101
|
Marks MS. FIG4, Charcot-Marie-Tooth disease, and hypopigmentation: a role for phosphoinositides in melanosome biogenesis? Pigment Cell Melanoma Res 2008; 21:11-4. [PMID: 18353139 DOI: 10.1111/j.1755-148x.2007.00421.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael S Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
102
|
Kawakami A, Sakane F, Imai SI, Yasuda S, Kai M, Kanoh H, Jin HY, Hirosaki K, Yamashita T, Fisher DE, Jimbow K. Rab7 regulates maturation of melanosomal matrix protein gp100/Pmel17/Silv. J Invest Dermatol 2008; 128:143-50. [PMID: 17625594 DOI: 10.1038/sj.jid.5700964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosome biogenesis consists of multistep processes that involve synthesis of melanosomal protein, which is followed by vesicle transport/fusion and post-translational modifications such as glycosylation, proteolysis, and oligomerization. Because of its complexity, the details of the molecular mechanism of melanosome biogenesis are not yet fully understood. Here, we report that, in MMAc melanoma cells, wild-type (WT) Rab7 and its dominant-active mutant (Rab7-Q67L), but not its dominant-negative mutant (Rab7-T22N), were colocalized in the perinuclear region with granules containing Stage I melanosomes, where the full-length, immature gp100/Pmel17/Silv was present. It was also found that overexpression of Rab7-Q67L and, to a lesser extent, Rab7-WT increased the amount of proteolytically processed, mature gp100. However, Rab7-T22N did not show such an effect. Moreover, siRNA-mediated Rab7 knockdown considerably inhibited gp100 maturation. These results collectively suggest that the GTP-bound form of Rab7 promotes melanogenesis through the regulation of gp100 maturation in melanoma cells.
Collapse
Affiliation(s)
- Akinori Kawakami
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Deng WD, Shu W, Yang SL, Shi XW, Mao HM. Pigmentation in Black-boned sheep (Ovis aries): association with polymorphism of the MC1R gene. Mol Biol Rep 2007; 36:431-6. [PMID: 18075782 DOI: 10.1007/s11033-007-9197-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 12/03/2007] [Indexed: 11/26/2022]
Abstract
Variations in vertebrate skin and hair color are due to varied amounts of eumelanin (brown/black) and phaeomelanin (red/yellow) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eumelanin and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many vertebrates. We have sequenced the entire coding region of the MC1R gene in Black-boned, Nanping indigenous and Romney Marsh sheep populations and found two silent mutation sites of A12G and G144C, respectively. PCR-RFLP of G144C showed that frequency of allele G in Black-boned, Nanping indigenous and Romney Marsh sheep was 0.818, 0.894 and 0, respectively. Sheep with GG genotype had significantly higher (P < 0.05) tyrosinase activity than sheep with CC genotype in the all investigated samples. Moreover, there was significant effect of MC1R genotype on coat color, suggesting that MC1R gene could affect coat color but not black traits. There would be merit in further studies using molecular techniques to elucidate the cause of black traits in these Black-boned sheep.
Collapse
Affiliation(s)
- W D Deng
- Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science, Yunnan Agricultural University, Kunming, China
| | | | | | | | | |
Collapse
|
104
|
Yamaguchi Y, Passeron T, Hoashi T, Watabe H, Rouzaud F, Yasumoto KI, Hara T, Tohyama C, Katayama I, Miki T, Hearing VJ. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. FASEB J 2007; 22:1009-20. [PMID: 17984176 DOI: 10.1096/fj.07-9475com] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidermis (containing primarily keratinocytes and melanocytes) overlies the dermis (containing primarily fibroblasts) of human skin. We previously reported that dickkopf 1 (DKK1) secreted by fibroblasts in the dermis elicits the hypopigmented phenotype of palmoplantar skin due to suppression of melanocyte function and growth via the regulation of two important signaling factors, microphthalmia-associated transcription factor (MITF) and beta-catenin. We now report that treatment of keratinocytes with DKK1 increases their proliferation and decreases their uptake of melanin and that treatment of reconstructed skin with DKK1 induces a thicker and less pigmented epidermis. DNA microarray analysis revealed many genes regulated by DKK1, and several with critical expression patterns were validated by reverse transcriptase-polymerase chain reaction and Western blotting. DKK1 induced the expression of keratin 9 and alpha-Kelch-like ECT2 interacting protein (alphaKLEIP) but down-regulated the expression of beta-catenin, glycogen synthase kinase 3beta, protein kinase C, and proteinase-activated receptor-2 (PAR-2), which is consistent with the expression patterns of those proteins in human palmoplantar skin. Treatment of reconstructed skin with DKK1 reproduced the expression patterns of those key proteins observed in palmoplantar skin. These findings further elucidate why human skin is thicker and paler on the palms and soles than on the trunk through topographical and site-specific differences in the secretion of DKK1 by dermal fibroblasts that affects the overlying epidermis.
