101
|
Wojciak-Stothard B, Torondel B, Tsang LYF, Fleming I, Fisslthaler B, Leiper JM, Vallance P. The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci 2007; 120:929-42. [PMID: 17327280 DOI: 10.1242/jcs.002212] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide production associated with abnormal blood vessel growth and repair, however, the mechanism of action of ADMA is not well understood. We studied the role of exogenous and endogenous ADMA in the regulation of cell motility and actin cytoskeleton in porcine pulmonary endothelial cells (PAECs) and pulmonary microvascular endothelial cells (PMECs) from knockout mice that lack one of the enzyme metabolising ADMA, dimethylarginine dimethylaminohydrolase I (DDAHI) as well as endothelial cells overexpressing DDAH in vitro. We show that ADMA induced stress fibre and focal adhesion formation and inhibited cell motility in primary pulmonary endothelial cells. The effects of ADMA depended on the activity of RhoA and Rho kinase and were reversed by overexpression of DDAH, nitric oxide donors and protein kinase G activator, 8-bromo-cGMP. ADMA also inhibited the activities of Rac1 and Cdc42 in cells but these changes had a minor effect on cell motility. Endogenous ADMA increased RhoA activity and inhibited cell motility in PMECs from DDAHI knockout mice and inhibited angiogenesis in vitro. These results are the first demonstration that metabolism of cardiovascular risk factor ADMA regulates endothelial cell motility, an important factor in angiogenesis and vascular repair.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- BHF Laboratories, Department of Medicine, University College London, 5 University Street, London, WC1 E6JJ, UK.
| | | | | | | | | | | | | |
Collapse
|
102
|
Sun XH, Flynn DC, Castranova V, Millecchia LL, Beardsley AR, Liu J. Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem 2007; 282:7232-41. [PMID: 17213184 DOI: 10.1074/jbc.m607396200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cells are migrating, caveolin-1, the principal protein component of caveolae, is excluded from the leading edge and polarized at the cell rear. The dynamic feature depends on a specific sequence motif that directs intracellular trafficking of the protein. Deletion mutation analysis revealed a putative polarization domain at the N terminus of caveolin-1, between amino acids 32-60. Alanine substitution identified a minimal sequence of 10 residues ((46)TKEIDLVNRD(55)) necessary for caveolin-1 rear polarization. Interestingly, deletion of amino acids 1-60 did not prevent the polarization of caveolin-1 in human umbilical vein endothelial cells or wild-type mouse embryonic fibroblasts because of an interaction of Cav(61-178) mutant with endogenous caveolin-1. Surprisingly, expression of the depolarization mutant in caveolin-1 null cells dramatically impeded caveolae formation. Furthermore, knockdown of caveolae formation by methyl-beta-cyclodextrin failed to prevent wild-type caveolin-1 rear polarization. Importantly, genetic depletion of caveolin-1 led to disoriented migration, which can be rescued by full-length caveolin-1 but not the depolarization mutant, indicating a role of caveolin-1 polarity in chemotaxis. Thus, we have identified a sequence motif that is essential for caveolin-1 rear polarization and caveolae formation.
Collapse
Affiliation(s)
- Xing-Hui Sun
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
103
|
Santilman V, Baran J, Anand-Apte B, Fox PL, Parat MO. Caveolin-1 polarization in migrating endothelial cells is directed by substrate topology not chemoattractant gradient. ACTA ACUST UNITED AC 2006; 63:673-80. [PMID: 16960885 DOI: 10.1002/cm.20153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polarization is a hallmark of migrating cells, and an asymmetric distribution of proteins is essential to the migration process. Caveolin-1 is highly polarized in migrating endothelial cells (EC). Several studies have shown caveolin-1 accumulation in the front of migrating EC while others report its accumulation in the EC rear. In this paper we address these conflicting results on polarized localization of caveolin-1. We find evidence for the hypothesis that different modes of locomotion lead to differences in protein polarization. In particular, we show that caveolin-1 is primarily localized in the rear of cells migrating on a planar substrate, but in the front of cells traversing a three-dimensional pore. We also show that a chemoattractant, present either as a gradient or ubiquitously in the medium, does not alter caveolin-1 localization in cells in either mode of locomotion. Thus we conclude that substrate topology, and not the presence of a chemoattractant, directs the polarization of caveolin-1 in motile ECs.
Collapse
Affiliation(s)
- Virginie Santilman
- Department of Anesthesiology Research, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
104
|
Abstract
Migrating cells tend to continue moving in the same direction, a property called persistence. During migration, cells, by definition, form new adhesions at their front and break old adhesions at the rear. We hypothesize that the distinction between new adhesions at the front and older adhesions at the rear plays a major role in directional persistence. We propose specific mechanisms of persistence on the basis of known properties of integrin signals, in hope of stimulating investigation of these ideas.
Collapse
|
105
|
Siddiqui SS, Siddiqui ZK, Uddin S, Minshall RD, Malik AB. p38 MAPK activation coupled to endocytosis is a determinant of endothelial monolayer integrity. Am J Physiol Lung Cell Mol Physiol 2006; 292:L114-24. [PMID: 16891390 DOI: 10.1152/ajplung.00257.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We show in rat lung microvessel endothelial cells (RLMVEC) that endocytosis is a critical determinant of activation of mitogen-activated protein kinase (MAPK) and thereby regulates endothelial monolayer integrity. In RLMVEC grown in serum-free medium, we observed that albumin supplementation induced the phosphorylation of p38 MAPK within 30 min, which persisted for up to 2 h. Engagement of the endocytic machinery regulated the activation of p38 MAPK that contributed to endothelial cell proliferation and reduction of apoptosis. We also observed an interaction between the caveolar protein caveolin-1 and p38 MAPK with reciprocal coimmunoprecipitation assays and colocalization using double-label immunofluorescence staining. Knockdown of caveolin-1 expression with small interfering RNA significantly reduced endocytosis and activation of p38 MAPK and interfered with the ability of endothelial cells to form a confluent monolayer. Thus caveolae-mediated endocytosis and concomitant activation of p38 MAPK may help to maintain endothelial monolayer integrity by signaling proliferation and survival of endothelial cells.
