101
|
Vélez EJ, Azizi S, Lutfi E, Capilla E, Moya A, Navarro I, Fernández-Borràs J, Blasco J, Gutiérrez J. Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea bream ( Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2017; 312:R643-R653. [PMID: 28228414 DOI: 10.1152/ajpregu.00308.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
102
|
Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats. MENOPAUSE REVIEW 2017; 15:193-201. [PMID: 28250722 PMCID: PMC5327620 DOI: 10.5114/pm.2016.65663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/24/2016] [Indexed: 12/03/2022]
Abstract
Objective We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Material and methods Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.
Collapse
|
103
|
Gigliotti D, Xu MC, Davidson MJ, Macdonald PB, Leiter JRS, Anderson JE. Fibrosis, low vascularity, and fewer slow fibers after rotator-cuff injury. Muscle Nerve 2017; 55:715-726. [PMID: 27571286 DOI: 10.1002/mus.25388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Rotator-cuff injury (RCI) represents 50% of shoulder injuries, and prevalence increases with age. Even with successful tendon repair, muscle and joint function may not return. METHODS To explore the dysfunction, supraspinatus and ipsilateral deltoid (control) muscles were biopsied during arthroscopic RCI repair for pair-wise histological and protein-expression studies. RESULTS Supraspinatus showed fiber atrophy (P < 0.0001), fibrosis (by Sirius Red, P = 0.05), reduced vascular density (P < 0.001), and a lower proportion of slow fibers (P < 0.0001) compared with the ipsilateral control muscle. There were also higher levels of atrogin-1 (P = 0.05), vascular endothelial growth factor (VEGF, P < 0.01), and dystrophin (P < 0.008, relative to fiber diameter) versus control. CONCLUSIONS Adaptive changes in vascular endothelial growth factor and dystrophin were likely associated with reduced vascular supply, fatigue resistance, and fibrosis, accompanied by disuse atrophy from mechanical unloading of supraspinatus after tendon tear. Treatment to promote growth and vascularity in atrophic supraspinatus muscle may help improve functional outcome after surgical repair. Muscle Nerve 55: 715-726, 2017.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 212 Biological Sciences Building, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Mark C Xu
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada
| | - Michael J Davidson
- Faculty of Health Sciences College of Medicine Department of Radiology at the University of Manitoba, Winnipeg, Canada
| | - Peter B Macdonald
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada.,Pan Am Clinic, Winnipeg, Canada
| | - Jeff R S Leiter
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada.,Pan Am Clinic, Winnipeg, Canada
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 212 Biological Sciences Building, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
104
|
Association of LIM Domain 7 Gene Polymorphisms and Plasma Levels of LIM Domain 7 with Dilated Cardiomyopathy in a Chinese Population. Appl Biochem Biotechnol 2016; 182:885-897. [PMID: 27988857 DOI: 10.1007/s12010-016-2368-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023]
Abstract
The aim of our study was to investigate the potential association of mRNA expression and plasma levels of the LIM domain 7 (LMO7) gene with the pathogenesis of dilated cardiomyopathy (DCM). Two SNPs of the LMO7 gene were genotyped in 310 patients with DCM and 415 controls. Our results showed that SNP rs7986131 (p = 0.002, OR = 1.38, 95% CI = 1.12-1.71), but not SNP rs4884021, was associated with DCM in the Han Chinese population. Haplotype analysis showed that the haplotype GT was associated with increased DCM susceptibility while AC was a protective haplotype. The Cox multivariate survival analysis indicated that the rs7986131 TT genotype (HR 1.659, 95% CI = 1.122-2.454, p = 0.011) was an independent multivariate predictor for shorter overall survival in patients with DCM. LMO7 mRNA expression and plasma LMO7 levels were significantly decreased in DCM (p < 0.0001). Spearman correlation test revealed that the plasma LMO7 level was negatively associated with left ventricular end-diastolic diameter (r = -0.384, p = 0.01), left ventricular end-diastolic volume (r = -0.375, p = 0.012), and brain natriuretic peptide (r = -0.482, p = 0.001). Our study suggested that the LMO7 gene may play an important role in the pathogenesis of DCM in the Han Chinese population.
Collapse
|
105
|
Deval C, Capel F, Laillet B, Polge C, Béchet D, Taillandier D, Attaix D, Combaret L. Docosahexaenoic acid-supplementation prior to fasting prevents muscle atrophy in mice. J Cachexia Sarcopenia Muscle 2016; 7:587-603. [PMID: 27239420 PMCID: PMC4864105 DOI: 10.1002/jcsm.12103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/13/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Muscle wasting prevails in numerous diseases (e.g. diabetes, cardiovascular and kidney diseases, COPD,…) and increases healthcare costs. A major clinical issue is to devise new strategies preventing muscle wasting. We hypothesized that 8-week docosahexaenoic acid (DHA) supplementation prior to fasting may preserve muscle mass in vivo. METHODS Six-week-old C57BL/6 mice were fed a DHA-enriched or a control diet for 8 weeks and then fasted for 48 h. RESULTS Feeding mice a DHA-enriched diet prior to fasting elevated muscle glycogen contents, reduced muscle wasting, blocked the 55% decrease in Akt phosphorylation, and reduced by 30-40% the activation of AMPK, ubiquitination, or autophagy. The DHA-enriched diet fully abolished the fasting induced-messenger RNA (mRNA) over-expression of the endocannabinoid receptor-1. Finally, DHA prevented or modulated the fasting-dependent increase in muscle mRNA levels for Rab18, PLD1, and perilipins, which determine the formation and fate of lipid droplets, in parallel with muscle sparing. CONCLUSIONS These data suggest that 8-week DHA supplementation increased energy stores that can be efficiently mobilized, and thus preserved muscle mass in response to fasting through the regulation of Akt- and AMPK-dependent signalling pathways for reducing proteolysis activation. Whether a nutritional strategy aiming at increasing energy status may shorten recovery periods in clinical settings remains to be tested.
Collapse
Affiliation(s)
- Christiane Deval
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Frédéric Capel
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Brigitte Laillet
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Cécile Polge
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Daniel Béchet
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Daniel Taillandier
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Didier Attaix
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Lydie Combaret
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| |
Collapse
|
106
|
Tanaka N, Kosaka T, Miyazaki Y, Mikami S, Niwa N, Otsuka Y, Minamishima YA, Mizuno R, Kikuchi E, Miyajima A, Sabe H, Okada Y, Uhlén P, Suematsu M, Oya M. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation. JCI Insight 2016; 1:e83654. [PMID: 27812537 DOI: 10.1172/jci.insight.83654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin. The association between FBXO32 expression and EMT was further validated using clinical samples. Knockdown of MyoD expression, a specific target of FBXO32 polyubiquitination, revealed upregulation of E-cadherin expression and downregulation of SNAIL and vimentin expression in T24PR cells. Comparative genomic hybridization array analysis demonstrated loss of heterozygosity at 8q24.13 in T24PR cells, which harbors FBXO32. Our findings suggest the importance of the association between EMT and ubiquitin-proteasome regulation when tumors develop acquired platinum resistance.