Collapse
Affiliation(s)
- Yuji Yamaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Raposo G, Marks MS. Melanosomes--dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 2007; 8:786-97. [PMID: 17878918 PMCID: PMC2786984 DOI: 10.1038/nrm2258] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France.
| | | |
Collapse
|
106
|
Riemann H, Takao J, Shellman YG, Hines WA, Edwards CK, Franzusoff A, Norris DA, Fujita M. Generation of a prophylactic melanoma vaccine using whole recombinant yeast expressing MART-1. Exp Dermatol 2007; 16:814-22. [PMID: 17845213 DOI: 10.1111/j.1600-0625.2007.00599.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malignant melanoma is a potentially deadly form of skin cancer and people at high-risk of developing melanoma will benefit from effective preventive intervention. Yeast can be used as an efficient vehicle of antigen loading and immunostimulation. Saccharomyces cerevisiae is not pathogenic to humans and can be easily engineered to express specific antigens. In this study, we have developed a melanoma vaccine using a yeast-based platform expressing a full-length melanocyte/melanoma protein to investigate its utility as a prophylactic melanoma vaccine in a transplantable mouse melanoma model. Yeast was engineered and expanded in vitro without technical difficulties, administered easily with subcutaneous injection, and did not show adverse effects, indicating its practical applicability and favourable safety profile. Despite the lack of knowledge of dominant epitopes of the protein recognized by mouse MHC-class I, the vaccine protected mice from tumor development and induced efficient immune responses, suggesting that the precise knowledge of epitopic sequences and the matched HLA type is not required when delivering a full-length protein using the yeast platform. In addition, the vaccine stimulated both CD4(+) T cells and CD8(+) T cells simultaneously. This study provides a 'proof of principle' that recombinant yeast can be utilized as an effective prophylactic vaccine to target patients at high-risk for melanoma.
Collapse
Affiliation(s)
- Helge Riemann
- Department of Dermatology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Ram M, Shoenfeld Y. Harnessing Autoimmunity (Vitiligo) to Treat Melanoma: A Myth or Reality? Ann N Y Acad Sci 2007; 1110:410-25. [PMID: 17911456 DOI: 10.1196/annals.1423.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Melanoma is a highly malignant tumor derived from skin melanocytes (pigment-producing cells), which is associated with a significant rate of systemic metastases and death. Various therapeutic approaches for melanoma have been attempted in recent years, including the use of chemotherapy, immunotherapy, and ablative surgical and radiation treatments. However, in many cases these treatments fail as the tumor becomes resistant to the treatment and rapidly spreads and causes death. Reports in the medical literature have documented the unique immunogenic nature of melanoma where antigens, antibodies, and immune complexes seem to play a major role in the course of the disease. Anti-melanoma antibodies can cross-react with antigens on normal melanocytes, therefore causing the appearance of an associated hypopigmentation that resembles vitiligo. Vitiligo is a dermatological disorder characterized by local, dispersed, or diffuse white patches on the skin as a result of the destruction of melanocytes. This disease is believed to be an autoimmune disorder since autoantibodies against membrane components of melanocytes are found in the sera of patients with vitiligo. Melanoma triggers an anti-tumor response in many patients. Unfortunately, such anti-tumor response is insufficient to elicit tumor regression and the tumor continues to proliferate. Since the prognosis of melanoma in patients and animals with vitiligo is more favorable than in the general population, it was hypothesized that sera from patients with vitiligo may react against melanoma cells. Such studies have demonstrated that exposure of tumor cells to the sera resulted in inhibition of proliferation of the melanoma cells in vitro and in regression of melanoma metastases in mice presumably on account of the presence of the high titer of anti-melanoma antibodies in the sera used in these studies. In this review we discuss the known data and hypothetical assumptions related to the use of vitiligo-associated antibodies against melanoma, as well as characterize the immune mechanisms involved in this process.
