101
|
Yeganeh B, Mukherjee S, Moir LM, Kumawat K, Kashani HH, Bagchi RA, Baarsma HA, Gosens R, Ghavami S. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulm Pharmacol Ther 2012; 26:50-63. [PMID: 22874922 DOI: 10.1016/j.pupt.2012.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
The airway smooth muscle (ASM) plays an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD). ASM cells express a wide range of receptors involved in contraction, growth, matrix protein production and the secretion of cytokines and chemokines. Transforming growth factor beta (TGF-β) is one of the major players in determining the structural and functional abnormalities of the ASM in asthma and COPD. It is increasingly evident that TGF-β functions as a master switch, controlling a network of intracellular and autocrine signaling loops that effect ASM phenotype and function. In this review, the various elements that participate in non-canonical TGF-β signaling, including MAPK, PI3K, WNT/β-catenin, and Ca(2+), are discussed, focusing on their effect on ASM phenotype and function. In addition, new aspects of ASM biology and their possible association with non-canonical TGF-β signaling will be discussed.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, 675 McDermot Ave, Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Transforming growth factor β and Ras/MEK/ERK signaling regulate the expression level of a novel tumor suppressor Lefty. Pancreas 2012; 41:745-52. [PMID: 22441145 DOI: 10.1097/mpa.0b013e31823b66d3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The objectives of the present study were (i) to identify a novel tumor suppressor gene whose expression level was regulated by transforming growth factor (TGF-β) and (ii) to evaluate the effect of Ras/MEK/ERK signaling on TGF-β-dependent Lefty up-regulation. METHODS Human pancreatic cancer cell lines were used. The effect of Ras/MEK/ERK pathway on TGF-β-mediated Lefty up-regulation was tested by adding K-ras small interfering RNA, MEK inhibitor U0126, or extracellular signal-regulated kinase (ERK) inhibitor LY294002. RESULTS Transforming growth factor β upregulated Lefty messenger RNA levels within 6 of the 7 cell lines. Lefty exerts an antagonistic effect against the tumor-promoting molecule, Nodal, as recombinant Lefty suppressed Nodal-mediated proliferation. Interestingly, inhibition of the Ras/MEK/ERK pathway dramatically enhanced TGF-mediated Lefty up-regulation, suggesting that Ras/MEK/ERK signaling suppresses TGF-β-Lefty pathway. CONCLUSIONS Our data suggest that Lefty is a novel TGF-β target molecule that mediates growth inhibition of pancreatic cancer cells. In addition, activation of the Ras/MEK/ERK pathway serves as a mechanism by which pancreatic cancer escapes from growth inhibition by the TGF-β-Lefty axis. The results imply a novel therapeutic strategy for pancreatic cancer, that is, combination treatment with Ras/MEK/ERK inhibitors and TGF-β.
Collapse
|
103
|
Nakerakanti S, Trojanowska M. The Role of TGF-β Receptors in Fibrosis. Open Rheumatol J 2012; 6:156-62. [PMID: 22802914 PMCID: PMC3396054 DOI: 10.2174/1874312901206010156] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/04/2023] Open
Abstract
Recent advances in defining TGF-β signaling pathways have provided a new level of understanding of the role of this pleiotropic growth factor in the development of fibrosis. Here, we review selected topics related to the profibrotic role of TGF-β . We will discuss new insights into the mechanisms of ligand activation and the contribution of Erk1/2 MAPK, PI3K/FAK, and Endoglin/Smad1 signaling pathways to the process of fibrosis. There is growing evidence of the disease-specific alterations of the downstream components of the TGF-β signaling pathway that may be explored for the future therapeutic interventions.
Collapse
Affiliation(s)
- Sashidhar Nakerakanti
- Arthritis Center, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA
| | | |
Collapse
|
104
|
Lee NY, Golzio C, Gatza CE, Sharma A, Katsanis N, Blobe GC. Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis. Mol Biol Cell 2012; 23:2412-23. [PMID: 22593212 PMCID: PMC3386206 DOI: 10.1091/mbc.e11-12-0993] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endoglin (CD105) is an endothelial-specific transforming growth factor β (TGF-β) coreceptor essential for angiogenesis and vascular homeostasis. Although endoglin dysfunction contributes to numerous vascular conditions, the mechanism of endoglin action remains poorly understood. Here we report a novel mechanism in which endoglin and Gα-interacting protein C-terminus-interacting protein (GIPC)-mediated trafficking of phosphatidylinositol 3-kinase (PI3K) regulates endothelial signaling and function. We demonstrate that endoglin interacts with the PI3K subunits p110α and p85 via GIPC to recruit and activate PI3K and Akt at the cell membrane. Opposing ligand-induced effects are observed in which TGF-β1 attenuates, whereas bone morphogenetic protein-9 enhances, endoglin/GIPC-mediated membrane scaffolding of PI3K and Akt to alter endothelial capillary tube stability in vitro. Moreover, we employ the first transgenic zebrafish model for endoglin to demonstrate that GIPC is a critical component of endoglin function during developmental angiogenesis in vivo. These studies define a novel non-Smad function for endoglin and GIPC in regulating endothelial cell function during angiogenesis.
Collapse
Affiliation(s)
- Nam Y Lee
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
Diabetes is associated with significantly increased rates of kidney disease or diabetic nephropathy (DN), a severe microvascular complication that can lead to end-stage renal disease. End-stage renal disease needs to be treated by dialysis or kidney transplantation and also is associated with cardiovascular disease and macrovascular complications. Therefore, effective renal protection is critical to reduce the rates of mortality associated with diabetes. Although key signal transduction and gene regulation mechanisms have been identified and several drugs are currently in clinical use, the rates of DN are still escalating, suggesting the imperative need to identify new biomarkers and drug targets. The recent discovery of microRNAs (miRNAs) and their cellular functions provide an opportunity to fill these critical gaps. Because miRNAs can modulate the actions of key factors involved in DN such as transforming growth factor-β, they could be novel targets for the treatment of DN. This review covers the recent studies on the roles of miRNAs and miRNA circuits in transforming growth factor-β actions and in DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
106
|
TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease. Kidney Res Clin Pract 2012; 31:94-105. [PMID: 26889415 PMCID: PMC4715161 DOI: 10.1016/j.krcp.2012.04.322] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF-β1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF-β1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF-β1 is connected with the complexity of its cell signaling networks. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF-β1, and has been the focus of many previous reviews, importantly TGF-β1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1), which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF-β1.
Collapse
|
107
|
Promiscuity and specificity in BMP receptor activation. FEBS Lett 2012; 586:1846-59. [PMID: 22710174 DOI: 10.1016/j.febslet.2012.02.043] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 02/03/2023]
Abstract
Bone Morphogenetic Proteins (BMPs), together with Transforming Growth Factor (TGF)-β and Activins/Inhibins constitute the TGF-β superfamily of ligands. This superfamily is formed by more than 30 structurally related secreted proteins. Since TGF-β members act as morphogens, either a strict relation between a particular ligand to a distinct cellular receptor and/or temporospatial expression patterns of ligands and receptors is expected. Instead, only a limited number of receptors exist implicating promiscuous interactions of ligands and receptors. Furthermore, in complex tissues a multitude of different ligands can be found, which signal via overlapping subsets of receptors. This raises the intriguing question how concerted interactions of different ligands and receptors generate highly specific cellular signals, which are required during development and tissue homeostasis.
