and single-stranded DNA but does not have strong activity toward 8-oxoguanine in the bubble. The dichotomy in the activity of NEILs versus NTH1/OGG1 for bubble versus duplex DNA substrates is consistent with higher affinity of the NEILs for the bubble structures of both damaged and undamaged DNA relative to duplex structure. These observations suggest that the NEILs are functionally distinct from OGG1/NTH1 in vivo. OGG1/NTH1-independent repair of oxidized bases in the transcribed sequences supports the possibility that NEILs are preferentially involved in repair of lesions in DNA bubbles generated during transcription and/or replication.
Collapse
Affiliation(s)
- Hong Dou
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
109
|
Arnaudeau-Bégard C, Brellier F, Chevallier-Lagente O, Hoeijmakers J, Bernerd F, Sarasin A, Magnaldo T. Genetic correction of DNA repair-deficient/cancer-prone xeroderma pigmentosum group C keratinocytes. Hum Gene Ther 2003; 14:983-96. [PMID: 12869216 DOI: 10.1089/104303403766682241] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a rare photosensitive and cancer-prone syndrome transmitted as an autosomal recessive trait. Most cancers developed by XP patients are basal and squamous cell carcinoma strikingly restricted to sun-exposed parts of the skin. Cells from patients with classic XP are deficient in nucleotide excision repair, a versatile biochemical mechanism for removal of ultraviolet-induced DNA lesions. Among the seven classic XP complementation groups known to date (XP-A to XP-G), XP-C is the most common one in Europe and North Africa and XP-C patients remain free of neurologic problems often seen in other XP complementation groups. This has prompted us to undertake genetic correction of XP-C fibroblasts and particularly keratinocytes, which are the most relevant cells in relation to skin cancer and have proven recently to be capable of reconstructing XP-C skin in vitro. In this study, we demonstrate that DNA repair capacity, cell survival properties, and transition from proliferative to abortive keratinocyte colonies toward UVB irradiation can be fully recovered in keratinocytes from patients with XPC transduced with a retroviral vector stably driving the expression of the wild-type XPC protein. In addition, we show that in the absence of UV, XP-C keratinocytes exhibit intrinsic cell cycle abnormalities, and beta(1)-integrin overexpression, defects that are also both fully reversed after genetic correction. Together with full correction of the defects in XP-C corrected keratinocytes, in vitro reconstruction of skin from these cells open a rational perspective to XP tissue therapy.
Collapse
Affiliation(s)
- Catherine Arnaudeau-Bégard
- Laboratory of Genetic Instability and Cancer, CNRS UPR2169, Institut Gustave Roussy, 94805 Villejuif Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|