Collapse
Affiliation(s)
- Maya Ram
- Center for Autoimmune Diseases, Department of Medicine B, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | |
Collapse
|
108
|
Wiltz KL, Qureshi H, Patterson JW, Mayes DC, Wick MR. Immunostaining for MART-1 in the interpretation of problematic intra-epidermal pigmented lesions. J Cutan Pathol 2007; 34:601-5. [PMID: 17640229 DOI: 10.1111/j.1600-0560.2006.00673.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histopathologic distinction between pigmented actinic keratosis (PAK) and atypical junctional melanocytic proliferations (AJMP) is a common problem, and it is one with meaningful clinical significance. Previous publications have suggested that Melanocyte Antigen Related to T-cells-1 (MART-1)--a melanocytic marker related to host immune response--was not useful in making this interpretative separation. To revisit that assertion, the authors selected 68 specimens that concerned the diagnosis of PAK vs. AJMP. The degree of morphologic difficulty attached to each case was rated semiquantitatively using a three-tiered scale, and interpretative problems were caused by cytologic similarity between atypical keratinocytes and aberrant melanocytes, obscuring lichenoid inflammation, subepidermal fibrosis, and an absence of clearly defined cell nests at the dermoepidermal junction. Each biopsy sample was immunostained for MART-1 (using antibody clone A103) with azure-B counterstaining; the principal criterion for a diagnosis of AJMP was that of confluent cellular positivity over at least 1 high-power (x400) microscopic field, in conjunction with nested cell growth. The specimens were then re-examined diagnostically. Immunostaining definitely improved interpretative certitude in 65 examples (96% effectiveness); the final diagnosis was that of PAK for 21 lesions and AJMP for 47. Three specimens--all of which represented AJMP--did not benefit by MART-1 staining. It is concluded that MART-1 immunostaining with azure-B counterstaining is a useful adjunct in the interpretation of problematic intra-epidermal pigmented lesions.
Collapse
Affiliation(s)
- Katy L Wiltz
- Division of Surgical Pathology and Cytopathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
109
|
Deng WD, Xi DM, Gou X, Yang SL, Shi XW, Mao HM. Pigmentation in Black-boned sheep (Ovis aries): association with polymorphism of the Tyrosinase gene. Mol Biol Rep 2007; 35:379-85. [PMID: 17520341 DOI: 10.1007/s11033-007-9097-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
Measurements were made in Black-boned (n = 40) and normal (n = 23) sheep (Ovis aries) from a flock in Nanping County of Yunnan Province, China, as well as a group (n = 21) of Romney Marsh sheep (O. aries) with the view to explaining the basis of the dark pigmentation occurring in the Black-boned animals. Plasma colour was significantly darker (P < 0.01) in Black-boned sheep than in their normal flock mates, which in turn had significantly darker plasma (P < 0.01) than the Romney Marsh sheep. Similar significant (P < 0.01) differences were measured for plasma tyrosinase activity and both groups of sheep from Nanping County had similar plasma concentrations of glutathione which were significantly smaller (P < 0.01) than for the Romney Marsh sheep.A partial fragment of 750 bp of exon 1 of the gene encoding tyrosinase was constructed and found to contain two silent mutation sites (G192C and C462T) but there was no effect on amino acid sequences of tyrosinase. Using restriction fragment length polymorphism analyses two allelic variants of site G192C were identified giving rise to the genotypes GG, GC and CC; the frequencies of allele G being 0.914, 0.824 and 0.286 in the Black-boned sheep, their flock mates and the Romney Marsh sheep respectively. Plasma tyrosinase activity was similar for genotypes GG and GC and for both genotypes significantly higher (P < 0.05) than for genotype CC. The sheep from Nanping County displayed only the GG and GC genotypes and had predominantly black or black and white coat colour whereas the Romney Marsh sheep were of either genotype GC or CC and exhibited only white coat colouration. It is not appears that the dark pigmentation of the Black-boned sheep arises because of polymorphisms in the exon 1 of tyrosinase gene. However, this result could explain the differences between Black-boned and Romney Marsh sheep but not for differences between Black-boned and Nanping Normal sheep. Moreover, this result has provided evidence of genetic markers in the form of polymorphisms of the tyrosinase gene which may help to find the black traits causing mutations. There would be merit in further studies using histochemical and molecular techniques to elucidate the causes of the dark pigmentation in these Black-boned sheep.
Collapse
Affiliation(s)
- W D Deng
- Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | | | | | | | | | | |
Collapse
|
110
|
Marshall JC, Nantel A, Blanco P, Ash J, Cruess SR, Burnier MN. Transcriptional profiling of human uveal melanoma from cell lines to intraocular tumors to metastasis. Clin Exp Metastasis 2007; 24:353-62. [PMID: 17487557 DOI: 10.1007/s10585-007-9072-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
Uveal melanoma is the most common primary intraocular tumor in adults and exclusively disseminates haematogenously in order to form metastases. The aim of this study was to measure the transcriptional profiles of human uveal melanoma cells isolated from a primary intraocular tumor, circulating malignant cells (CMCs), and metastases in order to elucidate the changes in gene expression associated with this progression. Human EST microarrays and universal reference RNA were used to measure the differences between tissue samples isolated from an immunosuppressed xenograft rabbit model of uveal melanoma. Cells were isolated from a single rabbit at the time of sacrifice from an intraocular tumor, peripheral blood, and metastasis. RNA was extracted from each sample and subjected to transcriptional profiling analysis. Results were compared to the transcriptional profiles previously obtained from the original cell line used for intraocular injections. Changes were verified using real-time PCR analysis. A total of 314 significant changes in gene expression were seen from the intraocular tumor to metastasis, as determined by transcript abundance. Principle Components Analysis was used to cluster these changes into four distinct groups. An additional 61 statistically significant changes were observed between the recultured and CMCs, with the latter believed to represent an intermediate step in the progression from intraocular tumor to metastasis. In conclusion, we have produced a detailed analysis of the transcriptional changes that take place as human uveal melanoma cells evolve from a primary tumor to metastasis in a xenograft animal model, including the decrease in expression of specific melanoma markers.