Collapse
|
108
|
Kato M, Park JT, Natarajan R. MicroRNAs and the glomerulus. Exp Cell Res 2012; 318:993-1000. [PMID: 22421514 DOI: 10.1016/j.yexcr.2012.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/05/2011] [Accepted: 02/24/2012] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs regulating gene expression at the post-transcriptional level by blocking translation or promoting cleavage of their target mRNAs. Increasing evidence shows that miRNAs play central roles in gene transcription, signal transduction and pathogenesis of human diseases. Diabetic nephropathy (DN) is a severe microvascular complication that can lead to end-stage renal disease. Increased expansion (hypertrophy) and accumulation of extracellular matrix (ECM) proteins such as collagen (fibrosis) in the glomerular mesangium along with glomerular podocyte dysfunction are major features of DN. Profiling of miRNAs and study\ of their functions in renal glomeruli can provide critical new information to advance our knowledge of DN as well as other kidney diseases and thereby uncover much needed new therapeutic targets. In this review, we summarize the biogenesis of miRNAs and their functions in the glomerulus, with particular emphasis on glomerular mesangial cells and podocytes related to the pathogenesis of DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
109
|
Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of TGF-β1-Induced Pro-Apoptotic Signaling by Growth Factor Receptors and Extracellular Matrix Receptor Integrins in the Liver. Front Physiol 2011; 2:78. [PMID: 22028694 PMCID: PMC3199809 DOI: 10.3389/fphys.2011.00078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/11/2011] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) often arises from chronically diseased livers. Persistent liver inflammation causes the accumulation of excessive extracellular matrix (ECM) proteins and impairs the liver function, finally leading to the development of HCC. A pleiotropic cytokine, transforming growth factor (TGF)-β1, plays critical roles throughout the process of fibrogenesis and hepatocarcinogenesis. In the liver, TGF-β1 inhibits the proliferation of hepatocytes and stimulates the production of ECM from hepatic stellate cells (HSCs) to maintain tissue homeostasis. During disease progression, both growth factors/cytokines and the ECM alter the TGF-β1 signals by modifying the phosphorylation of Smad proteins at their C-terminal and linker regions. TGF-β1 stimulates the expression of integrins, cellular receptors for ECM, along with an increase in ECM accumulation. The activation of integrins by the ECM modulates the response to TGF-β1 in hepatic cells, resulting in their resistance to TGF-β1-induced growth suppression in hepatocytes and the sustained production of ECM proteins in activated HSCs/myofibroblasts. Both growth factor receptors and integrins modify the expression and/or functions of the downstream effectors of TGF-β1, resulting in the escape of hepatocytes from TGF-β1-induced apoptosis. Recent studies have revealed that the alterations of Smad phosphorylation that occur as the results of the crosstalk between TGF-β1, growth factors and integrins could change the nature of TGF-β1 signals from tumor suppression to promotion. Therefore, the modification of Smad phosphorylation could be an attractive target for the prevention and/or treatment of HCC.
Collapse
Affiliation(s)
- Iwata Ozaki
- Saga Medical School, Health Administration Center Saga, Japan
| | | | | | | |
Collapse
|
110
|
Park CY, Kim DK, Sheen YY. EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells. Cancer Sci 2011; 102:1889-96. [PMID: 21707864 PMCID: PMC11158462 DOI: 10.1111/j.1349-7006.2011.02014.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, small molecule inhibitors of transforming growth factorβ (TGF-β) type I receptor kinase ⁄ activin receptor-like kinase-5 (ALK5) have been developed to target TGF-β signalling as a therapeutic strategy for combating cancer. In the present study, the authors examined a novel small molecule inhibitor of ALK5, 3-((5- ([1,2,4]triazolo[1,5-a]pyridin-6-yl)-4-(6-methylpyridin-2-yl)thiazol-2-ylamino)methyl)benzonitrile (EW-7203) in breast cancer cells to determine if it has potential for cancer treatment. The inhibitory effects of EW-7203 on TGF-β-induced Smad signalling and epithelial- to-mesenchymal transition (EMT) were investigated in mammary epithelial cells using luciferase reporter assays, immunoblotting, confocal microscopy and wound healing assays. In addition, the suppressive effects of EW-7203 on mammary cancer metastasis to the lung were examined using a Balb ⁄ c xenograft model system. The novel ALK5 inhibitor, EW-7203, inhibited the TGF-β1-stimulated transcriptional activation of p3TP-Lux and pCA-GA₁₂- Luc. In addition, EW-7203 decreased phosphorylated Smad2 levels and the nuclear translocation of Smad2 was increased by TGF-β1. In addition, EW-7203 inhibited TGF-β1-induced EMT and wound healing of NMuMG cells. Furthermore, in xenografted Balb ⁄ c mice, EW-7203 inhibited metastasis to the lung from breast tumors. The novel ALK5 inhibitor, EW-7203, efficiently inhibited TGF-β1-induced Smad signalling, EMT and breast tumor metastasis to the lung in vivo, demonstrating that EW-7203 has therapeutic potential for breast cancer metastasis to the lung.
Collapse
Affiliation(s)
- Chul-Yong Park
- College of Pharmacy, Ewha Womans University, Seodaemun-gu, Seoul, Korea
| | | | | |
Collapse
|
111
|
Raju R, Nanjappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T, Sekhar NR, Muthusamy B, Goel R, Subbannayya Y, Telikicherla D, Bhattacharjee M, Pinto SM, Syed N, Srikanth MS, Sathe GJ, Ahmad S, Chavan SN, Kumar GSS, Marimuthu A, Prasad TSK, Harsha HC, Rahiman BA, Ohara O, Bader GD, Sujatha Mohan S, Schiemann WP, Pandey A. NetSlim: high-confidence curated signaling maps. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar032. [PMID: 21959865 PMCID: PMC3263596 DOI: 10.1093/database/bar032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously developed NetPath as a resource for comprehensive manually curated signal transduction pathways. The pathways in NetPath contain a large number of molecules and reactions which can sometimes be difficult to visualize or interpret given their complexity. To overcome this potential limitation, we have developed a set of more stringent curation and inclusion criteria for pathway reactions to generate high-confidence signaling maps. NetSlim is a new resource that contains this ‘core’ subset of reactions for each pathway for easy visualization and manipulation. The pathways in NetSlim are freely available at http://www.netpath.org/netslim. Database URL:www.netpath.org/netslim
Collapse
Affiliation(s)
- Rajesh Raju
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes. J Hepatol 2011; 55:369-78. [PMID: 21184784 DOI: 10.1016/j.jhep.2010.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/10/2010] [Accepted: 11/02/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS In injured liver, TGF-β affects all hepatic cell types and participates in wound healing and fibrogenesis. TGF-β downstream signaling is highly complex and cell type dependent, involving Smad and non-Smad signaling cascades thus requiring tight regulation. Endocytosis has gained relevance as important mechanism to control signaling initiation and termination. In this study, we investigated endocytic mechanisms for TGF-β mediated Smad and non-Smad signaling in hepatocytes. METHODS Endocytosis in hepatocytes was elucidated using chemical inhibitors, RNAi, viral gene transfer and caveolin-1-/- mice. TGF-β signaling was monitored by Western blot, reporter assays and gene expression analysis. RESULTS In hepatocytes, Smad activation is to a large degree accomplished AP-2 complex dependent on the hepatocyte surface without the necessity of clathrin coated pit formation or an endocytic step. In contrast, non-Smad/AKT pathway activation required functional dynamin mediated endocytosis and the presence of caveolin-1, an essential protein for caveolae formation. Furthermore, these two TGF-β signaling initiation platforms discriminate distinct signaling routes that integrate at the transcriptional level as shown for TGF-β target genes, Id1, Smad7, and CTGF. Endocytosis inhibition increased canonical Smad signaling and culminated in a superinduction of Id1 and Smad7 expression, whereas caveolin-1 mediated AKT pathway activation was required for maximal CTGF induction. CONCLUSIONS Endocytosis is critical for TGF-β signaling regulation in hepatocytes and determines gene expression signature and (patho)physiological outcome.
Collapse
|
113
|
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways. Cell Tissue Res 2011; 347:11-20. [PMID: 21701805 DOI: 10.1007/s00441-011-1201-y] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.
Collapse
Affiliation(s)
- Yabing Mu
- Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | | | | |
Collapse
|
114
|
HAb18G/CD147 promotes epithelial-mesenchymal transition through TGF-β signaling and is transcriptionally regulated by Slug. Oncogene 2011; 30:4410-27. [PMID: 21532623 DOI: 10.1038/onc.2011.149] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β (TGF-β) is implicated in hepatocarcinogenesis and hepatocellular carcinoma (HCC) metastasis. HAb18G/CD147, which belongs to the CD147 family, is an HCC-associated antigen that has a crucial role in tumor invasion and metastasis. The goal of this study was to investigate the role of HAb18G/CD147 during EMT in hepatocarcinogenesis. Human normal hepatic cell lines QZG and L02, primary mouse hepatocytes and nude mouse models were used to determine the role of HAb18G/CD147 in EMT, and the involvement of the TGF-β-driven pathway. A dual-luciferase reporter assay and ChIP were used to investigate the transcriptional regulation of the CD147 gene. Samples from patients with liver disease were assessed to determine the relationship between HAb18G/CD147 and typical markers for EMT. Our results show that upregulation of HAb18G/CD147 is induced by TGF-β coupled with downregulation of E-cadherin and upregulation of N-cadherin and vimentin. The expression of HAb18G/CD147 is controlled by the cell survival PI3K/Akt/GSK3β signaling pathway, and is directly regulated by the transcription factor Slug. Transfection of CD147 also induces an elevated expression of TGF-β. CD147-transfected hepatocytes have mesenchymal phenotypes that accelerate tumor formation and tumor metastasis in vivo. Immunohistochemistry analysis shows a negative correlation between HAb18G/CD147 and E-cadherin expression (r(s)=-0.3622, P=0.0105), and a positive correlation between HAb18G/CD147 and Slug expression (r(s)=0.3064, P=0.0323) in human HCC tissues. Our study uncovers a novel role of HAb18G/CD147 in mediating EMT in the process of HCC progression and showed that CD147 is a Slug target gene in the signaling cascade TGF-β→PI3K/Akt→GSK3β→Snail→Slug→CD147. Our results suggest that CD147 may be a potential target for the treatment and prevention of HCC.