Collapse
Affiliation(s)
- Shahid S Siddiqui
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Ave. (M/C 868), Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
106
|
Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res 2006; 71:216-25. [PMID: 16616906 PMCID: PMC1934427 DOI: 10.1016/j.cardiores.2006.02.033] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) have been shown to function as important signaling molecules in the cardiovascular system. Vascular smooth muscle cells (VSMCs) contain several sources of ROS, among which the NADPH oxidases are predominant. In VSMCs, ROS mediate many pathophysiological processes, such as growth, migration, apoptosis and secretion of inflammatory cytokines, as well as physiological processes, such as differentiation, by direct and indirect effects at multiple signaling levels. Therefore, it becomes critical to understand the different roles ROS play in the physiology and pathophysiology of VSMCs.
Collapse
Affiliation(s)
- Roza E. Clempus
- Department of Medicine, Division of Cardiology, Emory University, 319 WMB, 1639 Pierce Dr. Atlanta, GA 30322, United States
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, 319 WMB, 1639 Pierce Dr. Atlanta, GA 30322, United States
| |
Collapse
|
107
|
Orlichenko L, Huang B, Krueger E, McNiven MA. Epithelial Growth Factor-induced Phosphorylation of Caveolin 1 at Tyrosine 14 Stimulates Caveolae Formation in Epithelial Cells. J Biol Chem 2006; 281:4570-9. [PMID: 16332692 DOI: 10.1074/jbc.m512088200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.
Collapse
Affiliation(s)
- Lidiya Orlichenko
- Center for Basic Research in Digestive Diseases and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
108
|
Millán J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 2006; 8:113-23. [PMID: 16429128 DOI: 10.1038/ncb1356] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/28/2005] [Indexed: 01/13/2023]
Abstract
During inflammation, leukocytes bind to the adhesion receptors ICAM-1 and VCAM-1 on the endothelial surface before undergoing transendothelial migration, also called diapedesis. ICAM-1 is also involved in transendothelial migration, independently of its role in adhesion, but the molecular basis of this function is poorly understood. Here we demonstrate that, following clustering, apical ICAM-1 translocated to caveolin-rich membrane domains close to the ends of actin stress fibres. In these F-actin-rich areas, ICAM-1 was internalized and transcytosed to the basal plasma membrane through caveolae. Human T-lymphocytes extended pseudopodia into endothelial cells in caveolin- and F-actin-enriched areas, induced local translocation of ICAM-1 and caveolin-1 to the endothelial basal membrane and transmigrated through transcellular passages formed by a ring of F-actin and caveolae. Reduction of caveolin-1 levels using RNA interference (RNAi) specifically decreased lymphocyte transcellular transmigration. We propose that the translocation of ICAM-1 to caveola- and F-actin-rich domains links the sequential steps of lymphocyte adhesion and transendothelial migration and facilitates lymphocyte migration through endothelial cells from capillaries into surrounding tissue.
Collapse
Affiliation(s)
- Jaime Millán
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS, UK
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
110
|
Fabbri M, Di Meglio S, Gagliani MC, Consonni E, Molteni R, Bender JR, Tacchetti C, Pardi R. Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the alphaL/beta2 integrin, LFA-1, during leukocyte chemotaxis. Mol Biol Cell 2005; 16:5793-803. [PMID: 16207819 PMCID: PMC1289422 DOI: 10.1091/mbc.e05-05-0413] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 09/20/2005] [Accepted: 09/23/2005] [Indexed: 01/18/2023] Open
Abstract
Cell migration entails the dynamic redistribution of adhesion receptors from the cell rear toward the cell front, where they form new protrusions and adhesions. This process may involve regulated endo-exocytosis of integrins. Here we show that in primary neutrophils unengaged alphaL/beta2 integrin (LFA-1) is internalized and rapidly recycled upon chemoattractant stimulation via a clathrin-independent, cholesterol-sensitive pathway involving dynamic partitioning into detergent-resistant membranes (DRM). Persistent DRM association is required for recycling of the internalized receptor because 1) >90% of endocytosed LFA-1 is associated with DRM, and a large fraction of the internalized receptor colocalizes intracellularly with markers of DRM and the recycling endocytic compartment; 2) a recycling-defective mutant (alphaL/beta2Y735A) dissociates rapidly from DRM upon being endocytosed and is subsequently diverted into a late endosomal pathway; and 3) a dominant negative Rab11 mutant (Rab11S25N) induces intracellular accumulation of endocytosed alphaL/beta2 and prevents its enrichment in chemoattractant-induced lamellipodia. Notably, chemokine-induced migration of neutrophils over immobilized ICAM-1 is abrogated by cholesterol-sequestering agents. We propose that DRM-associated endocytosis allows efficient retrieval of integrins, as they detach from their ligands, followed by polarized recycling to areas of the plasma membrane, such as lamellipodia, where they establish new adhesive interactions and promote outside-in signaling events.
Collapse
Affiliation(s)
- Monica Fabbri
- Unit of Leukocyte Biology, Vita-Salute San Raffaele University School of Medicine, DIBIT-Scientific Institute San Raffaele, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|