Collapse
Affiliation(s)
- Jean-Claude Marshall
- The Henry C. Witelson Ocular Pathology Laboratory and Registry, McGill University, 3775 University Street, Lyman Duff Building, Room 216, Montreal, QC, Canada, H3A 2B4.
| | | | | | | | | | | |
Collapse
|
111
|
Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid--from bacteria to humans. Trends Biochem Sci 2007; 32:217-24. [PMID: 17412596 DOI: 10.1016/j.tibs.2007.03.003] [Citation(s) in RCA: 819] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/08/2007] [Accepted: 03/21/2007] [Indexed: 01/22/2023]
Abstract
Amyloid--a fibrillar, cross beta-sheet quaternary structure--was first discovered in the context of human disease and tissue damage, and was thought to always be detrimental to the host. Recent studies have identified amyloid fibers in bacteria, fungi, insects, invertebrates and humans that are functional. For example, human Pmel17 has important roles in the biosynthesis of the pigment melanin, and the factor XII protein of the hemostatic system is activated by amyloid. Functional amyloidogenesis in these systems requires tight regulation to avoid toxicity. A greater understanding of the diverse physiological applications of this fold has the potential to provide a fresh perspective for the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Douglas M Fowler
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
112
|
Reissmann M, Bierwolf J, Brockmann GA. Two SNPs in the SILV gene are associated with silver coat colour in ponies. Anim Genet 2007; 38:1-6. [PMID: 17257181 DOI: 10.1111/j.1365-2052.2006.01553.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In horses, a pigment dilution acting only on black eumelanin is the so-called silver coat colour, which is characterized by a chocolate-to-reddish body with a white mane and tail. Using information from other species, we focused our study on SILV as a possible candidate gene for the equine silver phenotype. A 1559-bp genomic fragment was sequenced in 24 horses, and five SNPs were detected. Two of the five SNPs (DQ665301:g.697A>T and DQ665301:g.1457C>T) were genotyped in 112 horses representing eight colour phenotypes. Both mutations were completely associated with the silver phenotype: all eumelanin-producing horses (blacks and bays) with atypical white mane and tail were carriers of the [g.697T; g.1457T] haplotype. We identified this haplotype as well as the silver phenotype only in Shetland ponies and Icelandic horses. Horses without eumelanin (chestnuts) were carriers of the [g.697T; g.1457T] haplotype, but they showed no phenotypic effect. The white or flaxen mane often detected in chestnuts is presumably based on another SILV mutation or on polymorphisms in other genes.
Collapse
Affiliation(s)
- M Reissmann
- Breeding Biology and Molecular Genetics, Institute for Animal Sciences, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
113
|
Passeron T, Coelho SG, Miyamura Y, Takahashi K, Hearing VJ. Immunohistochemistry and in situ hybridization in the study of human skin melanocytes. Exp Dermatol 2007; 16:162-70. [PMID: 17286807 DOI: 10.1111/j.1600-0625.2006.00538.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although keratinocytes are the most numerous type of cell in the skin, melanocytes are also key players as they produce and distribute melanin that protects the skin from ultraviolet (UV) radiation. In vitro experiments on melanocytic cell lines are useful to study melanogenesis and their progression towards melanoma. However, interactions of melanocytes with keratinocytes and with other types of cells in the skin, such as fibroblasts and Langerhans cells, are also crucial. We describe two techniques, immunohistochemistry (IHC) and tissue in situ hybridization (TISH), that can be used to identify and study melanocytes in the skin and their responses to UV or other stimuli in situ. We describe a practical method to localize melanocytic antigens on formalin-fixed, paraffin-embedded tissue sections and in frozen sections using indirect immunofluorescence with conjugated secondary antibodies. In addition, we detail the use of TISH and its combination with IHC to study mRNA levels of genes expressed in the skin at cellular resolution. This methodology, along with relevant tips and troubleshooting items, are important tools to identify and study melanocytes in the skin.