Collapse
|
115
|
Lamouille S, Derynck R. Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs 2010; 193:8-22. [PMID: 21041997 DOI: 10.1159/000320172] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During development and in pathological contexts such as fibrosis and cancer progression, epithelial cells can initiate a complex transcriptional reprogramming, accompanied by dramatic morphological changes, in a process named 'epithelial-mesenchymal transition' (EMT). In this transition, epithelial cells lose their epithelial characteristics to acquire mesenchymal properties and increased motile and invasive behavior. Transforming growth factor-β (TGF-β) has emerged as a major inducer of EMT through activation of downstream signaling pathways, including Smad and non-Smad signaling pathways. Among the non-Smad pathways, increasing evidence is emerging that the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis plays a major role in TGF-β-induced EMT, notably through the regulation of translation and cell invasion. Pharmacological inhibitors of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway may therefore represent an opportunity to selectively target essential aspects of TGF-β-induced EMT and provide an approach to prevent cancer cell dissemination toward metastasis, without the need to fully inactivate TGF-β signaling.
Collapse
Affiliation(s)
- Samy Lamouille
- Department of Cell and Tissue Biology, Program in Cell Biology, University of California, San Francisco, CA 94143-0512, USA
| | | |
Collapse
|
116
|
Zhang H, Zhang L, Wang H, Chen X. [Research of TGF-beta1 inducing lung adencarcinoma PC9 cells to mesenchymal cells transition]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:34-7. [PMID: 20672701 PMCID: PMC6000676 DOI: 10.3779/j.issn.1009-3419.2010.01.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
背景与目的 研究表明上皮-间质转化(epithelial-mesenchymal transition, EMT)不仅参与胚胎形成与发育,而且参与肿瘤侵袭转移。此外,人转化生长因子-β1(transforming growth factor-beta1, TGF-β1)已被证实为肿瘤EMT的主要诱导剂。本研究旨在探讨TGF-β1诱导人肺腺癌PC9细胞发生EMT及其对PI3K/AKT信号通道的影响。 方法 将体外培养的PC9细胞用不同浓度TGF-β1处理48 h,相差倒置显微镜下观察细胞形态学变化;Western blot和细胞免疫荧光验证EMT相关标记蛋白表达变化。同时,采用Western blot方法检测AKT和P-AKT的表达水平。 结果 TGF-β1可诱导PC9细胞向间质型细胞形态转化,并上调间质标记蛋白Fibronectin的表达及下调P-AKT的表达。 结论 TGF-β1可诱导PC9细胞发生EMT,并影响PI3K/AKT信号通道。
Collapse
Affiliation(s)
- Huijun Zhang
- Department of Pneumosurgery, Shanghai Pulmonary Hospital, Shanghai, 200433, China
| | | | | | | |
Collapse
|
117
|
Li HX, Han M, Bernier M, Zheng B, Sun SG, Su M, Zhang R, Fu JR, Wen JK. Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem 2010; 285:17846-56. [PMID: 20375011 DOI: 10.1074/jbc.m109.076992] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 (Krüppel-like factor 4) has been implicated in vascular smooth muscle cell (VSMC) differentiation induced by transforming growth factor beta (TGF-beta). However, the role of KLF4 and mechanism of KLF4 actions in regulating TGF-beta signaling in VSMCs remain unclear. In this study, we showed that TGF-beta1 inhibited cell cycle progression and induced differentiation in cultured rat VSMCs. This activity of TGF-beta1 was accompanied by up-regulation of KLF4, with concomitant increase in TbetaRI (TGF-beta type I receptor) expression. KLF4 was found to transduce TGF-beta1 signals via phosphorylation-mediated activation of Smad2, Smad3, and p38 MAPK. The activation of both pathways, in turn, increased the phosphorylation of KLF4, which enabled the formation of KLF4-Smad2 complex in response to TGF-beta1. Chromatin immunoprecipitation studies and oligonucleotide pull-down assays showed the direct binding of KLF4 to the KLF4-binding sites 2 and 3 of the TbetaRI promoter and the recruitment of Smad2 to the Smad-responsive region. Formation of a stable KLF4-Smad2 complex in the promoter's Smad-responsive region mediated cooperative TbetaRI promoter transcription in response to TGF-beta1. These results suggest that KLF4-dependent regulation of Smad and p38 MAPK signaling via TbetaRI requires prior phosphorylation of KLF4 through Smad and p38 MAPK pathways. This study demonstrates a novel mechanism by which TGF-beta1 regulates VSMC differentiation.
Collapse
Affiliation(s)
- Hui-xuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, China Ministry of Education, Hebei Medical University, No 361, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kato M, Natarajan R. microRNA cascade in diabetic kidney disease: Big impact initiated by a small RNA. Cell Cycle 2010; 8:3613-4. [PMID: 19884793 DOI: 10.4161/cc.8.22.9816] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
119
|
Perron JC, Dodd J. ActRIIA and BMPRII Type II BMP receptor subunits selectively required for Smad4-independent BMP7-evoked chemotaxis. PLoS One 2009; 4:e8198. [PMID: 20011660 PMCID: PMC2788225 DOI: 10.1371/journal.pone.0008198] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/15/2009] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic protein (BMP)-evoked reorientation and chemotaxis of cells occurs with rapid onset and involves events local to the cell membrane. The signaling pathways underlying these rapid processes likely diverge from those mediating classical transcriptional responses to BMPs but it remains unclear how BMP receptors are utilized to generate distinct intracellular mechanisms. We show that BMP7-evoked chemotaxis of monocytic cells depends on the activity of canonical type II BMP receptors. Although the three canonical type II BMP receptors are expressed in monocytic cells, inhibition of receptor subunit expression by RNAi reveals that ActRIIA and BMPRII, but not ActRIIB, are each essential for BMP7-evoked chemotaxis but not required individually for BMP-mediated induction. Furthermore, the chemotactic response to BMP7 does not involve canonical Smad4-dependent signaling but acts through PI3K-dependent signaling, illustrating selective activation of distinct intracellular events through differential engagement of receptors. We suggest a model of a BMP receptor complex in which the coordinated activity of ActRIIA and BMPRII receptor subunits selectively mediates the chemotactic response to BMP7.
Collapse
Affiliation(s)
- Jeanette C. Perron
- Departments of Physiology and Cellular Biophysics and Neuroscience, Columbia University, New York, New York, United States of America
| | - Jane Dodd
- Departments of Physiology and Cellular Biophysics and Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
120
|
Cone RE, Pais R. Anterior Chamber-Associated Immune Deviation (ACAID): An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage? OPHTHALMOLOGY AND EYE DISEASES 2009; 1:33-40. [PMID: 23861608 PMCID: PMC3661314 DOI: 10.4137/oed.s2858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID)a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80+ monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.
Collapse
Affiliation(s)
- Robert E Cone
- Department of Immunology, Connecticut Lions Vascular Vision Center, Farmington Connecticut, USA.
| | | |
Collapse
|
121
|
Liu Y, Wen XM, Lui ELH, Friedman SL, Cui W, Ho NPS, Li L, Ye T, Fan ST, Zhang H. Therapeutic targeting of the PDGF and TGF-beta-signaling pathways in hepatic stellate cells by PTK787/ZK22258. J Transl Med 2009; 89:1152-60. [PMID: 19668241 PMCID: PMC2891536 DOI: 10.1038/labinvest.2009.77] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stimulation of hepatic stellate cells (HSCs) by platelet-derived growth factor (PDGF) and transforming growth factor-beta1 (TGF-beta1) is an essential pathway of proliferation and fibrogenesis, respectively, in liver fibrosis. We provide evidence that PTK787/ZK222584 (PTK/ZK), a potent tyrosine kinase inhibitor that blocks vascular endothelial growth factor receptor (VEGFR), significantly inhibits PDGF receptor expression, as well as PDGF-simulated HSC proliferation, migration and phosphorylation of ERK1/2, Akt and p70S6 kinase. Interestingly, PTK/ZK also antagonizes the TGF-beta1-induced expression of VEGF and VEGFR1. Furthermore, PTK/ZK downregulates TGF-beta receptor expression, which is associated with reduced Akt, ERK and p38MAPK phosphorylation. Furthermore, PDGF-induced TGF-beta1 expression is inhibited by PTK/ZK. These findings provide evidence that PTK/ZK targets multiple essential pathways of stellate cell activation that provoke proliferation and fibrogenesis. Our study underscores the potential use of PTK/ZK as an antifibrotic drug in chronic liver disease.