Collapse
Affiliation(s)
- Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasumasa Miyazaki
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Naoya Niwa
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaro Otsuka
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoji Andrew Minamishima
- Department of Biochemistry, Keio University School of Medicine, and Japan Agency for Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, and Japan Agency for Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
107
|
Huang SC, Zhou A, Nguyen DT, Zhang HS, Benz EJ. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem 2016; 291:25591-25607. [PMID: 27780863 DOI: 10.1074/jbc.m116.761296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/28/2023] Open
Abstract
Protein 4.1R (4.1R) isoforms are expressed in both cardiac and skeletal muscle. 4.1R is a component of the contractile apparatus. It is also associated with dystrophin at the sarcolemma in skeletal myofibers. However, the expression and function of 4.1R during myogenesis have not been characterized. We now report that 4.1R expression increases during C2C12 myoblast differentiation into myotubes. Depletion of 4.1R impairs skeletal muscle differentiation and is accompanied by a decrease in the levels of myosin heavy and light chains and caveolin-3. Furthermore, the expression of myogenin at the protein, but not mRNA, level is drastically decreased in 4.1R knockdown myocytes. Similar results were obtained using MyoD-induced differentiation of 4.1R-/- mouse embryonic fibroblast cells. von Hippel-Lindau (VHL) protein is known to destabilize myogenin via the ubiquitin-proteasome pathway. We show that 4.1R associates with VHL and, when overexpressed, reverses myogenin ubiquitination and stability. This suggests that 4.1R may influence myogenesis by preventing VHL-mediated myogenin degradation. Together, our results define a novel biological function for 4.1R in muscle differentiation and provide a molecular mechanism by which 4.1R promotes myogenic differentiation.
Collapse
Affiliation(s)
- Shu-Ching Huang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, .,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Anyu Zhou
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Dan T Nguyen
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
108
|
Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98:218-230. [PMID: 26738803 DOI: 10.1016/j.freeradbiomed.2015.12.031] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/25/2015] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored.
Collapse
Affiliation(s)
- Oren Rom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel.
| | - Abraham Z Reznick
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel
| |
Collapse
|
109
|
Singh P, Li D, Gui Y, Zheng XL. Atrogin-1 Increases Smooth Muscle Contractility Through Myocardin Degradation. J Cell Physiol 2016; 232:806-817. [PMID: 27403897 DOI: 10.1002/jcp.25485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
Atrogin-1, an E3 ligase present in skeletal, cardiac and smooth muscle, down-regulates myocardin protein during skeletal muscle differentiation. Myocardin, the master regulator of smooth muscle cell (SMC) differentiation, induces expression of smooth muscle marker genes through its association with serum response factor (SRF), which binds to the CArG box in the promoter. Myocardin undergoes ubiquitylation and proteasomal degradation. Evidence suggests that proteasomal degradation of myocardin is critical for myocardin to exert its transcriptional activity, but there is no report about the E3 ligase responsible for myocardin ubiquitylation and subsequent transactivation. Here, we showed that overexpression of atrogin-1 increased contractility of cultured SMCs and mouse aortic tissues in organ culture. Overexpression of dominant-negative myocardin attenuated the increase in SMC contractility induced by atrogin-1. Atrogin-1 overexpression increased expression of the SM contractile markers while downregulated expression of myocardin protein but not mRNA. Atrogin-1 also ubiquitylated myocardin for proteasomal degradation in vascular SMCs. Deletion studies showed that atrogin-1 directly interacted with myocardin through its amino acids 284-345. Immunostaining studies showed nuclear localization of atrogin-1, myocardin, and the Rpt6 subunit of the 26S proteasome. Atrogin-1 overexpression not only resulted in degradation of myocardin but also increased recruitment of RNA Polymerase II onto the promoters of myocardin target genes. In summary, our results have revealed the roles for atrogin-1 in the regulation of smooth muscle contractility through enhancement of myocardin ubiquitylation/degradation and its transcriptional activity. J. Cell. Physiol. 232: 806-817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pavneet Singh
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Li
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yu Gui
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
110
|
Gluba-Brzozka A, Franczyk B, Toth PP, Rysz J, Banach M. Molecular mechanisms of statin intolerance. Arch Med Sci 2016; 12:645-58. [PMID: 27279860 PMCID: PMC4889699 DOI: 10.5114/aoms.2016.59938] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Statins reduce cardiovascular morbidity and mortality in primary and secondary prevention. Despite their efficacy, many persons are unable to tolerate statins due to adverse events such as hepatotoxicity and myalgia/myopathy. In the case of most patients, it seems that mild-to-moderate abnormalities in liver and muscle enzymes are not serious adverse effects and do not outweigh the benefits of coronary heart disease risk reduction. The risk for mortality or permanent organ damage ascribed to statin use is very small and limited to cases of myopathy and rhabdomyolysis. Statin-induced muscle-related adverse events comprise a highly heterogeneous clinical disorder with numerous, complex etiologies and a variety of genetic backgrounds. Every patient who presents with statin-related side effects cannot undergo the type of exhaustive molecular characterization that would include all of these mechanisms. Frequently the only solution is to either discontinue statin therapy/reduce the dose or attempt intermittent dosing strategies at a low dose.
Collapse
Affiliation(s)
- Anna Gluba-Brzozka
- Department of Nephrology, Hypertension and Family Medicine, WAM University Hospital, Lodz, Poland
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Peter P. Toth
- CGH Medical Center, Sterling, Illinois, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacek Rysz
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
111
|
Protein breakdown in cancer cachexia. Semin Cell Dev Biol 2016; 54:11-9. [DOI: 10.1016/j.semcdb.2015.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
|
112
|
Tsompanidis A, Vafiadaki E, Blüher S, Kalozoumi G, Sanoudou D, Mantzoros CS. Ciliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscle. Metabolism 2016; 65:915-25. [PMID: 27173470 DOI: 10.1016/j.metabol.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The Ciliary Neurotrophic Factor (CNTF) is a pluripotent cytokine with anorexigenic actions in the hypothalamus that improves insulin sensitivity, increases energy expenditure and induces weight loss. Since CNTF also has an established myotrophic role, we sought to examine whether skeletal muscle contributes to the CNTF-induced metabolic improvement and identify the molecular mechanisms mediating these effects. METHODS We used a mouse model of diet-induced obesity, to which high or low CNTF doses were administered for 7days. Whole transcriptome expression levels were analyzed in dissected soleus muscles using microarrays and data were then confirmed using qRT-PCR. RESULTS We demonstrate that CNTF administration significantly downregulates leptin, while it upregulates follistatin and Pak1; a molecule associated with insulin sensitization in skeletal muscle. A significant overexpression of muscle differentiation related genes and downregulation of established atrophy mediators was observed. CONCLUSIONS The overall gene expression changes suggest an indirect, beneficial effect of CNTF on metabolism, energy expenditure and insulin sensitivity, exerted by the pronounced stimulation of muscle growth, with similarities to the described effect of follistatin and the activation of the Akt pathway in skeletal muscle.
Collapse
Affiliation(s)
- Alexandros Tsompanidis
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Susann Blüher
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georgia Kalozoumi
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
113
|
Aoyama S, Jia H, Nakazawa K, Yamamura J, Saito K, Kato H. Dietary Genistein Prevents Denervation-Induced Muscle Atrophy in Male Rodents via Effects on Estrogen Receptor-α. J Nutr 2016; 146:1147-54. [PMID: 27146914 DOI: 10.3945/jn.115.226316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Genistein has high estrogenic activity. Previous studies have shown beneficial effects of estrogen or hormone replacement therapy on muscle mass and muscle atrophy. OBJECTIVE We investigated the preventive effects and underlying mechanisms of genistein on muscle atrophy. METHODS In Expt. 1, male Wistar rats were fed a diet containing no genistein [control (CON)] or 0.05% genistein (GEN; wt:wt diet) for 24 d. On day 14, the sciatic nerve in the left hind leg was severed, and the right hind leg was sham-treated. In Expt. 2, male C57BL6J mice were subcutaneously administered a vehicle (Veh group) or the estrogen receptor (ER) antagonist ICI 182,780 (ICI group) via an osmotic pump for 27 d, and each group was subsequently fed CON or GEN diets from day 3 to day 27. Muscle atrophy was induced on day 17 as in Expt. 1. In Expt. 3, male C57BL6J mice were subcutaneously administered vehicle or a selective ER agonist-ER-α [4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT)] or ER-β [2,3-bis(4-hydroxyphenyl)-propionitrile (DPN)]-or genistein (GEN-sc-i) via an osmotic pump for 13 d, and muscle atrophy was induced on day 3 as in Expt. 1. The ratio of denervated soleus muscle weight to sham-operated soleus muscle weight (d/s ratio) was used as the index of muscle atrophy. RESULTS Expt. 1: The d/s ratio in the GEN group was 20% higher than that in the CON group (P < 0.05). Expt. 2: The d/s ratio in the Veh-GEN group was 14% higher than that in the Veh-CON group (P < 0.05), although there was no significant difference between ICI-CON and ICI-GEN groups (P = 0.69). Expt. 3: The d/s ratio in the PPT-treated group was 20% greater than that in the Veh group (P < 0.05), but DPN and GEN-sc-i had no effect on the d/s ratio (P ≥ 0.05 compared with vehicle). CONCLUSION Genistein intake mitigated denervation-induced soleus muscle atrophy. ER-α was related to the preventive effect of genistein on muscle atrophy.