Collapse
Affiliation(s)
- Thierry Passeron
- Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
114
|
Valencia JC, Rouzaud F, Julien S, Chen KG, Passeron T, Yamaguchi Y, Abu-Asab M, Tsokos M, Costin GE, Yamaguchi H, Jenkins LMM, Nagashima K, Appella E, Hearing VJ. Sialylated core 1 O-glycans influence the sorting of Pmel17/gp100 and determine its capacity to form fibrils. J Biol Chem 2007; 282:11266-80. [PMID: 17303571 DOI: 10.1074/jbc.m608449200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pmel17 is a melanocyte/melanoma-specific protein that is essential for the maturation of melanosomes to form mature, fibrillar, and pigmented organelles. Recently, we reported that the less glycosylated form of Pmel17 (termed iPmel17) is sorted via the plasma membrane in a manner distinct from mature Pmel17 (termed mPmel17), which is sorted directly to melanosomes. To clarify the mechanism(s) underlying the distinct processing and sorting of Pmel17, we generated a highly specific antibody (termed alphaPEP25h) against an epitope within the repeat domain of Pmel17 that is sensitive to changes in O-glycosylation. alphaPEP25h recognizes only iPmel17 and allows analysis of the processing and sorting of iPmel17 when compared with alphaPEP13h, an antibody that recognizes both iPmel17 and mPmel17. Our novel findings using alphaPEP25h demonstrate that iPmel17 differs from mPmel17 not only in its sensitivity to endoglycosidase H, but also in the content of core 1 O-glycans modified with sialic acid. This evidence reveals that iPmel17 is glycosylated differently in the Golgi and that it is sorted through the secretory pathway. Analysis of Pmel17 processing in glycosylation-deficient mutant cells reveals that Pmel17 lacking the correct addition of sialic acid and galactose loses the ability to form fibrils. Furthermore, we show that addition of sialic acid affects the stability and sorting of Pmel17 and reduces pigmentation. Alterations in sialyltransferase activity and substrates differ between normal and transformed melanocytes and may represent a critical change during malignant transformation.
Collapse
Affiliation(s)
- Julio C Valencia
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Yamaguchi Y, Passeron T, Watabe H, Yasumoto KI, Rouzaud F, Hoashi T, Hearing VJ. The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: mechanisms underlying its suppression of melanocyte function and proliferation. J Invest Dermatol 2006; 127:1217-25. [PMID: 17159916 DOI: 10.1038/sj.jid.5700629] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dickkopf 1 (DKK1), which is expressed at high mRNA levels by fibroblasts in the dermis of human skin on the palms and soles, inhibits the function and proliferation of melanocytes in the epidermis of those areas via the suppression of beta-catenin and microphthalmia-associated transcription factor (MITF). In this study, we investigated the protein expression levels of DKK1 between palmoplantar and non-palmoplantar areas and the effects of DKK1 on melanocyte gene expression profiles and on Wnt signaling pathways using DNA microarray technology, reverse transcriptase-PCR, Western blot, 3-dimensional reconstructed skin, immunocytochemistry, and immunohistochemistry. DKK1-responsive genes included those encoding proteins involved in the regulation of melanocyte development, growth, differentiation, and apoptosis (including Kremen 1, G-coupled receptor 51, lipoprotein receptor-related protein 6, low-density lipoprotein receptor, tumor necrosis factor receptor super-family 10, growth arrest and DNA-damage-inducible gene 45beta, and MITF). Of special interest was the rapid decrease in expression of MITF in melanocytes treated with DKK1, which is concurrent with the decreased activities of beta-catenin and of glucose-synthase kinase 3beta via phosphorylation at Ser9 and with the upregulated expression of protein kinase C alpha. These results further clarify the mechanism by which DKK1 suppresses melanocyte density and differentiation, and help explain why DKK1-rich palmoplantar epidermis is paler than non-palmoplantar epidermis via mesenchymal-epithelial interactions.