Collapse
Affiliation(s)
- Yuqing Liu
- Laboratory of Chemical Genomics, School of Chemical Biology and
Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China, Department of Applied Biology & Chemical Technology, The Hong
Kong Polytechnic University, Kowloon, Hong Kong, China, Department of Surgery, The University of Hong Kong, Pokfulam, Hong
Kong, China
| | - Xiao Ming Wen
- Laboratory of Chemical Genomics, School of Chemical Biology and
Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Eric Lik Hang Lui
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong
Kong, China
| | - Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New
York, NY, USA
| | - Wei Cui
- Department of Applied Biology & Chemical Technology, The Hong
Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Nancy Pei Shan Ho
- Department of Applied Biology & Chemical Technology, The Hong
Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Lei Li
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong
Kong, China
| | - Tao Ye
- Laboratory of Chemical Genomics, School of Chemical Biology and
Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China, Department of Applied Biology & Chemical Technology, The Hong
Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Sheung Tat Fan
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong
Kong, China
| | - Hui Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and
Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China, Cancer Cell Proteomics, Nevada Cancer Institute, Las Vegas, NV,
USA
| |
Collapse
|
122
|
Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 2009; 4:1255-66. [PMID: 19581401 DOI: 10.2215/cjn.00520109] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRs) are a family of short non-coding RNAs. These endogenously produced factors have been shown to play important roles in gene regulation. The discovery of miRs has greatly expanded our knowledge of gene regulation at the posttranscriptional level. miRs inhibit target gene expression by blocking protein translation or by inducing mRNA degradation and therefore have the potential to modulate physiologic and pathologic processes. The imperative need to determine their cellular targets and disease relevance has sparked an unprecedented explosion of research in the miR field. Recent findings have revealed critical functions for specific miRs in cellular events such as proliferation, differentiation, development, and immune responses and in the regulation of genes relevant to human diseases. Of particular interest to renal researchers are recent reports that key miRs are highly expressed in the kidney and can act as effectors of TGF-beta actions and high glucose in diabetic kidney disease. Moreover, podocyte-specific deletion of Dicer, a key enzyme involved in miR biogenesis, led to proteinuria and severe renal dysfunction in mice. Hence, studies aimed at determining the in vitro and in vivo functions of miRs in the kidney could determine their value as therapeutic targets for progressive renal glomerular and tubular diseases. Translational approaches could be facilitated by the development of effective inhibitors of specific miRs and methods for optimal delivery of anti-miRs to the kidney. The major goal of this review is to highlight key functions of these miRs and their relationships to human diseases, with special emphasis on diabetic kidney disease.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
123
|
Hubchak SC, Sparks EE, Hayashida T, Schnaper HW. Rac1 promotes TGF-beta-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism. Am J Physiol Renal Physiol 2009; 297:F1316-23. [PMID: 19726546 DOI: 10.1152/ajprenal.00345.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta is a central mediator in the progression of glomerulosclerosis, leading to accumulation of aberrant extracellular matrix proteins and inappropriate expression of smooth muscle alpha-actin in the kidney. Previously, we reported that disrupting the cytoskeleton diminished TGF-beta-stimulated type I collagen accumulation in human mesangial cells. As cytoskeletal signaling molecules, including the Rho-family GTPases, have been implicated in fibrogenesis, we sought to determine the respective roles of RhoA and Rac1 in HMC collagen I expression. TGF-beta1 activated both RhoA and Rac1 within 5 min of treatment, and this activation was dependent on the kinase activity of the type I TGF-beta receptor. TGF-beta1-stimulated induction of type I collagen mRNA expression and promoter activity was diminished by inhibiting Rac1 activity and was increased by a constitutively active Rac1 mutant, whereas inhibiting RhoA activity had no such effect. Rac1 activation required phosphatidylinositol-3-kinase (PI3K) activity. Furthermore, the PI3K antagonist, LY294002, reduced TGF-beta1-stimulated COL1A2 promoter activity and Rac1 activation. It also partially blocked active Rac1-stimulated collagen promoter activity, suggesting that PI3K activity contributes to both TGF-beta activation of Rac1 and signal propagation downstream of Rac1. Thus, while both Rac1 and RhoA are rapidly activated in response to TGF-beta1 in human mesangial cells, only Rac1 activation enhances events that contribute to mesangial cell collagen expression, through a positive feedback loop involving PI3K.
Collapse
Affiliation(s)
- Susan C Hubchak
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
124
|
Xavier S, Niranjan T, Krick S, Zhang T, Ju W, Shaw AS, Schiffer M, Böttinger EP. TbetaRI independently activates Smad- and CD2AP-dependent pathways in podocytes. J Am Soc Nephrol 2009; 20:2127-37. [PMID: 19679673 DOI: 10.1681/asn.2008070806] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
TGF-beta regulates differentiation, growth, and apoptosis of podocytes and mediates podocyte depletion in glomerulosclerosis. TGF-beta promotes proapoptotic signaling mediated by Smad3 but also activates prosurvival pathways such as phosphoinositide-3 kinase (PI3K)/AKT; the latter requires the CD2-associated adaptor protein (CD2AP) in podocytes. Whether the opposing activities mediated by Smad proteins and CD2AP involve molecular cross-talk is unknown. Here, we report that CD2AP-dependent early activation of the antiapoptotic PI3K/AKT pathway does not require TGF-beta receptor-regulated Smad2 and Smad3. We found that the C-terminal region of CD2AP interacts directly with the cytoplasmic tail of the TGF-beta receptor type I (TbetaRI) in a kinase-dependent manner and that the interaction between the TbetaRI and the p85 subunit of PI3K requires CD2AP. Consistent with the proapoptotic function of Smad signaling, Smad2/3-deficient podocytes were hyperproliferative and resistant to TGF-beta-induced growth inhibition and apoptosis. In contrast, CD2AP-deficient cells were hypoproliferative and hypersensitive to TGF-beta-induced apoptosis. In vivo, to determine the effects of reduced Smad3 or CD2AP gene dosage on podocyte apoptosis and proteinuria characteristic of TGF-beta1 transgenic mice, we generated TGF-beta1 transgenic mice deficient for Smad3 or heterozygous for CD2AP. Smad3 deficiency ameliorated podocyte apoptosis, and CD2AP heterozygosity increased both podocyte apoptosis and proteinuria. These data define distinct canonical (Smad) and noncanonical (CD2AP/PI3K/AKT) pathways that arise from direct, independent interactions with the TbetaRI and that mediate opposing signals for podocyte death or survival.
Collapse
Affiliation(s)
- Sandhya Xavier
- Division of Nephrology, Department of Medicine, Charles R Bronfman Institute for Personalized Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
TGF-β induces degradation of TAL1/SCL by the ubiquitin-proteasome pathway through AKT-mediated phosphorylation. Blood 2009; 113:6695-8. [DOI: 10.1182/blood-2008-07-166835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
T-cell acute lymphoblastic leukemia 1 (TAL1), also known as stem cell leukemia (SCL), plays important roles in differentiation of hematopoietic and endothelial cells and is deregulated in a high percentage of T-cell acute lymphoblastic leukemia (T-ALL). In this report we show that the intracellular concentration of TAL1 is regulated by transforming growth factor β (TGF-β), which triggers its polyubiquitylation and degradation by the proteasome. This effect is mediated by AKT1, which phosphorylates TAL1 at threonine 90. Immunoprecipitation experiments showed that this event increases association of TAL1 with the E3 ubiquitin ligase CHIP. The E47 heterodimerization partner of TAL1 hinders this association. Our observations indicate that activation of the TGF-β and phosphatidylinositol 3-kinase/AKT pathways might reverse overexpression of TAL1 in leukemic cells by inducing proteolysis of this important oncogene.