Collapse
Affiliation(s)
- Shinya Aoyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and
| | - Huijuan Jia
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Kyoko Nakazawa
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Junki Yamamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and
| | - Kenji Saito
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
114
|
Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta Rev Cancer 2016; 1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/09/2022]
Abstract
F-box proteins, which are subunit recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 ligase complexes, play critical roles in the development and progression of human malignancies through governing multiple cellular processes including cell proliferation, apoptosis, invasion and metastasis. Moreover, there are emerging studies that lead to the development of F-box proteins inhibitors with promising therapeutic potential. In this article, we describe how F-box proteins including but not restricted to well-established Fbw7, Skp2 and β-TRCP, are involved in tumorigenesis. However, in-depth investigation is required to further explore the mechanism and the physiological contribution of undetermined F-box proteins in carcinogenesis. Lastly, we suggest that targeting F-box proteins could possibly open new avenues for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Quansheng Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| |
Collapse
|
115
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
116
|
Tando T, Hirayama A, Furukawa M, Sato Y, Kobayashi T, Funayama A, Kanaji A, Hao W, Watanabe R, Morita M, Oike T, Miyamoto K, Soga T, Nomura M, Yoshimura A, Tomita M, Matsumoto M, Nakamura M, Toyama Y, Miyamoto T. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy. J Biol Chem 2016; 291:12184-94. [PMID: 27129272 DOI: 10.1074/jbc.m115.680579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes.
Collapse
Affiliation(s)
| | - Akiyoshi Hirayama
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, and
| | | | - Yuiko Sato
- From the Departments of Orthopedic Surgery, Musculoskeletal Reconstruction and Regeneration Surgery
| | - Tami Kobayashi
- From the Departments of Orthopedic Surgery, Musculoskeletal Reconstruction and Regeneration Surgery
| | | | | | - Wu Hao
- From the Departments of Orthopedic Surgery
| | | | - Mayu Morita
- Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582
| | | | | | - Tomoyoshi Soga
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, and
| | - Masatoshi Nomura
- the Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi Ward, Fukuoka 812-8582, Japan
| | | | - Masaru Tomita
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, and
| | | | | | | | | |
Collapse
|
117
|
Hinds TD, Peck B, Shek E, Stroup S, Hinson J, Arthur S, Marino JS. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression. Int J Mol Sci 2016; 17:232. [PMID: 26875982 PMCID: PMC4783964 DOI: 10.3390/ijms17020232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.
Collapse
Affiliation(s)
- Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Bailey Peck
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Evan Shek
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Steven Stroup
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Jennifer Hinson
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Susan Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Joseph S Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
118
|
Kalamgi RC, Larsson L. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Front Physiol 2016; 7:23. [PMID: 26869939 PMCID: PMC4740381 DOI: 10.3389/fphys.2016.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
The complete loss of mechanical stimuli of skeletal muscles, i.e., the loss of external strain, related to weight bearing, and internal strain, related to the contraction of muscle cells, is uniquely observed in pharmacologically paralyzed or deeply sedated mechanically ventilated intensive care unit (ICU) patients. The preferential loss of myosin and myosin associated proteins in limb and trunk muscles is a significant characteristic of critical illness myopathy (CIM) which separates CIM from other types of acquired muscle weaknesses in ICU patients. Mechanical silencing is an important factor triggering CIM. Microgravity or ground based microgravity models form the basis of research on the effect of muscle unloading-reloading, but the mechanisms and effects may differ from the ICU conditions. In order to understand how mechanical tension regulates muscle mass, it is critical to know how muscles sense mechanical information and convert stimulus to intracellular biochemical actions and changes in gene expression, a process called cellular mechanotransduction. In adult skeletal muscles and muscle fibers, this process may differ, the same stimulus can cause divergent response and the same fiber type may undergo opposite changes in different muscles. Skeletal muscle contains multiple types of mechano-sensors and numerous structures that can be affected differently and hence respond differently in distinct muscles.
Collapse
Affiliation(s)
- Rebeca C Kalamgi
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
119
|
Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment. Int J Cardiol 2016; 202:766-72. [DOI: 10.1016/j.ijcard.2015.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
|
120
|
Wiberg R, Jonsson S, Novikova LN, Kingham PJ. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury. PLoS One 2015; 10:e0142699. [PMID: 26691660 PMCID: PMC4686181 DOI: 10.1371/journal.pone.0142699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury.
Collapse
Affiliation(s)
- Rebecca Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Samuel Jonsson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Liudmila N. Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
121
|
Drescher C, Konishi M, Ebner N, Springer J. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle 2015; 6:303-11. [PMID: 26676067 PMCID: PMC4670737 DOI: 10.1002/jcsm.12082] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies, and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartate-resistant acid phosphatase 5a, and novel substances like epigallocatechin-3-gallate. In summary, the progress to combat muscle wasting is in full swing, and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon support by improved and more helpful strategies.
Collapse
Affiliation(s)
- Cathleen Drescher
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Nicole Ebner
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| |
Collapse
|
122
|
Pereira MG, Silva MT, da Cunha FM, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves regeneration of skeletal muscles from old rats. Exp Gerontol 2015; 72:269-77. [DOI: 10.1016/j.exger.2015.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
|
123
|
Effects of ageing on expression of the muscle-specific E3 ubiquitin ligases and Akt-dependent regulation of Foxo transcription factors in skeletal muscle. Mol Cell Biochem 2015; 412:59-72. [PMID: 26590085 DOI: 10.1007/s11010-015-2608-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/14/2015] [Indexed: 12/11/2022]
Abstract
Controversy exists as to whether the muscle-specific E3 ubiquitin ligases MAFbx and MuRF1 are transcriptionally upregulated in the process of sarcopenia. In the present study, we investigated the effects of ageing on mRNA/protein expression of muscle-specific E3 ubiquitin ligases and Akt/Foxo signalling in gastrocnemius muscles of female mice. Old mice exhibited a typical sarcopenic phenotype, characterized by loss of muscle mass and strength, decreased amount of myofibrillar proteins, incidence of aberrant muscle fibres, and genetic signature to sarcopenia. Activation levels of Akt were lower in adult and old mice than in young mice. Consequently, Akt-mediated phosphorylation levels of Foxo1 and Foxo3 proteins were decreased. Nuclear levels of Foxo1 and Foxo3 proteins showed an overall increasing trend in old mice. MAFbx mRNA expression was decreased in old mice relative to adult mice, whereas MuRF1 mRNA expression was less affected by ageing. At the protein level, MAFbx was less affected by ageing, whereas MuRF1 was increased in old mice relative to adult mice, with ubiquitin-protein conjugates being increased with ageing. In conclusion, we provided evidence for no mRNA upregulation of muscle-specific E3 ubiquitin ligases and disconnection between their expression and Akt/Foxo signalling in sarcopenic mice. Their different responsiveness to ageing may reflect different roles in sarcopenia.