Collapse
Affiliation(s)
- Yuji Yamaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
Valencia JC, Hoashi T, Pawelek JM, Solano F, Hearing VJ. Pmel17: controversial indeed but critical to melanocyte function. ACTA ACUST UNITED AC 2006; 19:250-2; author reply 253-7. [PMID: 16704461 DOI: 10.1111/j.1600-0749.2006.00308.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
117
|
Lopes L, Fletcher K, Ikeda Y, Collins M. Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 2006; 55:1011-6. [PMID: 16311731 PMCID: PMC11030885 DOI: 10.1007/s00262-005-0095-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 10/25/2005] [Indexed: 11/24/2022]
Abstract
Therapeutic cancer vaccines need to stimulate a refractory immune system to make an effective anti-tumour response. We have explored the use of lentiviral vectors to deliver tumour antigen genes to dendritic cells (DC) as a possible mechanism of immune stimulation. Direct injection of a lentiviral vector encoding the melanoma antigen NY-ESO-1 in HLA-A2 transgenic mice primed NY-ESO-1-specific CD8+ cells that could be expanded by boosting with an NY-ESO-1 vaccinia virus. The expanded cells could kill NY-ESO-1(157-165) peptide-pulsed targets in vivo. In order to examine the priming step directly, we constructed another lentiviral vector expressing the melanoma antigen Melan-A (MART-1). Here we show that Melan-A protein is also efficiently expressed after transduction of human DC cultured from peripheral blood mononuclear cells. When these transduced DC are co-cultured with autologous naïve T cells, they cause the expansion of cells that recognise the HLA-A2 restricted Melan-A(27-35) epitope. The expanded cells are functional in that they release IFN-gamma upon antigen stimulation. Melan-A lentiviral vector transduced DC caused a similar level of naïve T-cell expansion to Melan-A(27-35) peptide-pulsed DC in four experiments using different HLA-A2 positive donors. These data suggest that a vaccine based either on DC transduced with a lentiviral vector ex vivo, or on direct lentiviral vector injection, should be assessed in a phase I clinical trial.
Collapse
Affiliation(s)
- Luciene Lopes
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| | - Kate Fletcher
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| | - Yasuhiro Ikeda
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| | - Mary Collins
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| |
Collapse
|
118
|
Hoashi T, Muller J, Vieira WD, Rouzaud F, Kikuchi K, Tamaki K, Hearing VJ. The Repeat Domain of the Melanosomal Matrix Protein PMEL17/GP100 Is Required for the Formation of Organellar Fibers. J Biol Chem 2006; 281:21198-21208. [PMID: 16682408 DOI: 10.1074/jbc.m601643200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over 125 pigmentation-related genes have been identified to date. Of those, PMEL17/GP100 has been widely studied as a melanoma-specific antigen as well as a protein required for the formation of fibrils in melanosomes. PMEL17 is synthesized, glycosylated, processed, and delivered to melanosomes, allowing them to mature from amorphous round vesicles to elongated fibrillar structures. In contrast to other melanosomal proteins such as TYR and TYRP1, the processing and sorting of PMEL17 is highly complex. Monoclonal antibody HMB45 is commonly used for melanoma detection, but has the added advantage that it specifically reacts with sialylated PMEL17 in the fibrillar matrix in melanosomes. In this study, we generated mutant forms of PMEL17 to clarify the subdomain of PMEL17 required for formation of the fibrillar matrix, a process critical to pigmentation. The internal proline/serine/threonine-rich repeat domain (called the RPT domain) of PMEL17 undergoes variable proteolytic cleavage. Deletion of the RPT domain abolished its recognition by HMB45 and its capacity to form fibrils. Truncation of the C-terminal domain did not significantly affect the processing or trafficking of PMEL17, but, in contrast, deletion of the N-terminal domain abrogated both. We conclude that the RPT domain is essential for its function in generating the fibrillar matrix of melanosomes and that the luminal domain is necessary for its correct processing and trafficking to those organelles.
Collapse
Affiliation(s)
- Toshihiko Hoashi
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256; Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| | - Jacqueline Muller
- Division of Viral Products, Food and Drug Administration, Rockville, Maryland 20852
| | - Wilfred D Vieira
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Francois Rouzaud
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Kanako Kikuchi
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kunihiko Tamaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Vincent J Hearing
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256.
| |
Collapse
|
119
|
Oyarbide-Valencia K, van den Boorn JG, Denman CJ, Li M, Carlson JM, Hernandez C, Nishimura MI, Das PK, Luiten RM, Le Poole IC. Therapeutic implications of autoimmune vitiligo T cells. Autoimmun Rev 2006; 5:486-92. [PMID: 16920575 PMCID: PMC3462656 DOI: 10.1016/j.autrev.2006.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/21/2006] [Indexed: 02/08/2023]
Abstract
Vitiligo is an autoimmune disease presenting with progressive loss of skin pigmentation. The disease strikes 1% of the world population, generally during teenage years. The progressive loss of melanocytes from depigmenting vitiligo skin is accompanied by cellular infiltrates containing both CD4+ and CD8+ T lymphocytes. Infiltrating cytotoxic T cells with high affinity T cell receptors have likely escaped clonal deletion in the thymus, allowing such T cells to enter the circulation. Through the expression of CLA, these T cells home to the skin where they express type 1-cytokine profiles and mediate melanocyte apoptosis via the granzyme/perforin pathway. T cells found juxtapositionally apposed to remaining melanocytes can be isolated from the skin. Vitiligo T cells have demonstrated reactivity to antigens previously recognized as target antigens for T cells infiltrating melanoma tumors. In a comparison to existing melanoma-derived T cells, vitiligo T cells displayed superior reactivity towards melanoma cells. It is thought that genes encoding the TCRs expressed by vitiligo skin infiltrating T cells can be cloned and expressed in melanoma T cells, thereby generating a pool of circulating T cells with high affinity for their targets that can re-direct the immune response towards the tumor.