Collapse
|
126
|
Kim SI, Kwak JH, Na HJ, Kim JK, Ding Y, Choi ME. Transforming growth factor-beta (TGF-beta1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-beta receptor kinase activity in mesangial cells. J Biol Chem 2009; 284:22285-22296. [PMID: 19556242 DOI: 10.1074/jbc.m109.007146] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that signals through the interaction of type I (TbetaRI) and type II (TbetaRII) receptors to activate distinct intracellular pathways. TAK1 is a serine/threonine kinase that is rapidly activated by TGF-beta1. However, the molecular mechanism of TAK1 activation is incompletely understood. Here, we propose a mechanism whereby TAK1 is activated by TGF-beta1 in primary mouse mesangial cells. Under unstimulated conditions, endogenous TAK1 is stably associated with TbetaRI. TGF-beta1 stimulation causes rapid dissociation from the receptor and induces TAK1 phosphorylation. Deletion mutant analysis indicates that the juxtamembrane region including the GS domain of TbetaRI is crucial for its interaction with TAK1. Both TbetaRI-mediated TAK1 phosphorylation and TGF-beta1-induced TAK1 phosphorylation do not require kinase activity of TbetaRI. Moreover, TbetaRI-mediated TAK1 phosphorylation correlates with the degree of its association with TbetaRI and requires kinase activity of TAK1. TAB1 does not interact with TGF-beta receptors, but TAB1 is indispensable for TGF-beta1-induced TAK1 activation. We also show that TRAF6 and TAB2 are required for the interaction of TAK1 with TbetaRI and TGF-beta1-induced TAK1 activation in mouse mesangial cells. Taken together, our data indicate that TGF-beta1-induced interaction of TbetaRI and TbetaRII triggers dissociation of TAK1 from TbetaRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation and not by the receptor kinase activity of TbetaRI.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Joon Hyeok Kwak
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hee-Jun Na
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jin Kuk Kim
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Internal Medicine, Bucheon Hospital, Soonchunhyang University, Bucheon, 420-767, Korea
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
127
|
TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009; 11:881-9. [PMID: 19543271 PMCID: PMC2744130 DOI: 10.1038/ncb1897] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/20/2009] [Indexed: 01/20/2023]
Abstract
Akt kinase is activated by transforming growth factor-beta1 (TGF-β) in diabetic kidneys and plays important roles in fibrosis, hypertrophy and cell survival in glomerular mesangial cells (MC)1–11. However, the mechanisms of Akt activation by TGF-β are not fully understood. Here we show that TGF-β activates Akt in MC by inducing microRNA-216a (miR-216a) and miR-217, both of which target phosphatase and tensin homologue (PTEN). Both these miRs are located within the second intron of a non-coding RNA (RP23-298H6.1-001). The RP23 promoter was activated by TGF-β and also by miR-192 via E-box-regulated mechanisms as shown previously3. Akt activation by these miRs also led to MC survival and hypertrophy similar to TGF-β. These studies reveal a mechanism of Akt activation via PTEN downregulation by two miRs regulated by upstream miR-192 and TGF-β. Due to the diversity of PTEN function12, 13, this miR amplifying circuit may play key roles not only in kidney disorders, but also other diseases.
Collapse
|
128
|
Rahimi RA, Leof EB. TGFbeta versatility: PI3K as a critical mediator of distinct cell type and context specific responses. Cell Cycle 2009. [PMID: 19471120 DOI: 10.4161/cc.8.12.8868] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
129
|
Rahimi RA, Leof EB. TGFbeta versatility: PI3K as a critical mediator of distinct cell type and context specific responses. Cell Cycle 2009; 8:1813-4. [PMID: 19471120 DOI: 10.4161/cc.8.12.8828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
130
|
Miller TW, Pérez-Torres M, Narasanna A, Guix M, Stål O, Pérez-Tenorio G, Gonzalez-Angulo AM, Hennessy BT, Mills GB, Kennedy JP, Lindsley CW, Arteaga CL. Loss of Phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res 2009; 69:4192-201. [PMID: 19435893 PMCID: PMC2724871 DOI: 10.1158/0008-5472.can-09-0042] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Knockdown of the tumor suppressor phosphatase Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) with shRNA in three estrogen receptor (ER)-positive breast cancer cell lines resulted in increased phosphatidylinositol-3 kinase (PI3K) and AKT activities, resistance to tamoxifen and fulvestrant, and hormone-independent growth. PTEN knockdown induced the up-regulation of ER transcriptional activity in MCF-7 cells but decreased ER protein levels and transcriptional activity in T47D and MDA-361 cells. Tamoxifen and fulvestrant treatment inhibited estradiol-induced ER transcriptional activity in all shPTEN cell lines but did not abrogate the increased cell proliferation induced by PTEN knockdown. PTEN knockdown increased basal and ligand-induced activation of the insulin-like growth factor-I (IGF-I) and ErbB3 receptor tyrosine kinases, and prolonged the association of the p85 PI3K subunit with the IGF-I receptor (IGF-IR) effector insulin receptor substrate-1 and with ErbB3, implicating PTEN in the modulation of signaling upstream of PI3K. Consistent with these data, PTEN levels inversely correlated with levels of tyrosine-phosphorylated IGF-IR in tissue lysate arrays of primary breast cancers. Inhibition of IGF-IR and/or ErbB2-mediated activation of ErbB3 with tyrosine kinase inhibitors restored hormone dependence and the growth inhibitory effect of tamoxifen and fulvestrant on shPTEN cells, suggesting that cotargeting both ER and receptor tyrosine kinase pathways holds promise for the treatment of patients with ER+, PTEN-deficient breast cancers.
Collapse
Affiliation(s)
- Todd W. Miller
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Marianela Pérez-Torres
- Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Archana Narasanna
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Marta Guix
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Olle Stål
- Department of Biomedicine and Surgery, Division of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedicine and Surgery, Division of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ana M. Gonzalez-Angulo
- Department of Breast Medical Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, TX,Department of Systems Biology, University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Bryan T. Hennessy
- Department of Systems Biology, University of Texas, M. D. Anderson Cancer Center, Houston, TX,Department of Gynecology Medical Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - J. Phillip Kennedy
- Department of Chemistry, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Craig W. Lindsley
- Department of Chemistry, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Carlos L. Arteaga
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN,Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN,Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
131
|
Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19:156-72. [PMID: 19153598 DOI: 10.1038/cr.2009.5] [Citation(s) in RCA: 2067] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During development and in the context of different morphogenetic events, epithelial cells undergo a process called epithelial to mesenchymal transition or transdifferentiation (EMT). In this process, the cells lose their epithelial characteristics, including their polarity and specialized cell-cell contacts, and acquire a migratory behavior, allowing them to move away from their epithelial cell community and to integrate into surrounding tissue, even at remote locations. EMT illustrates the differentiation plasticity during development and is complemented by another process, called mesenchymal to epithelial transition (MET). While being an integral process during development, EMT is also recapitulated under pathological conditions, prominently in fibrosis and in invasion and metastasis of carcinomas. Accordingly, EMT is considered as an important step in tumor progression. TGF-beta signaling has been shown to play an important role in EMT. In fact, adding TGF-beta to epithelial cells in culture is a convenient way to induce EMT in various epithelial cells. Although much less characterized, epithelial plasticity can also be regulated by TGF-beta-related bone morphogenetic proteins (BMPs), and BMPs have been shown to induce EMT or MET depending on the developmental context. In this review, we will discuss the induction of EMT in response to TGF-beta, and focus on the underlying signaling and transcription mechanisms.
Collapse
Affiliation(s)
- Jian Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
132
|
Montenegro DE, Franklin T, Moscinski LC, Zuckerman KS, Hu XT. TGFbeta inhibits GM-CSF-induced phosphorylation of ERK and MEK in human myeloid leukaemia cell lines via inhibition of phosphatidylinositol 3-kinase (PI3-k). Cell Prolif 2009; 42:1-9. [PMID: 19143758 DOI: 10.1111/j.1365-2184.2008.00567.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Activation of SMAD-independent p44/42 MAPK (ERK1/2) signalling by TGFbeta has been recently reported in various cell types. However, the mechanisms for the linkage between the SMAD-dependent and -independent pathways are poorly understood. In this study, we investigated whether TGF-beta activates the ERK pathway and how TGFbeta communicates with the MAP kinase signals induced by a mitogen, in human myeloid leukaemia cells. MATERIALS AND METHODS AND RESULTS TGFbeta dramatically suppressed proliferation of MV4-11 and TF-1 cells without detectable phosphorylation of ERK1/2 and MEK1/2 for the duration of 48 h, as detected by MTT assay and Western blot analysis, respectively. In contrast, GM-CSF induced rapid and transient phosphorylation of MEK1/2 and ERK1/2 and up-regulated cell proliferation. Both GM-CSF-induced ERK1/2 activation and cell proliferation were significantly inhibited by TGFbeta. GM-CSF also induced transient phosphorylation of the p85 subunit of PI3-kinase. Corresponding to this change, phosphorylated p85 was found to bind to the GM-CSF receptor-alpha subunit, as detected by immunoprecipitation and Western blot analysis. PD98059, a selective inhibitor of MEK, blocked GM-CSF-induced phosphorylation of MEK and ERK but not p85. However, TGFbeta and LY294002, a potent inhibitor of PI3-kinase, significantly inhibited phosphorylation of both p85 and ERK1/2. CONCLUSIONS These studies thus indicate that TGFbeta does not activate the ERK pathway but turns off the GM-CSF-induced ERK signal via inhibition of the PI3-kinase-Akt pathway, in these human leukaemia cells.