Collapse
|
124
|
Nozaki T, Nikai S, Okabe R, Nagahama K, Eto N. A novel in vitro model of sarcopenia using BubR1 hypomorphic C2C12 myoblasts. Cytotechnology 2015; 68:1705-15. [PMID: 26464273 DOI: 10.1007/s10616-015-9920-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 12/23/2022] Open
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function with adverse outcomes that include physical disability, poor quality of life, and death. The detailed molecular mechanisms remain unknown. An in vitro muscle atrophy model is needed to enable mechanistic studies. To create such a model, we employed BubR1 insufficiency which causes premature ageing in mice. Using C2C12 cells, a recognized in vitro model of the skeletal muscle cell, we obtained the BubR1 hypomorphic C2C12 (C2C12BKD) cells by using shRNA. The resulting C2C12BKD cells displayed several characteristics of the sarcopenic muscle cell. In C2C12BKD cells, formation of myotubes, assessed by analysis of fusion index, was markedly reduced as was the expression of myogenin and MyoD, two marker genes for myogenesis. Moreover, the cells showed increased expression of the muscle-specific ubiquitin ligases Atrogin-1 and MuRF-1, indicating increased protein degradation through the ubiquitin-proteasome dependent proteolytic pathway. These results suggest that C2C12BKD cells are potentially useful as a novel in vitro model of sarcopenia.
Collapse
Affiliation(s)
- Takateru Nozaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Shiori Nikai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ryo Okabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Kiyoko Nagahama
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
125
|
Abstract
Sarcopenia and cachexia are muscle wasting syndromes associated with aging and with many chronic diseases, such as congestive heart failure (CHF), diabetes, cancer, chronic obstructive pulmonary disease and chronic kidney disease (CKD). While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme inhibitor treatment improves weight loss. It was found that Ang II infusion in rodents leads to skeletal muscle wasting. Ang II increases cytokines and circulating hormones, such as tumor necrosis factor-α, interleukin-6, serum amyloid-A and glucocorticoids, which regulate muscle protein synthesis and degradation. Ang II-induced muscle wasting is caused by alterations in insulin-like growth factor-1 signaling, enhanced muscle protein breakdown via the ubiquitin-proteasome system and decreased appetite resulting from the downregulation of hypothalamic orexigenic neuropeptides, such as Npy and orexin. Ang II also inhibits 5' adenosine monophosphate-activated protein kinase activity and disrupts normal energy balance via the activation of 5' adenosine monophosphate-activated protein kinase phosphatase PP2Cα. Furthermore, Ang II inhibits skeletal muscle stem (satellite) cell proliferation, leading to lowered muscle regenerative capacity. Distinct satellite cell angiotensin receptor subtypes have different effects on different stages of differentiation and are critical for the regulation of muscle regeneration. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states, and it is a promising target for the treatment of muscle atrophy in patients with diseases such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Medicine, University of Missouri-Columbia, Columbia, MO
| | | |
Collapse
|
126
|
Kang C, Goodman CA, Hornberger TA, Ji LL. PGC-1α overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB J 2015; 29:4092-106. [PMID: 26178167 DOI: 10.1096/fj.14-266619] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
Prolonged immobilization (IM) causes skeletal muscle atrophy characterized by mitochondrial deterioration and proteolysis. Muscle remobilization (RM) increases reactive oxygen species generation, proinflammatory cytokine expression, and oxidative stress, preventing muscle from quick recovery. Thus, we hypothesized that overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) via in vivo transfection would promote mitochondrial biogenesis and antioxidant defense, thus ameliorating the aforementioned deteriorations in a mouse model with 14-d IM followed by 5-d RM. PGC-1α transfection in tibialis anterior muscle resulted in a 7.2- and 4-fold increase in PGC-1α content in cytosol and nucleus, respectively. Mitochondrial biogenic (cytochrome c, mitochondrial transcription factor A), morphologic (mitochondrial density, mDNA/nDNA ratio), and functional (cytochrome c oxidase activity, ATP synthesis rate) markers, as well as fiber cross-sectional area, significantly increased in IM-RM muscle by PGC-1α overexpression. These effects were accompanied by an 18% decrease in H2O2, 30% decrease in nuclear factor-κB-DNA binding, and 25% reduction of IL-1β and-6 production in IM-RM muscle. There was a 34% increase in superoxide dismutase-2 activity, along with a 3.5-fold increase in NAD-dependent deacetylase sirtuin-3 expression caused by enhanced PGC-1α-estrogen-related receptor α binding. Our findings highlighted the importance of PGC-1α in protecting muscle from metabolic and redox disturbances caused by IM.
Collapse
Affiliation(s)
- Chounghun Kang
- *Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota, USA; and Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Craig A Goodman
- *Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota, USA; and Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Troy A Hornberger
- *Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota, USA; and Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Li Li Ji
- *Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota, USA; and Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
127
|
Jung ES, Sim YJ, Jeong HS, Kim SJ, Yun YJ, Song JH, Jeon SH, Choe C, Park KT, Kim CH, Kim KS. Jmjd2C increases MyoD transcriptional activity through inhibiting G9a-dependent MyoD degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1081-94. [PMID: 26149774 DOI: 10.1016/j.bbagrm.2015.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 01/05/2023]
Abstract
Skeletal muscle cell differentiation requires a family of proteins called myogenic regulatory factors (MRFs) to which MyoD belongs. The activity of MyoD is under epigenetic regulation, however, the molecular mechanism by which histone KMTs and KDMs regulate MyoD transcriptional activity through methylation remains to be determined. Here we provide evidence for a unique regulatory mechanism of MyoD transcriptional activity through demethylation by Jmjd2C demethylase whose level increases during muscle differentiation. G9a decreases MyoD stability via methylation-dependent MyoD ubiquitination. Jmjd2C directly associates with MyoD in vitro and in vivo to demethylate and stabilize MyoD. The hypo-methylated MyoD due to Jmjd2C is significantly more stable than hyper-methylated MyoD by G9a. Cul4/Ddb1/Dcaf1 pathway is essential for the G9a-mediated MyoD degradation in myoblasts. By the stabilization of MyoD, Jmjd2C increases myogenic conversion of mouse embryonic fibroblasts and MyoD transcriptional activity with erasing repressive H3K9me3 level at the promoter of MyoD target genes. Collectively, Jmjd2C increases MyoD transcriptional activity to facilitate skeletal muscle differentiation by increasing MyoD stability through inhibiting G9a-dependent MyoD degradation.