Collapse
Affiliation(s)
- Kepa Oyarbide-Valencia
- Department of Pathology/Oncology Institute, Loyola University Chicago, 2160 South First Ave, Bldg 112, Rm 203, Maywood, IL 60153, USA
| | - Jasper G. van den Boorn
- Department of Dermatology and The Netherlands Institute for Pigment Disorders (SNIP), University of Amsterdam, The Netherlands
| | - Cecele J. Denman
- Department of Pathology/Oncology Institute, Loyola University Chicago, 2160 South First Ave, Bldg 112, Rm 203, Maywood, IL 60153, USA
| | - Mingli Li
- Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Jeremy M. Carlson
- Department of Pathology/Oncology Institute, Loyola University Chicago, 2160 South First Ave, Bldg 112, Rm 203, Maywood, IL 60153, USA
| | | | | | - Pranab K. Das
- Department of Pathology, University of Amsterdam, The Netherlands
| | - Rosalie M. Luiten
- Department of Dermatology and The Netherlands Institute for Pigment Disorders (SNIP), University of Amsterdam, The Netherlands
| | - I. Caroline Le Poole
- Department of Pathology/Oncology Institute, Loyola University Chicago, 2160 South First Ave, Bldg 112, Rm 203, Maywood, IL 60153, USA
- *Corresponding author. Tel.: +1 708 327 2032; fax: +1 708 327 3138. E-mail address: (I.C. Le Poole)
| |
Collapse
|
120
|
Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol 2006; 4:e6. [PMID: 16300414 PMCID: PMC1288039 DOI: 10.1371/journal.pbio.0040006] [Citation(s) in RCA: 592] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/31/2005] [Indexed: 11/19/2022] Open
Abstract
Amyloid is a generally insoluble, fibrous cross-β sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin—a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology. The authors show that native Pmel17 amyloid found in mammalian melanosomes accelerates melanin synthesis.
Collapse
Affiliation(s)
- Douglas M Fowler
- 1 Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Atanas V Koulov
- 2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christelle Alory-Jost
- 2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael S Marks
- 3 Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William E Balch
- 2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffery W Kelly
- 1 Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
121
|
Steingrímsson E, Copeland NG, Jenkins NA. Mouse coat color mutations: From fancy mice to functional genomics. Dev Dyn 2006; 235:2401-11. [PMID: 16691561 DOI: 10.1002/dvdy.20840] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mouse coat color mutations have a long history in biomedical research. The viable and visible phenotype of most coat color mutations has made the pigment cell, the melanocyte, an ideal system for genetic, molecular, and cellular analysis. Molecular cloning and analysis of many of the different coat color mutations have revealed the roles of a diverse range of genes, and today we know more about the pathways and proteins that regulate the development and function of pigment cells than we know about most other cell types in mammalian organisms. Coat color mutations have also provided novel insights into stem cell biology and human diseases, including melanoma. In the future, it will be important to build on this history and knowledge by taking advantage of the extensive repertoire of recently developed genome-wide methodologies, available genomic information, and the powerful methods that have been developed for modifying the mouse genome to systematically dissect the development and function of this important cell type. The usefulness of coat color mutations has just begun to emerge.
Collapse
Affiliation(s)
- Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.
| | | | | |
Collapse
|
122
|
Berens W, Van Den Bossche K, Yoon TJ, Westbroek W, Valencia JC, Out CJ, Naeyaert JM, Hearing VJ, Lambert J. Different approaches for assaying melanosome transfer. ACTA ACUST UNITED AC 2005; 18:370-81. [PMID: 16162177 PMCID: PMC1360235 DOI: 10.1111/j.1600-0749.2005.00263.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many approaches have been tried to establish assays for melanosome transfer to keratinocytes. In this report, we describe and summarize various novel attempts to label melanosomes in search of a reliable, specific, reproducible and quantitative assay system. We tried to fluorescently label melanosomes by transfection of GFP-labeled melanosomal proteins and by incubation of melanocytes with fluorescent melanin intermediates or homologues. In most cases a weak cytoplasmic fluorescence was perceived, which was probably because of incorrect sorting or deficient incorporation of the fluorescent protein and different localization. We were able to label melanosomes via incorporation of 14C-thiouracil into melanin. Consequently, we tried to develop an assay to separate keratinocytes with transferred radioactivity from melanocytes after co-culture. Differential trypsinization and different magnetic bead separation techniques were tested with unsatisfactory results. An attempt was also made to incorporate fluorescent thiouracil, since this would allow cells to be separated by FACS. In conclusion, different methods to measure pigment transfer between donor melanocytes and acceptor keratinocytes were thoroughly examined. This information could give other researchers a head start in the search for a melanosome transfer assay with said qualities to better understand pigment transfer.