Collapse
Affiliation(s)
- D E Montenegro
- School of Natural and Health Science, Barry University, Miami Shores, FL 33161, USA
| | | | | | | | | |
Collapse
|
133
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family control a broad range of cellular responses in metazoan organisms via autocrine, paracrine, and endocrine modes. Thus, aberrant TGF-beta signaling can play a key role in the pathogenesis of several diseases, including cancer. TGF-beta signaling pathways are activated by a short phospho-cascade, from receptor phosphorylation to the subsequent phosphorylation and activation of downstream signal transducers called R-Smads. R-Smad phosphorylation state determines Smad complex assembly/disassembly, nuclear import/export, transcriptional activity and stability, and is thus the most critical event in TGF-beta signaling. Dephosphorylation of R-Smads by specific phosphatases prevents or terminates TGF-beta signaling, highlighting the need to consider Smad (de)phosphorylation as a tightly controlled and dynamic event. This article illustrates the essential roles of reversible phosphorylation in controlling the strength and duration of TGF-beta signaling and the ensuing physiological responses.
Collapse
|
134
|
Phosphorylation of Fli1 at threonine 312 by protein kinase C delta promotes its interaction with p300/CREB-binding protein-associated factor and subsequent acetylation in response to transforming growth factor beta. Mol Cell Biol 2009; 29:1882-94. [PMID: 19158279 DOI: 10.1128/mcb.01320-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that transforming growth factor beta (TGF-beta)-induced collagen gene expression involves acetylation-dependent dissociation from the human alpha2(I) collagen (COL1A2) promoter of the transcriptional repressor Fli1. The goal of this study was to elucidate the regulatory steps preceding the acetylation of Fli1. We first showed that TGF-beta induces Fli1 phosphorylation on a threonine residue(s). The major phosphorylation site was localized to threonine 312 located in the DNA binding domain of Fli1. Using several independent approaches, we demonstrated that Fli1 is directly phosphorylated by protein kinase C delta (PKC delta). Additional experiments showed that in response to TGF-beta, PKC delta is recruited to the collagen promoter to phosphorylate Fli1 and that this step is a prerequisite for the subsequent interaction of Fli1 with p300/CREB-binding protein-associated factor (PCAF) and an acetylation event. The phosphorylation of endogenous Fli1 preceded its acetylation in response to TGF-beta stimulation, and the blockade of PKC delta abrogated both the phosphorylation and acetylation of Fli1 in dermal fibroblasts. Promoter studies showed that a phosphorylation-deficient mutant of Fli1 exhibited an increased inhibitory effect on the COL1A2 gene, which could not be reversed by the forced expression of PCAF or PKC delta. These data strongly suggest that the phosphorylation-acetylation cascade triggered by PKC delta represents the primary mechanism whereby TGF-beta regulates the transcriptional activity of Fli1 in the context of the collagen promoter.
Collapse
|
135
|
Abstract
Transforming growth factor-beta utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focuses on recent advances in the understanding of the molecular and biochemical mechanisms of non-Smad pathways. In addition, functions of these non-Smad pathways are also discussed.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
136
|
Gonin-Giraud S, Bresson-Mazet C, Gandrillon O. Involvement of the TGF-β and mTOR/p70S6Kinase pathways in the transformation process induced by v-ErbA. Leuk Res 2008; 32:1878-88. [DOI: 10.1016/j.leukres.2008.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/11/2008] [Accepted: 05/12/2008] [Indexed: 10/21/2022]
|
137
|
Chow JYC, Cabral JA, Chang J, Carethers JM. TGFbeta modulates PTEN expression independently of SMAD signaling for growth proliferation in colon cancer cells. Cancer Biol Ther 2008; 7:1694-9. [PMID: 18769113 DOI: 10.4161/cbt.7.10.6665] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signaling pathways enabling transforming growth factor-beta (TGFbeta)'s conversion from a tumor suppressor to a tumor promoter are not well characterized. TGFbeta utilizes intracellular SMADs to mediate growth suppression; however, TGFbeta-induced proliferative pathways may become more apparent when SMAD signaling is abrogated. Here, we determined regulation of the tumor suppressor PTEN by TGFbeta utilizing SMAD4-null colon cancer cells. TGFbeta downregulated PTEN mRNA and simultaneously induced growth proliferation. TGFbeta also induced both SMAD2 and SMAD3 nuclear translocation, but only triggered SMAD2-specific transcriptional activity in the absence of SMAD4. Interference of SMAD2 with DN-SMAD2 enhanced TGFbeta-induced cell proliferation, but downregulation of PTEN expression by TGFbeta was unaffected. TGFbeta increased PI3K tyrosine phosphorylation, and inhibition of PI3K pharmacologically or by DN-p85 transfection reversed both TGFbeta-induced PTEN suppression and TGFbeta-induced cell proliferation. Thus, TGFbeta activates PI3K to downregulate PTEN for enhancement of cell proliferation that is independent of SMAD proteins.
Collapse
Affiliation(s)
- Jimmy Y C Chow
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0063, USA
| | | | | | | |
Collapse
|
138
|
Xia L, Wang H, Munk S, Kwan J, Goldberg HJ, Fantus IG, Whiteside CI. High glucose activates PKC-zeta and NADPH oxidase through autocrine TGF-beta1 signaling in mesangial cells. Am J Physiol Renal Physiol 2008; 295:F1705-14. [PMID: 18815221 DOI: 10.1152/ajprenal.00043.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conversion of normally quiescent mesangial cells into extracellular matrix-overproducing myofibroblasts in response to high ambient glucose and transforming growth factor (TGF)-beta(1) is central to the pathogenesis of diabetic nephropathy. Previously, we reported that mesangial cells respond to high glucose by generating reactive oxygen species (ROS) from NADPH oxidase dependent on protein kinase C (PKC) -zeta activation. We investigated the role of TGF-beta(1) in this action of high glucose on primary rat mesangial cells within 1-48 h. Both high glucose and exogenous TGF-beta(1) stimulated PKC-zeta kinase activity, as measured by an immune complex kinase assay and immunofluorescence confocal cellular imaging. In high glucose, Akt Ser473 phosphorylation appeared within 1 h and Smad2/3 nuclear translocation was prevented with neutralizing TGF-beta(1) antibodies. Neutralizing TGF-beta(1) antibodies, or a TGF-beta receptor kinase inhibitor (LY364947), or a phosphatidylinositol 3,4,5-trisphosphate (PI3) kinase inhibitor (wortmannin), prevented PKC-zeta activation by high glucose. TGF-beta(1) also stimulated cellular membrane translocation of PKC-alpha, -beta(1), -delta, and -epsilon, similar to high glucose. High glucose and TGF-beta(1) enhanced ROS generation by mesangial cell NADPH oxidase, as detected by 2,7-dichlorofluorescein immunofluorescence. This response was abrogated by neutralizing TGF-beta(1) antibodies, LY364947, or a specific PKC-zeta pseudosubstrate peptide inhibitor. Expression of constitutively active PKC-zeta in normal glucose caused upregulation of p22(phox), a likely mechanism of NADPH oxidase activation. We conclude that very early responses of mesangial cells to high glucose include autocrine TGF-beta(1) stimulation of PKC isozymes including PI3 kinase activation of PKC-zeta and consequent generation of ROS by NADPH oxidase.
Collapse
Affiliation(s)
- Ling Xia
- University Health Network, Univ. of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
139
|
Chong CCW, Stump RJW, Lovicu FJ, McAvoy JW. TGFbeta promotes Wnt expression during cataract development. Exp Eye Res 2008; 88:307-13. [PMID: 18789926 DOI: 10.1016/j.exer.2008.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 07/08/2008] [Accepted: 07/22/2008] [Indexed: 11/29/2022]
Abstract
TGFbeta induces lens epithelial cells to undergo epithelial mesenchymal transition (EMT) and many changes with characteristics of fibrosis including posterior capsular opacification (PCO). Consequently much effort is directed at trying to block the damaging effects of TGFbeta in the lens. To do this effectively it is important to know the key signaling pathways regulated by TGFbeta that lead to EMT and PCO. Given that Wnt signaling is involved in TGFbeta-induced EMT in other systems, this study set out to determine if Wnt signaling has a role in regulating this process in the lens. Using RT-PCR, in situ hybridization and immunolocalization this study clearly shows that Wnts 5a, 5b, 7b, 8a, 8b and their Frizzled receptors are upregulated in association with TGFbeta-induced EMT and cataract development. Both rat in vitro and mouse in vivo cataract models show similar profiles for the Wnt and Frizzled mRNAs and proteins that were assessed. Currently it is not clear if the canonical beta-catenin/TCF signaling pathway, or a non-canonical pathway, is activated in this context. Overall, the results from the current study indicate that Wnt signaling is involved in TGFbeta-induced EMT and development of fibrotic plaques in the lens.