Collapse
Affiliation(s)
- Eun-Shil Jung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ye-Ji Sim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hoe-Su Jeong
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Su-Jin Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ye-Jin Yun
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Joo-Hoon Song
- Bio Focus Co., Ltd., Gyeonggi-do 437-753, Republic of Korea
| | - Su-Hee Jeon
- Department of Biological & Environmental Science, Dongguk University, Seoul 100-175, Republic of Korea
| | - Chungyoul Choe
- Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul 135-710, Republic of Korea
| | - Kyung-Tae Park
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chang-Hoon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
128
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
129
|
Ogawa M, Kitakaze T, Harada N, Yamaji R. Female-specific regulation of skeletal muscle mass by USP19 in young mice. J Endocrinol 2015; 225:135-45. [PMID: 25901042 DOI: 10.1530/joe-15-0128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
17β-Estradiol (E₂) is thought to be responsible for sex-specific differences in skeletal muscle mass. The biological function of E₂ is exerted through its binding to estrogen receptor α (ERα). The expression of ubiquitin-specific peptidase 19 (USP19) is upregulated during muscle atrophy and by E₂-activated ERα. Here, we investigated the involvement of USP19 in sex difference in muscle mass in young mice. Knockdown of USP19 in hindlimb muscles increased the mass and fiber size in soleus muscle in females but not males. Using Usp19 promoter reporter constructs, a functional half-estrogen response element (hERE) was identified in intron 1 of Usp19. ERα bound to hERE in an E₂-dependent manner in C2C12 myoblasts and in soleus muscle in ovariectomized (OVX) female mice. Furthermore, under normal physiological conditions, ERα bound to hERE in soleus muscle only in females. In contrast, administration of E₂ resulted in increased Usp19 mRNA expression, decreased muscle mass, and recruitment of ERα to hERE in soleus muscle in males. Knockdown of ERα in hindlimb muscles decreased Usp19 mRNA expression and increased the mass of soleus muscle only in females. Knockdown of USP19 resulted in increased levels of ubiquitin conjugates in soleus muscle in females. OVX increased the levels of ubiquitin conjugates and administration of E₂ decreased OVX-induced levels of ubiquitin conjugates. These results demonstrate that in soleus muscle in young female mice under physiological conditions, E₂ upregulates USP19 expression through ERα and consequently leads to decreases in ubiquitin conjugates and muscle mass.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Tomoya Kitakaze
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Naoki Harada
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Ryoichi Yamaji
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| |
Collapse
|
130
|
NOH KYUNGKYUN, CHUNG KIWUNG, SUNG BOKYUNG, KIM MINJO, PARK CHANHUM, YOON CHANGSHIN, CHOI JAESUE, KIM MIKYUNG, KIM CHEOLMIN, KIM NAMDEUK, CHUNG HAEYOUNG. Loquat (Eriobotrya japonica) extract prevents dexamethasone-induced muscle atrophy by inhibiting the muscle degradation pathway in Sprague Dawley rats. Mol Med Rep 2015; 12:3607-3614. [DOI: 10.3892/mmr.2015.3821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
|
131
|
Neves JDC, Rizzato VR, Fappi A, Garcia MM, Chadi G, van de Vlekkert D, d'Azzo A, Zanoteli E. Neuraminidase-1 mediates skeletal muscle regeneration. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1755-64. [PMID: 26001931 PMCID: PMC5617636 DOI: 10.1016/j.bbadis.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
Abstract
Neuraminidase-1 (NEU1) is the sialidase responsible for the catabolism of sialoglycoconjugates in lysosomes. Congenital NEU1 deficiency causes sialidosis, a severe lysosomal storage disease associated with a broad spectrum of clinical manifestations, which also include skeletal deformities, skeletal muscle hypotonia and weakness. Neu1(-/-) mice, a model of sialidosis, develop an atypical form of muscle degeneration caused by progressive expansion of the connective tissue that infiltrates the muscle bed, leading to fiber degeneration and atrophy. Here we investigated the role of Neu1 in the myogenic process that ensues during muscle regeneration after cardiotoxin-induced injury of limb muscles. A comparative analysis of cardiotoxin-treated muscles from Neu1(-/-) mice and Neu1(+/+) mice showed increased inflammatory and proliferative responses in the absence of Neu1 during the early stages of muscle regeneration. This was accompanied by significant and sequential upregulation of Pax7, MyoD, and myogenin mRNAs. The levels of both MyoD and myogenin proteins decreased during the late stages of regeneration, which most likely reflected an increased rate of degradation of the myogenic factors in the Neu1(-/-) muscle. We also observed a delay in muscle cell differentiation, which was characterized by prolonged expression of embryonic myosin heavy chain, as well as reduced myofiber cross-sectional area. At the end of the regenerative process, collagen type III deposition was increased compared to wild-type muscles and internal controls, indicating the initiation of fibrosis. Overall, these results point to a role of Neu1 throughout muscle regeneration.
Collapse
Affiliation(s)
| | | | - Alan Fappi
- Department of Neurology, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | | | - Gerson Chadi
- Department of Neurology, University of São Paulo, São Paulo, SP 01246-903, Brazil
| | | | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edmar Zanoteli
- Department of Neurology, University of São Paulo, São Paulo, SP 01246-903, Brazil.
| |
Collapse
|
132
|
Mei Z, Zhang D, Hu B, Wang J, Shen X, Xiao W. FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity. J Biol Chem 2015; 290:16202-14. [PMID: 25944903 DOI: 10.1074/jbc.m115.645978] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis.
Collapse
Affiliation(s)
- Zhichao Mei
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Dawei Zhang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Bo Hu
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Jing Wang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Xian Shen
- the First Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation and the State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China and
| |
Collapse
|
133
|
Alves Souza RW, Aguiar AF, Vechetti-Júnior IJ, Piedade WP, Rocha Campos GE, Dal-Pai-Silva M. Resistance training with excessive training load and insufficient recovery alters skeletal muscle mass-related protein expression. J Strength Cond Res 2015; 28:2338-45. [PMID: 24531430 DOI: 10.1519/jsc.0000000000000421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the effects of a resistance training program with excessive training load and insufficient recovery time between bouts on muscle hypertrophy- and atrophy-related protein expression. Male Wistar rats were randomly assigned to either a trained (TR, N = 9) or a sedentary (SE, N = 9) group. The TR group was subjected to a 12-week resistance training program with excessive training load and insufficient recovery between bouts that was designed to induce plantaris muscle atrophy. After the 12-week experiment, the plantaris muscle was collected to analyze the cross-sectional area (CSA) of the muscle fibers, and MAFbx, MyoD, myogenin, and IGF-I protein expression (Western blot). The CSA was reduced significantly (-17%, p ≤ 0.05) in the TR group compared with the SE group. Reciprocally, there was a significant (p ≤ 0.05) 20% increase in MAFbx protein expression, whereas the MyoD (-27%), myogenin (-29%), and IGF-I (-43%) protein levels decreased significantly (p ≤ 0.05) in the TR group compared with the SE group. In conclusion, our data indicated that muscle atrophy induced by resistance training with excessive training load and insufficient recovery was associated with upregulation of the MAFbx catabolic protein and downregulation of the MyoD, myogenin, and IGF-I anabolic proteins. These findings suggest that quantitative analysis of these proteins can be important and complementary with other biochemical markers to confirm a possible overtraining diagnosis.