Collapse
Affiliation(s)
- Werner Berens
- Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Tae-Jin Yoon
- Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Dermatology, Gyeongsang National University Hospital, Chinju, Korea
| | - Wendy Westbroek
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, Gent, Belgium
| | - Julio C. Valencia
- Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Coby J. Out
- Department of Dermatology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jean Marie Naeyaert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, Gent, Belgium
| | - Vincent J. Hearing
- Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, Gent, Belgium
- Address Correspondence to: Dr. Jo Lambert, Department of Dermatology, University Hospital, De Pintelaan 185, Gent, 9000 Belgium, Phone: +32 (9) 240-2298, Fax: +32 (9) 240-4996, E-mail:
| |
Collapse
|
123
|
Theos AC, Truschel ST, Raposo G, Marks MS. The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. ACTA ACUST UNITED AC 2005; 18:322-36. [PMID: 16162173 PMCID: PMC2788625 DOI: 10.1111/j.1600-0749.2005.00269.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mouse coat color mutants have led to the identification of more than 120 genes that encode proteins involved in all aspects of pigmentation, from the regulation of melanocyte development and differentiation to the transcriptional activation of pigment genes, from the enzymatic formation of pigment to the control of melanosome biogenesis and movement [Bennett and Lamoreux (2003) Pigment Cell Res. 16, 333]. One of the more perplexing of the identified mouse pigment genes is encoded at the Silver locus, first identified by Dunn and Thigpen [(1930) J. Heredity 21, 495] as responsible for a recessive coat color dilution that worsened with age on black backgrounds. The product of the Silver gene has since been discovered numerous times in different contexts, including the initial search for the tyrosinase gene, the characterization of major melanosome constituents in various species, and the identification of tumor-associated antigens from melanoma patients. Each discoverer provided a distinct name: Pmel17, gp100, gp95, gp85, ME20, RPE1, SILV and MMP115 among others. Although all its functions are unlikely to have yet been fully described, the protein clearly plays a central role in the biogenesis of the early stages of the pigment organelle, the melanosome, in birds, and mammals. As such, we will refer to the protein in this review simply as pre-melanosomal protein (Pmel). This review will summarize the structural and functional aspects of Pmel and its role in melanosome biogenesis.
Collapse
Affiliation(s)
- Alexander C. Theos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven T. Truschel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Graça Raposo
- Institut Curie, Centre National de la Recherche Scientifique, UMR-144, Paris Cedex, France
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Address correspondence to Michael S. Marks,
| |
Collapse
|
124
|
Liu SQ, Alkema PK, Tieché C, Tefft BJ, Liu DZ, Li YC, Sumpio BE, Caprini JA, Paniagua M. Negative regulation of monocyte adhesion to arterial elastic laminae by signal regulatory protein alpha and Src homology 2 domain-containing protein-tyrosine phosphatase-1. J Biol Chem 2005; 280:39294-301. [PMID: 16159885 DOI: 10.1074/jbc.m503866200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastic laminae are extracellular matrix constituents that not only contribute to the stability and elasticity of arteries but also play a role in regulating arterial morphogenesis and pathogenesis. We demonstrate here that an important function of arterial elastic laminae is to prevent monocyte adhesion, which is mediated by the inhibitory receptor signal regulatory protein (SIRP) alpha and Src homology 2 domain-containing protein-tyrosine phosphatase (SHP)-1. In a matrix-based arterial reconstruction model in vivo, elastic laminae were resistant to leukocyte adhesion and transmigration compared with the collagen-dominant arterial adventitia. The density of leukocytes within the elastic lamina-dominant media was about 58-70-fold lower than that within the adventitia from 1 to 30 days. An in vitro assay confirmed the inhibitory effect of elastic laminae on monocyte adhesion. The exposure of monocytes to elastic laminae induced activation of SIRP alpha, which in turn activated SHP-1. Elastic lamina degradation peptides extracted from arterial specimens could also activate SIRP alpha and SHP-1. The knockdown of SIRP alpha and SHP-1 by specific small interfering RNA diminished the inhibitory effect of elastic laminae, resulting in a significant increase in monocyte adhesion. These observations suggest that SIRP alpha and SHP-1 potentially mediate the inhibitory effect of elastic laminae on monocyte adhesion.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208-3107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|