Collapse
Affiliation(s)
- C C W Chong
- Save Sight Institute, The University of Sydney, Sydney NSW 2001, Australia
| | | | | | | |
Collapse
|
140
|
Moore LD, Isayeva T, Siegal GP, Ponnazhagan S. Silencing of Transforming Growth Factor-β1 In situ by RNA Interference for Breast Cancer: Implications for Proliferation and Migration In vitro and Metastasis In vivo. Clin Cancer Res 2008; 14:4961-70. [DOI: 10.1158/1078-0432.ccr-07-4604] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
141
|
Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 2008; 28:5605-20. [PMID: 18625725 DOI: 10.1128/mcb.00787-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In HER2-overexpressing mammary epithelial cells, transforming growth factor beta (TGF-beta) activated phosphatidylinositol-3 kinase (PI3K)/Akt and enhanced survival and migration. Treatment with TGF-beta or expression of an activated TGF-beta type I receptor (Alk5 with the mutation T204D [Alk5(T204D)]) induced phosphorylation of TACE/ADAM17 and its translocation to the cell surface, resulting in increased secretion of TGF-alpha, amphiregulin, and heregulin. In turn, these ligands enhanced the association of p85 with ErbB3 and activated PI3K/Akt. RNA interference of TACE or ErbB3 prevented TGF-beta-induced activation of Akt and cell invasiveness. Treatment with TGF-beta or expression of Alk5(T204D) in HER2-overexpressing cells reduced their sensitivity to the HER2 antibody trastuzumab. Inhibition of Alk5, PI3K, TACE, or ErbB3 restored sensitivity to trastuzumab. A gene signature induced by Alk5(T204D) expression correlated with poor clinical outcomes in patients with invasive breast cancer. These results suggest that by acting on ErbB ligand shedding, an excess of TGF-beta may result in (i) conditioning of the tumor microenvironment with growth factors that can engage adjacent stromal and endothelial cells; (ii) potentiation of signaling downstream ErbB receptors, thus contributing to tumor progression and resistance to anti-HER2 therapies; and (iii) poor clinical outcomes in women with breast cancer.
Collapse
|
142
|
Kwak JH, Kim SI, Kim JK, Choi ME. BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells. J Biol Chem 2008; 283:19816-25. [PMID: 18487607 PMCID: PMC2443666 DOI: 10.1074/jbc.m802285200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/12/2008] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) plays essential roles in a wide array of cellular processes, such as in development and the pathogenesis of tissue fibrosis, including that associated with progressive kidney diseases. Tight regulation of its signaling pathways is critical, and proteins that associate with the TGF-beta receptors may exert positive or negative regulatory effects on TGF-beta signaling. In the present study we employed a yeast-based two-hybrid screening system to identify BAT3 (HLA-B-associated transcript 3) as a TGF-beta receptor-interacting protein. Analysis of endogenously expressed BAT3 in various tissues including the kidney reveals the existence of approximately 140-kDa full-length protein as well as truncated forms of BAT3 whose expression is developmentally regulated. Endogenous BAT3 protein interacts with TGF-beta receptors type I and type II in renal mesangial cells. Functional assays show that expression of full-length BAT3 results in enhancement of TGF-beta1-stimulated transcriptional activation of p3TP-Lux reporter, and these effects require the presence of functional TGF-beta signaling receptors as demonstrated in R-1B and DR-26 mutant cells. Moreover, expression of full-length BAT3, but not C-terminal truncated mutant of BAT3, enhanced TGF-beta1-induced type I collagen expression in mesangial cells, whereas knock down of BAT3 protein expression by small interfering RNA suppressed the expression of type I collagen induced by TGF-beta1. Our findings suggest that BAT3, a TGF-beta receptor-interacting protein, is capable of modulating TGF-beta signaling and acts as a positive regulator of TGF-beta1 stimulation of type I collagen expression in mesangial cells.
Collapse
Affiliation(s)
- Joon Hyeok Kwak
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
143
|
Wang J, Yang L, Yang J, Kuropatwinski K, Wang W, Liu XQ, Hauser J, Brattain MG. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Res 2008; 68:3152-60. [PMID: 18451140 DOI: 10.1158/0008-5472.can-07-5348] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FET cells, derived from an early-stage colon carcinoma, are nontumorigenic in athymic mice. Stable transfection of a dominant-negative transforming growth factor beta (TGFbeta) type II receptor (DNRII) into FET cells that express autocrine TGFbeta shows loss of TGFbeta signaling and increased tumorigenicity in vivo indicating tumor suppressor activity of TGFbeta signaling in this model. The ability of tumorigenic cells to withstand growth factor and nutrient deprivation stress (GFDS) is widely regarded as a key attribute for tumor formation and progression. We hypothesized that increased tumorigenicity of FET/DNRII cells was due to loss of participation of autocrine TGFbeta in a "fail-safe" mechanism to generate cell death in response to this stress. Here, we document that loss of autocrine TGFbeta in FET/DNRII cells resulted in greater endogenous cell survival in response to GFDS due to activation of the phosphoinositide 3-kinase (PI3K)/Akt/survivin pathway. Treatment of FET DNRII cells with a PI3K inhibitor (LY294002) inhibited Akt phosphorylation and reduced survivin expression resulting in increased apoptosis in FET/DNRII cells. We also show that exogenous TGFbeta increased apoptosis in FET cells through repression of the PI3K/Akt/survivin pathway during GFDS. These results indicate that the PI3K/Akt/survivin pathway is blocked by TGFbeta signaling and that loss of autocrine TGFbeta leads to increased cell survival during GFDS through the novel linkage of TGFbeta-mediated repression of survivin expression. Inhibition of survivin function by dominant-negative approaches showed that this inhibitor of apoptosis family member is critical to cell survival in the FET/DNRII cells, thus indicating the importance of this target for TGFbeta-mediated apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Kojima T, Takano KI, Yamamoto T, Murata M, Son S, Imamura M, Yamaguchi H, Osanai M, Chiba H, Himi T, Sawada N. Transforming growth factor-beta induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes. Liver Int 2008; 28:534-45. [PMID: 18031476 DOI: 10.1111/j.1478-3231.2007.01631.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Transforming growth factor-beta (TGF-beta) initiates and maintains epithelial-mesenchymal transition (EMT), which causes disassembly of tight junctions and loss of epithelial cell polarity. In mature hepatocytes during EMT induced by TGF-beta, changes in the expression of tight junction proteins and the fence function indicated that epithelial cell polarity remains unclear. METHODS In the present study, using primary cultures of adult rat hepatocytes at day 10 after plating, in which epithelial cell polarity is well maintained by tight junctions, we examined the effects of 0.01-20 ng/ml TGF-beta on the expression of the integral tight junction proteins, claudin-1, -2 and occludin, as well as the fence function. RESULTS In adult rat hepatocytes, TGF-beta induced EMT, which was indicated as upregulation of Smad-interacting protein-1 (SIP1) and Snail and down-regulation of E-cadherin. Down-regulation of claudin-1 and upregulation of occludin were observed beginning from a low dose of TGF-beta, whereas upregulation of claudin-2 was observed at a high dose of TGF-beta. Furthermore, treatment with TGF-beta caused disruption of the fence function, which was closely associated with the expression of claudin-1 via p38 mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase and protein kinase C but not MAPK signalling pathways. CONCLUSION These results suggest that in mature hepatocytes in vitro, TGF-beta induces EMT by down-regulation of claudin-1 and the fence function via distinct signalling pathways.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Bujor AM, Pannu J, Bu S, Smith EA, Muise-Helmericks RC, Trojanowska M. Akt blockade downregulates collagen and upregulates MMP1 in human dermal fibroblasts. J Invest Dermatol 2008; 128:1906-14. [PMID: 18323784 DOI: 10.1038/jid.2008.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acutely transforming retrovirus AKT8 in rodent T-cell lymphoma (Akt) is a serine/threonine kinase that plays important roles in survival, cell-cycle progression, and cell proliferation, and has recently been implicated in collagen regulation. The aim of this study was to determine the role of Akt in collagen deposition by normal dermal fibroblasts, and to determine the sensitivity of cultured systemic sclerosis (SSc) fibroblasts to Akt inhibition. We show that blockade of Akt using pharmacological inhibitors, small interfering RNA (siRNA), and a dominant-negative Akt mutant led to inhibition of the basal type I collagen production. Furthermore, inhibition of Akt upregulated basal matrix metalloproteinase 1 (MMP1) production and reversed the inhibitory effect of transforming growth factor-beta (TGF-beta) on MMP1 gene expression. In addition, SSc fibroblasts were more sensitive to Akt inhibition, with respect to collagen and MMP1 production. These findings suggest that in human dermal fibroblasts, Akt has dual profibrotic effects, increasing collagen synthesis and decreasing its degradation via downregulation of MMP1. Akt could directly contribute to elevated collagen in SSc fibroblasts and it may represent an attractive target for therapy of SSc fibrosis.