Collapse
Affiliation(s)
- Rodrigo Wagner Alves Souza
- 1Department of Morphology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; 2Centre of Biological and Health Sciences, North University of Paraná (UNOPAR), Londrina, Paraná, Brazil; and 3Department of Anatomy, Cell Biology, Physiology and Biophysics, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
134
|
He L, Pei Y, Jiang Y, Li Y, Liao L, Zhu Z, Wang Y. Global gene expression patterns of grass carp following compensatory growth. BMC Genomics 2015; 16:184. [PMID: 25887225 PMCID: PMC4374334 DOI: 10.1186/s12864-015-1427-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compensatory growth is accelerated compared with normal growth and occurs when growth-limiting conditions are overcome. Most animals, especially fish, are capable of compensatory growth, but the mechanisms remain unclear. Further investigation of the mechanism of compensatory growth in fish is needed to improve feeding efficiency, reduce cost, and explore growth-related genes. RESULTS In the study, grass carp, an important farmed fish in China, were subjected to a compensatory growth experiment followed by transcriptome analysis by RNA-sequencing. Samples of fish from starved and re-feeding conditions were compared with the control. Under starved conditions, 4061 and 1988 differentially expressed genes (DEGs) were detected in muscle and liver tissue when compared the experimental group with control group, respectively. After re-feeding, 349 and 247 DEGs were identified in muscle and liver when the two groups were compared. Moreover, when samples from experimental group in starved and re-feeding conditions were compared, 4903 and 2444 DEGs were found in muscle and liver. Most of these DEGs were involved in metabolic processes, or encoded enzymes or proteins with catalytic activity or binding functions, or involved in metabolic and biosynthetic pathways. A number of the more significant DEGs were subjected to further analysis. Under fasting conditions, many up-regulated genes were associated with protein ubiquitination or degradation, whereas many down-regulated genes were involved in the metabolism of glucose and fatty acids. Under re-feeding conditions, genes participating in muscle synthesis and fatty acid metabolism were up-regulated significantly, and genes related to protein ubiquitination or degradation were down-regulated. Moreover, Several DEGs were random selected for confirmation by real-time quantitative PCR. CONCLUSIONS Global gene expression patterns of grass carp during compensatory growth were determined. To our knowledge, this is a first reported for a teleost fish. The results will enhance our understanding of the mechanism of compensatory growth in teleost fish.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yao Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
135
|
Jeong HS, Jung ES, Sim YJ, Kim SJ, Jang JW, Hong KS, Lee WY, Chung HM, Park KT, Jung YS, Kim CH, Kim KS. Fbxo25 controls Tbx5 and Nkx2-5 transcriptional activity to regulate cardiomyocyte development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:709-21. [PMID: 25725482 DOI: 10.1016/j.bbagrm.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in protein quality control, cellular signalings, and cell differentiation through the regulated turnover of key transcription factors in cardiac tissue. However, the molecular mechanism underlying Fbxo25-mediated ubiquitination of cardiac transcription factors remains elusive. We report that an Fbxo25-mediated SCF ubiquitination pathway regulates the protein levels and activities of Tbx5 and Nkx2-5 based on our studies using MG132, proteasome inhibitor, and the temperature sensitive ubiquitin system in ts20 cells. Our data indicate that Fbxo25 directly interacts with Tbx5 and Nkx2-5 in vitro and in vivo. In support of our findings, a dominant-negative mutant of Fbxo25, Fbxo251-236, prevents Tbx5 degradation and increases Tbx5 transcriptional activity in a Tbx5 responsive luciferase assay. Therefore, Fbxo25 facilitates Tbx5 degradation in an SCF-dependent manner. In addition, the silencing of endogenous Fbxo25 increases Tbx5 and Nkx2-5 mRNA levels and suppresses mESC-derived cardiomyocyte differentiation. Likewise, the exogenous expression of FBXO25 downregulates NKX2-5 level in human ESC-derived cardiomyocytes. In myocardial infarction model, Fbxo25 mRNA decreases, whereas the mRNA and protein levels of Tbx5 and Nkx2-5 increase. The protein levels of Tbx5 and Nkx2-5 are regulated negatively by Fbxo25-mediated SCF ubiquitination pathway. Thus, our findings reveal a novel mechanism for regulation of SCFFbox25-dependent Nkx2-5 and Tbx5 ubiquitination in cardiac development and provide a new insight into the regulatory mechanism of Nkx2-5 and Tbx5 transcriptional activity.
Collapse
Affiliation(s)
- Hoe-Su Jeong
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Eun-Shil Jung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ye-Ji Sim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Su-Jin Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jae-Woo Jang
- Department of Developmental Biology, CHA University, Seoul 135-907, Republic of Korea
| | - Ki-Sung Hong
- Department of Developmental Biology, CHA University, Seoul 135-907, Republic of Korea
| | - Won-Young Lee
- Major of Animal Science, College of Natural Science, Konkuk University, Chungju 380-701, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kyung-Tae Park
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
| | - Chang-Hoon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
136
|
Wiles B, Miao M, Coyne E, Larose L, Cybulsky AV, Wing SS. USP19 deubiquitinating enzyme inhibits muscle cell differentiation by suppressing unfolded-protein response signaling. Mol Biol Cell 2015; 26:913-23. [PMID: 25568336 PMCID: PMC4342027 DOI: 10.1091/mbc.e14-06-1129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
USP19 deubiquitinating enzyme has two isoforms, cytoplasmic and endoplasmic reticulum (ER) localized. The ER-localized isoform specifically suppresses muscle cell differentiation in vitro and appears to do so by inhibiting the unfolded-protein response that occurs during such differentiation. In vivo, loss of USP19 promotes muscle regeneration following injury. The USP19 deubiquitinating enzyme modulates the expression of myogenin and myofibrillar proteins in L6 muscle cells. This raised the possibility that USP19 might regulate muscle cell differentiation. We therefore tested the effects of adenoviral-mediated overexpression or small interfering RNA (siRNA)-mediated silencing of either the cytoplasmic or endoplasmic reticulum (ER)-localized isoforms of USP19. Only the ER-localized isoform of USP19 (USP19-ER) modulated myoblast fusion as well as the expression of myogenin and myofibrillar proteins, and these effects were also dependent on USP19 catalytic activity. USP19-ER inhibited muscle cell differentiation and the induction of CHOP, a transcription factor in the unfolded-protein response (UPR) that is activated during differentiation. Inducing the UPR by creating mild ER stress with thapsigargin was able to reverse the defect in myoblast fusion caused by the overexpression of USP19-ER, suggesting strongly that USP19 exerts its effects on fusion through its effects on UPR signaling. USP19 also functions similarly in vivo, as USP19−/− mice display improved muscle regeneration concomitant with enhanced expression of CHOP. Collectively these results implicate a deubiquitinating enzyme as a regulator of the UPR. They also suggest that inhibition of USP19 may be a therapeutic approach for the enhancement of muscle growth following injury.
Collapse
Affiliation(s)
- Benjamin Wiles
- Polypeptide Laboratory, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Biochemistry, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada
| | - Miao Miao
- Polypeptide Laboratory, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada
| | - Erin Coyne
- Polypeptide Laboratory, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Biochemistry, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada
| | - Louise Larose
- Polypeptide Laboratory, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada
| | - Simon S Wing
- Polypeptide Laboratory, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada Department of Biochemistry, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3A OC7, Canada
| |
Collapse
|
137
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
138
|
Ratti F, Ramond F, Moncollin V, Simonet T, Milan G, Méjat A, Thomas JL, Streichenberger N, Gilquin B, Matthias P, Khochbin S, Sandri M, Schaeffer L. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. J Biol Chem 2014; 290:4215-24. [PMID: 25516595 DOI: 10.1074/jbc.m114.600916] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skeletal muscle atrophy is a severe condition of muscle mass loss. Muscle atrophy is caused by a down-regulation of protein synthesis and by an increase of protein breakdown due to the ubiquitin-proteasome system and autophagy activation. Up-regulation of specific genes, such as the muscle-specific E3 ubiquitin ligase MAFbx, by FoxO transcription factors is essential to initiate muscle protein ubiquitination and degradation during atrophy. HDAC6 is a particular HDAC, which is functionally related to the ubiquitin proteasome system via its ubiquitin binding domain. We show that HDAC6 is up-regulated during muscle atrophy. HDAC6 activation is dependent on the transcription factor FoxO3a, and the inactivation of HDAC6 in mice protects against muscle wasting. HDAC6 is able to interact with MAFbx, a key ubiquitin ligase involved in muscle atrophy. Our findings demonstrate the implication of HDAC6 in skeletal muscle wasting and identify HDAC6 as a new downstream target of FoxO3a in stress response. This work provides new insights in skeletal muscle atrophy development and opens interesting perspectives on HDAC6 as a valuable marker of muscle atrophy and a potential target for pharmacological treatments.