Collapse
Affiliation(s)
- Andreea M Bujor
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
146
|
Kim SI, Kwak JH, Wang L, Choi ME. Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J Biol Chem 2008; 283:10753-63. [PMID: 18299321 DOI: 10.1074/jbc.m801263200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAK1 (transforming growth factor (TGF)-beta-activated kinase 1) is a serine/threonine kinase that is rapidly activated by TGF-beta1 and plays a vital function in its signal transduction. Once TAK1 is activated, efficient down-regulation of TAK1 activity is important to prevent excessive TGF-beta1 responses. The regulatory mechanism of TAK1 inactivation following TGF-beta1 stimulation has not been elucidated. Here we demonstrate that protein phosphatase 2A (PP2A) plays a pivotal role as a negative regulator of TAK1 activation in response to TGF-beta1 in mesangial cells. Treatment with okadaic acid (OA) induces autophosphorylation of Thr-187 in the activation loop of TAK1. In vitro dephosphorylation assay suggests that Thr-187 in TAK1 is a major dephosphorylation target of PP2A. TGF-beta1 stimulation rapidly activates TAK1 in a biphasic manner, indicating that TGF-beta1-induced TAK1 activation is tightly regulated. The association of PP2A(C) with TAK1 is enhanced in response to TGF-beta1 stimulation and closely parallels TGF-beta1-induced TAK1 activity. Attenuation of PP2A activity by OA treatment or targeted knockdown of PP2A(C) with small interfering RNA enhances TGF-beta1-induced phosphorylation of TAK1 at Thr-187 and MKK3 (MAPK kinase 3). Endogenous TAK1 co-precipitates with PP2A(C) but not PP6(C), another OA-sensitive protein phosphatase, and knockdown of PP6(C) by small interfering RNA does not affect TGF-beta1-induced phosphorylation of TAK1 at Thr-187 and MKK3. Moreover, ectopic expression of phosphatase-deficient PP2A(C) enhances TAK1-mediated MKK3 phosphorylation by TGF-beta1 stimulation, whereas the expression of wild-type PP2A(C) suppresses the MKK3 phosphorylation. Taken together, our data indicate that PP2A functions as a negative regulator in TGF-beta1-induced TAK1 activation.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
147
|
Abstract
Transforming growth factor-beta (TGF-beta) regulates a wide variety of cellular processes including cell growth, apoptosis, differentiation, migration, and extracellular matrix production among others. The canonical signaling pathway induced by the TGF-beta receptor complex involves the phosphorylation of Smad proteins which upon activation accumulate in the nucleus and regulate transcription. Interestingly, the cellular response to TGF-beta can be extremely variable depending on the cell type and stimulation context. TGF-beta causes epithelial cells to undergo growth arrest and apoptosis, responses which are critical to suppressing carcinogenesis, whereas it can also induce epithelial-mesenchymal transition and mediate fibroblast activation, responses implicated in promoting carcinogenesis and fibrotic diseases. However, TGF-beta induces all these responses via the same receptor complex and Smad proteins. To address this apparent paradox, during the last few years a number of additional signaling pathways have been identified which potentially regulate the different cellular responses to TGF-beta. The identification of these signaling pathways has shed light onto the mechanisms whereby Smad and non-Smad pathways collaborate to induce a particular cellular phenotype. In this article, we review TGF-beta signaling in epithelial cells and fibroblasts with a focus on understanding the mechanisms of TGF-beta versatility.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
148
|
Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, Phillips AO. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem 2008; 283:6530-45. [PMID: 18174158 DOI: 10.1074/jbc.m704819200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study aims to understand the role of the matrix polysaccharide hyaluronan (HA) in influencing fibroblast proliferation and thereby affecting wound healing outcomes. To determine mechanisms that underlie scarred versus scar-free healing, patient-matched dermal and oral mucosal fibroblasts were used as models of scarring and non-scarring fibroblast phenotypes. Specifically, differences in HA generation between these distinct fibroblast populations have been examined and related to differences in transforming growth factor-beta(1) (TGF-beta(1))-dependent proliferative responses and Smad signaling. There was a differential growth response to TGF-beta(1), with it inducing proliferation in dermal fibroblasts but an anti-proliferative response in oral fibroblasts. Both responses were Smad3-dependent. Furthermore, the two fibroblast populations also demonstrated differences in their HA regulation, with dermal fibroblasts generating increased levels of HA, compared with oral fibroblasts. Inhibition of HA synthesis in dermal fibroblasts was shown to abrogate the TGF-beta(1)-mediated induction of proliferation. Inhibition of HA synthesis also led to an attenuation of Smad3 signaling in dermal fibroblasts. Microarray analysis demonstrated no difference in the genes involved in TGF-beta(1) signaling between dermal and oral fibroblasts, whereas there was a distinct difference in the pattern of genes involved in HA regulation. In conclusion, these two distinct fibroblast populations demonstrate a differential proliferative response to TGF-beta(1), which is associated with differences in HA generation. TGF-beta(1) regulates proliferation through Smad3 signaling in both fibroblast populations; however, it is the levels of HA generated by the cells that influence the outcome of this response.
Collapse
Affiliation(s)
- Soma Meran
- Institute of Nephrology, School of Medicine, Cardiff Institute of Tissue Engineering and Repair, Cardiff University Heath Park, Cardiff, UK
| | | | | | | | | | | | | |
Collapse
|
149
|
Das F, Ghosh-Choudhury N, Venkatesan B, Li X, Mahimainathan L, Choudhury GG. Akt kinase targets association of CBP with SMAD 3 to regulate TGFbeta-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 2007; 214:513-27. [PMID: 17671970 DOI: 10.1002/jcp.21236] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGFbeta) controls expression of plasminogen activator inhibitor type 1 (PAI-1), which regulates degradation of extracellular matrix proteins in fibrotic diseases. The TGFbeta receptor-specific Smad 3 has been implicated in the PAI-1 expression. The mechanism by which non-Smad signaling contributes to this process is not known. We studied the cross-talk between Smad 3 and PI 3 kinase/Akt signaling in TGFbeta-induced PAI-1 expression in renal mesangial cells. Inhibition of PI 3 kinase and Akt kinase blocked TGFbeta- and Smad 3-mediated expression of PAI-1. In contrast, constitutively active PI 3 kinase and Akt kinase increased PAI-1 expression, similar to TGFbeta. Inhibition of PI 3 kinase and Akt kinase had no effect on TGFbeta-induced Smad 3 phosphorylation and its translocation to the nucleus. Notably, inhibition of PI 3 kinase-dependent Akt kinase abrogated TGFbeta-induced PAI-1 transcription, without affecting binding of Smad 3 to the PAI-1 Smad binding DNA element. However, PI 3 kinase inhibition and dominant negative Akt kinase antagonized the association of the transcriptional coactivator CBP with Smad 3 in response to TGFbeta, resulting in inhibition of Smad 3 acetylation. Together our findings identify TGFbeta-induced PI 3 kinase/Akt signaling as a critical regulator of Smad 3-CBP interaction and Smad 3 acetylation, which cause increased PAI-1 expression.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
150
|
Yoo YA, Kim YH, Kim JS, Seo JH. The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:438-47. [PMID: 18164268 DOI: 10.1016/j.bbamcr.2007.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 11/29/2022]
Abstract
Development of acquired resistance to tamoxifen is a major clinical problem during endocrine treatment in estrogen receptor positive breast cancer. Transforming growth factor-beta1 (TGF-beta) has been implicated in tamoxifen-induced cellular signaling in breast cancer, and increased Akt activation is associated with tamoxifen-resistant cell types. We hypothesized that the relationship between TGF-beta and Akt signaling may be involved in the development and progression of tamoxifen resistance. Tamoxifen-resistant (Tam-R) cells were established from parental MCF-7 cells by continuously exposing them to 4-hydroxytamoxifen (4-OHT). Tam-R cells were associated with a decrease in TGF-beta1 secretion, TGF-beta-mediated transcriptional response, and growth inhibitory effects of 4-OHT. Tam-R cells expressed significantly higher levels of phosphorylated Akt and lower levels of phosphorylated Smad 3 in both the absence and presence of 4-OHT when compared to MCF-7 cells treated with 4-OHT. Ectopic expression of constitutively active Akt (Myc-Akt(Myr)) rendered MCF-7 cells resistant to activation by TGF-beta and the growth inhibitory effects of 4-OHT, while over-expression of kinase-dead Akt (Myc-Akt(K179M)) or LY294002 treatment of Tam-R cells enhanced TGF-beta activation and blocked cell growth. These results suggest that suppression of TGF-beta signaling by activated Akt is correlated with the development of tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Young A Yoo
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|