Collapse
Affiliation(s)
- Francesca Ratti
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon
| | - Francis Ramond
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon
| | - Vincent Moncollin
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon
| | - Thomas Simonet
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon
| | - Giulia Milan
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy, and Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Alexandre Méjat
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon
| | - Jean-Luc Thomas
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon
| | | | - Benoit Gilquin
- INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France
| | - Patrick Matthias
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Saadi Khochbin
- INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy, and Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Laurent Schaeffer
- From the Ecole Normale Supérieure de Lyon; CNRS UMR 5239; Equipe Différenciation Neuromusculaire, Université de Lyon, 46 allée d'Italie 69364 Lyon cedex 07, France, Université Lyon 1; Hospices civils de Lyon,
| |
Collapse
|
139
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
140
|
Seiliez I, Dias K, Cleveland BM. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1330-7. [PMID: 25274907 DOI: 10.1152/ajpregu.00370.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is recognized as the major contributor to total proteolysis in mammalian skeletal muscle, responsible for 50% or more of total protein degradation in skeletal muscle, whereas the autophagic-lysosome system (ALS) plays a more minor role. While the relative contribution of these systems to muscle loss is well documented in mammals, little is known in fish species. The current study uses myotubes derived from rainbow trout myogenic precursor cells as an in vitro model of white muscle tissue. Cells were incubated in complete or serum-deprived media or media supplemented with insulin-like growth factor-1 (IGF-1) and exposed to selective proteolytic inhibitors to determine the relative contribution of the ALS and UPS to total protein degradation in myotubes in different culture conditions. Results indicate that the ALS is responsible for 30-34% and 50% of total protein degradation in myotubes in complete and serum-deprived media, respectively. The UPS appears to contribute much less to total protein degradation at almost 4% in cells in complete media to nearly 17% in serum-deprived cells. IGF-1 decreases activity of both systems, as it inhibited the upregulation of both proteolytic systems induced by serum deprivation. The combined inhibition of both the ALS and UPS reduced degradation by a maximum of 55% in serum-deprived cells, suggesting an important contribution of other proteolytic systems to total protein degradation. Collectively, these data identify the ALS as a potential target for strategies aimed at improving muscle protein retention and fillet yield through reductions in protein degradation.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Karine Dias
- Institut National de la Recherche Agronomique, Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France; and
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/United States Department of Agriculture, Kearneysville, West Virginia
| |
Collapse
|
141
|
Abstract
Muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1 were identified more than 10 years ago as two muscle-specific E3 ubiquitin ligases that are increased transcriptionally in skeletal muscle under atrophy-inducing conditions, making them excellent markers of muscle atrophy. In the past 10 years much has been published about MuRF1 and MAFbx with respect to their mRNA expression patterns under atrophy-inducing conditions, their transcriptional regulation, and their putative substrates. However, much remains to be learned about the physiological role of both genes in the regulation of mass and other cellular functions in striated muscle. Although both MuRF1 and MAFbx are enriched in skeletal, cardiac, and smooth muscle, this review will focus on the current understanding of MuRF1 and MAFbx in skeletal muscle, highlighting the critical questions that remain to be answered.
Collapse
Affiliation(s)
- Sue C Bodine
- Departments of Neurobiology, Physiology, and Behavior and Physiology and Membrane Biology, University of California Davis, Davis, California; and Northern California Veterans Affairs Health Systems, Mather, California
| | - Leslie M Baehr
- Membrane Biology, University of California Davis, Davis, California; and
| |
Collapse
|
142
|
Blanqué R, Lepescheux L, Auberval M, Minet D, Merciris D, Cottereaux C, Clément-Lacroix P, Delerive P, Namour F. Characterization of GLPG0492, a selective androgen receptor modulator, in a mouse model of hindlimb immobilization. BMC Musculoskelet Disord 2014; 15:291. [PMID: 25185887 PMCID: PMC4167280 DOI: 10.1186/1471-2474-15-291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Background Muscle wasting is a hallmark of many chronic conditions but also of aging and results in a progressive functional decline leading ultimately to disability. Androgens, such as testosterone were proposed as therapy to counteract muscle atrophy. However, this treatment is associated with potential cardiovascular and prostate cancer risks and therefore not acceptable for long-term treatment. Selective Androgen receptor modulators (SARM) are androgen receptor ligands that induce muscle anabolism while having reduced effects in reproductive tissues. Therefore, they represent an alternative to testosterone therapy. Our objective was to demonstrate the activity of SARM molecule (GLPG0492) on a immobilization muscle atrophy mouse model as compared to testosterone propionate (TP) and to identify putative biomarkers in the plasma compartment that might be related to muscle function and potentially translated into the clinical space. Methods GLPG0492, a non-steroidal SARM, was evaluated and compared to TP in a mouse model of hindlimb immobilization. Results GLPG0492 treatment partially prevents immobilization-induced muscle atrophy with a trend to promote muscle fiber hypertrophy in a dose-dependent manner. Interestingly, GLPG0492 was found as efficacious as TP at reducing muscle loss while sparing reproductive tissues. Furthermore, gene expression studies performed on tibialis samples revealed that both GLPG0492 and TP were slowing down muscle loss by negatively interfering with major signaling pathways controlling muscle mass homeostasis. Finally, metabolomic profiling experiments using 1H-NMR led to the identification of a plasma GLPG0492 signature linked to the modulation of cellular bioenergetic processes. Conclusions Taken together, these results unveil the potential of GLPG0492, a non-steroidal SARM, as treatment for, at least, musculo-skeletal atrophy consecutive to coma, paralysis, or limb immobilization. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-291) contains supplementary material, which is available to authorized users.
Collapse
|
143
|
Sanchez AMJ, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014; 307:R956-69. [PMID: 25121614 DOI: 10.1152/ajpregu.00187.2014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical exercise is a stress that can substantially modulate cellular signaling mechanisms to promote morphological and metabolic adaptations. Skeletal muscle protein and organelle turnover is dependent on two major cellular pathways: Forkhead box class O proteins (FOXO) transcription factors that regulate two main proteolytic systems, the ubiquitin-proteasome, and the autophagy-lysosome systems, including mitochondrial autophagy, and the MTORC1 signaling associated with protein translation and autophagy inhibition. In recent years, it has been well documented that both acute and chronic endurance exercise can affect the autophagy pathway. Importantly, substantial efforts have been made to better understand discrepancies in the literature on its modulation during exercise. A single bout of endurance exercise increases autophagic flux when the duration is long enough, and this response is dependent on nutritional status, since autophagic flux markers and mRNA coding for actors involved in mitophagy are more abundant in the fasted state. In contrast, strength and resistance exercises preferentially raise ubiquitin-proteasome system activity and involve several protein synthesis factors, such as the recently characterized DAGK for mechanistic target of rapamycin activation. In this review, we discuss recent progress on the impact of acute and chronic exercise on cell component turnover systems, with particular focus on autophagy, which until now has been relatively overlooked in skeletal muscle. We especially highlight the most recent studies on the factors that can impact its modulation, including the mode of exercise and the nutritional status, and also discuss the current limitations in the literature to encourage further works on this topic.
Collapse
Affiliation(s)
- Anthony M J Sanchez
- Department of Critical Care, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada; University of Perpignan Via Domitia, Laboratoire Performance Santé Altitude, EA 4604, Font-Romeu, France;
| | - Henri Bernardi
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; and
| | - Guillaume Py
- Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France
| | - Robin B Candau
- Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France
| |
Collapse
|
144
|
Stefanetti RJ, Lamon S, Wallace M, Vendelbo MH, Russell AP, Vissing K. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch 2014; 467:1523-1537. [DOI: 10.1007/s00424-014-1587-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 12/30/2022]
|
145
|
Ciarapica R, De Salvo M, Carcarino E, Bracaglia G, Adesso L, Leoncini PP, Dall'Agnese A, Walters ZS, Verginelli F, De Sio L, Boldrini R, Inserra A, Bisogno G, Rosolen A, Alaggio R, Ferrari A, Collini P, Locatelli M, Stifani S, Screpanti I, Rutella S, Yu Q, Marquez VE, Shipley J, Valente S, Mai A, Miele L, Puri PL, Locatelli F, Palacios D, Rota R. The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx). Oncogene 2014; 33:4173-84. [PMID: 24213577 DOI: 10.1038/onc.2013.471] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022]
Abstract
The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS.
Collapse
Affiliation(s)
- R Ciarapica
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - M De Salvo
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | | | - G Bracaglia
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L Adesso
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - P P Leoncini
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | | | - Z S Walters
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - F Verginelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L De Sio
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - R Boldrini
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - A Inserra
- Department of Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - G Bisogno
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - A Rosolen
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - R Alaggio
- Medicine DIMED, Pathology Unit, University of Padova, Padova, Italy
| | - A Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - P Collini
- Anatomic Pathology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - M Locatelli
- Scientific Directorate, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - S Stifani
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University, Roma, Italy
| | - S Rutella
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Q Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - V E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, CCR, National Cancer Institute, NIH, Frederick, MD, USA
| | - J Shipley
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - S Valente
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University, Roma, Italy
| | - A Mai
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University, Roma, Italy
| | - L Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - P L Puri
- 1] IRCCS Fondazione Santa Lucia, Roma, Italy [2] Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - F Locatelli
- 1] Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy [2] Dipartimento di Scienze Pediatriche, Università di Pavia, Pavia, Italy
| | - D Palacios
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - R Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| |
Collapse
|
146
|
Noh KK, Chung KW, Choi YJ, Park MH, Jang EJ, Park CH, Yoon C, Kim ND, Kim MK, Chung HY. β-Hydroxy β-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS One 2014; 9:e102947. [PMID: 25032690 PMCID: PMC4102592 DOI: 10.1371/journal.pone.0102947] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β-hydroxy β-methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy.
Collapse
Affiliation(s)
- Kyung Kyun Noh
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eun Ji Jang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Chan Hum Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Changshin Yoon
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi Kyung Kim
- Longevity Life Science and Technology Institute, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
147
|
Joung H, Eom GH, Choe N, Lee HM, Ko JH, Kwon DH, Nam YS, Min H, Shin S, Kook J, Cho YK, Kim JC, Seo SB, Baik YH, Nam KI, Kook H. Ret finger protein mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. Cell Signal 2014; 26:2240-8. [PMID: 25025573 DOI: 10.1016/j.cellsig.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hosouk Joung
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Gwang Hyeon Eom
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Nakwon Choe
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hye Mi Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jeong-Hyeon Ko
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Duk-Hwa Kwon
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Yoon Seok Nam
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hyunki Min
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Sera Shin
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Jeewon Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chonnam National University Hospital, Gwangju 501-746, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju 501-746, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Yung Hong Baik
- Department of Pharmacology, College of Medicine, Seonam University, Namwon, Republic of Korea
| | - Kwang-Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Hyun Kook
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; BK21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea.
| |
Collapse
|
148
|
Sanchez AMJ, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014; 71:1657-71. [PMID: 24232446 PMCID: PMC11113648 DOI: 10.1007/s00018-013-1513-z] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Forkhead box class O family member proteins (FoxOs) are highly conserved transcription factors with important roles in cellular homeostasis. The four FoxO members in humans, FoxO1, FoxO3, FoxO4, and FoxO6, are all expressed in skeletal muscle, but the first three members are the most studied in muscle. In this review, we detail the multiple modes of FoxO regulation and discuss the central role of these proteins in the control of skeletal muscle plasticity. FoxO1 and FoxO3 are key factors of muscle energy homeostasis through the control of glycolytic and lipolytic flux, and mitochondrial metabolism. They are also key regulators of protein breakdown, as they modulate the activity of several actors in the ubiquitin–proteasome and autophagy–lysosomal proteolytic pathways, including mitochondrial autophagy, also called mitophagy. FoxO proteins have also been implicated in the regulation of the cell cycle, apoptosis, and muscle regeneration. Depending of their activation level, FoxO proteins can exhibit ambivalent functions. For example, a basal level of FoxO factors is necessary for cellular homeostasis and these proteins are required for adaptation to exercise. However, exacerbated activation may occur in the course of several diseases, resulting in metabolic disorders and atrophy. A better understanding of the precise functions of these transcriptions factors should thus lead to the development of new therapeutic approaches to prevent or limit the muscle wasting that prevails in numerous pathological states, such as immobilization, denervated conditions, neuromuscular disease, aging, AIDS, cancer, and diabetes.
Collapse
Affiliation(s)
- Anthony M. J. Sanchez
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Robin B. Candau
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Henri Bernardi
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|
149
|
Patel R, Williams-Dautovich J, Cummins CL. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 2014; 28:999-1011. [PMID: 24766141 DOI: 10.1210/me.2014-1062] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid receptor (GR) was one of the first nuclear hormone receptors cloned and represents one of the most effective drug targets available today for the treatment of severe inflammation. The physiologic consequences of endogenous or exogenous glucocorticoid excess are well established and include hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting. However, at the molecular and tissue-specific level, there are still many unknown protein mediators of glucocorticoid response and thus, much remains to be uncovered that will help determine whether activation of the GR can be tailored to improve therapeutic efficacy while minimizing unwanted side effects. This review summarizes recent discoveries of tissue-selective modulators of glucocorticoid signaling that are important in mediating the unwanted side effects of therapeutic glucocorticoid use, emphasizing the downstream molecular effects of GR activation in the liver, adipose tissue, muscle, and pancreas.
Collapse
Affiliation(s)
- Rucha Patel
- Department of Pharmaceutical Sciences (R.P., J.W-D., C.L.C.), University of Toronto, Toronto, Ontario, M5S 3M2, Canada; and Banting and Best Diabetes Centre (C.L.C.), Toronto, Ontario M5G 2C4 Canada
| | | | | |
Collapse
|
150
|
Baskin KK, Rodriguez MR, Kansara S, Chen W, Carranza S, Frazier OH, Glass DJ, Taegtmeyer H. MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. J Mol Cell Cardiol 2014; 72:168-76. [PMID: 24650875 DOI: 10.1016/j.yjmcc.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mechanical unloading of the failing human heart induces profound cardiac changes resulting in the reversal of a distorted structure and function. In this process, cardiomyocytes break down unneeded proteins and replace those with new ones. The specificity of protein degradation via the ubiquitin proteasome system is regulated by ubiquitin ligases. Over-expressing the ubiquitin ligase MAFbx/Atrogin-1 in the heart inhibits the development of cardiac hypertrophy, but the role of MAFbx/Atrogin-1 in the unloaded heart is not known. METHODS AND RESULTS Mechanical unloading, by heterotopic transplantation, decreased heart weight and cardiomyocyte cross-sectional area in wild type mouse hearts. Unexpectedly, MAFbx/Atrogin-1(-/-) hearts hypertrophied after transplantation (n=8-10). Proteasome activity and markers of autophagy were increased to the same extent in WT and MAFbx/Atrogin-1(-/-) hearts after transplantation (unloading). Calcineurin, a regulator of cardiac hypertrophy, was only upregulated in MAFbx/Atrogin-1(-/-) transplanted hearts, while the mTOR pathway was similarly activated in unloaded WT and MAFbx/Atrogin-1(-/-) hearts. MAFbx/Atrogin-1(-/-) cardiomyocytes exhibited increased calcineurin protein expression, NFAT transcriptional activity, and protein synthesis rates, while inhibition of calcineurin normalized NFAT activity and protein synthesis. Lastly, mechanical unloading of failing human hearts with a left ventricular assist device (n=18) also increased MAFbx/Atrogin-1 protein levels and expression of NFAT regulated genes. CONCLUSIONS MAFbx/Atrogin-1 is required for atrophic remodeling of the heart. During unloading, MAFbx/Atrogin-1 represses calcineurin-induced cardiac hypertrophy. Therefore, MAFbx/Atrogin-1 not only regulates protein degradation, but also reduces protein synthesis, exerting a dual role in regulating cardiac mass.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center, Houston, TX, USA
| | - Meredith R Rodriguez
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center, Houston, TX, USA
| | - Seema Kansara
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center, Houston, TX, USA
| | - Wenhao Chen
- Department of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - David J Glass
- Department of Muscle Diseases, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center, Houston, TX, USA; Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|