101
|
Reno EM, Haughian JM, Dimitrova IK, Jackson TA, Shroyer KR, Bradford AP. Analysis of protein kinase C delta (PKC delta) expression in endometrial tumors. Hum Pathol 2007; 39:21-9. [PMID: 17959229 DOI: 10.1016/j.humpath.2007.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/03/2007] [Accepted: 05/29/2007] [Indexed: 01/16/2023]
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States. However, its underlying molecular mechanisms are poorly understood; and few prognostic indicators have been identified. The protein kinase C (PKC) family has been shown to regulate pathways critical to malignant transformation; and in endometrial tumors, changes in PKC expression and activity have been linked to a more aggressive phenotype and poor prognosis. We have recently shown that PKC delta is a critical regulator of apoptosis and cell survival in endometrial cancer cells; however, PKC delta levels in endometrial tumors had not been determined. We used immunohistochemistry to examine PKC delta protein levels in normal endometrium and endometrioid carcinomas of increasing grade. Normal endometrium exhibited abundant nuclear and cytoplasmic staining of PKC delta confined to glandular epithelium. In endometrial tumors, decreased PKC delta expression, both in intensity and fraction of epithelial cells stained, was observed with increasing tumor grade, with PKC delta being preferentially lost from the nucleus. Consistent with these observations, endometrial cancer cell lines derived from poorly differentiated tumors exhibited reduced PKC delta levels relative to well-differentiated lines. Treatment of endometrial cancer cells with etoposide resulted in a translocation of PKC delta from cytoplasm to nucleus concomitant with induction of apoptosis. Decreased PKC delta expression, particularly in the nucleus, may compromise the ability of cells to undergo apoptosis, perhaps conferring resistance to chemotherapy. Our results indicate that loss of PKC delta is an indicator of endometrial malignancy and increasing grade of cancer. Thus, PKC delta may function as a tumor suppressor in endometrial cancer.
Collapse
Affiliation(s)
- Elaine M Reno
- Department of Obstetrics and Gynecology, Program in Reproductive Sciences, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
102
|
Podar K, Raab MS, Chauhan D, Anderson KC. The therapeutic role of targeting protein kinase C in solid and hematologic malignancies. Expert Opin Investig Drugs 2007; 16:1693-707. [PMID: 17922632 DOI: 10.1517/13543784.16.10.1693] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The protein kinase C (PKC) family, the most prominent target of tumor-promoting phorbol esters, is functionally linked to cell differentiation, growth, survival, migration and tumorigenesis and so mediates tumor cell proliferation, survival, multidrug resistance, invasion, metastasis and tumor angiogenesis. Therefore, targeting PKC isozymes may represent an attractive target for novel anticancer therapies. Recent preclinical and clinical studies using the macrocyclic bisindolylmaleimide enzastaurin or the N-benzylstaurosporine midostaurin demonstrate promising activity of PKC inhibitors in a variety of tumors, including diffuse large B-cell lymphoma, multiple myeloma and Waldenstroem's macroglobulinemia. However, our knowledge of PKCs in tumorigenesis is still only partial and each PKC isoform may contribute to tumorigenesis in a distinct way. Specifically, PKC isoforms have vastly different roles, which vary depending on expression levels of organ and tissue distribution, cell type, intracellular localization, protein-protein and lipid-protein interactions and the biologic environment. Although PKC activation generally positively affects tumor cell growth, motility, invasion and metastasis, recent reports show that many PKCs can also have negative effects. Therefore, it is necessary to further dissect the relative contribution of PKC isozymes in the development and progression of specific tumors in order to identify therapeutic opportunities, using either PKC inhibitors or PKC activators.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
103
|
Solodukhin AS, Kretsinger RH, Sando JJ. Initial three-dimensional reconstructions of protein kinase C δ from two-dimensional crystals on lipid monolayers. Cell Signal 2007; 19:2035-45. [PMID: 17604605 DOI: 10.1016/j.cellsig.2007.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/22/2007] [Accepted: 05/25/2007] [Indexed: 01/06/2023]
Abstract
Two-dimensional crystals of protein kinase C delta (PKCdelta) and of its regulatory domain (RDdelta) were grown on lipid monolayers and analyzed by electron microscopy at tilt angles varying from -50 degrees to +55 degrees. Although the crystals exhibit pseudo-3-fold symmetry, analysis of difference phase residuals indicates that there is only one way to align the crystals for merging so the data were processed in plane group P1. Three-dimensional reconstructions generated for several two-dimensional crystals each of PKCdelta and RDdelta show good agreement and are consistent with membrane attachment via a single C1 subdomain, a small surface contact by one or two loops from the C2 domain, and, in intact PKCdelta, a small appendage from the catalytic domain, probably V5. Two-dimensional crystallography with three-dimensional reconstruction should be suitable for examination of additional PKC isozymes and for analysis of the enzymes bound to substrates and other proteins.
Collapse
|
104
|
Clavijo C, Chen JL, Kim KJ, Reyland ME, Ann DK. Protein kinase Cdelta-dependent and -independent signaling in genotoxic response to treatment of desferroxamine, a hypoxia-mimetic agent. Am J Physiol Cell Physiol 2007; 292:C2150-60. [PMID: 17563398 DOI: 10.1152/ajpcell.00425.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein kinase C (PKC) plays a critical role in diseases such as cancer, stroke, and cardiac ischemia and participates in a variety of signal transduction pathways including apoptosis, cell proliferation, and tumor suppression. Here, we demonstrate that PKCdelta is proteolytically cleaved and translocated to the nucleus in a time-dependent manner on treatment of desferroxamine (DFO), a hypoxia-mimetic agent. Specific knockdown of the endogenous PKCdelta by RNAi (sh-PKCdelta) or expression of the kinase-dead (Lys376Arg) mutant of PKCdelta (PKCdeltaKD) conferred modulation on the cellular adaptive responses to DFO treatment. Notably, the time-dependent accumulation of DFO-induced phosphorylation of Ser-139-H2AX (gamma-H2AX), a hallmark for DNA damage, was altered by sh-PKCdelta, and sh-PKCdelta completely abrogated the activation of caspase-3 in DFO-treated cells. Expression of Lys376Arg-mutated PKCdelta-enhanced green fluorescent protein (EGFP) appears to abrogate DFO/hypoxia-induced activation of endogenous PKCdelta and caspase-3, suggesting that PKCdeltaKD-EGFP serves a dominant-negative function. Additionally, DFO treatment also led to the activation of Chk1, p53, and Akt, where DFO-induced activation of p53, Chk1, and Akt occurred in both PKCdelta-dependent and -independent manners. In summary, these findings suggest that the activation of a PKCdelta-mediated signaling network is one of the critical contributing factors involved in fine-tuning of the DNA damage response to DFO treatment.
Collapse
Affiliation(s)
- Carlos Clavijo
- Department of Molecular Pharmacology, University of Southern California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
105
|
Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T. Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol 2007; 133:793-808. [PMID: 17661083 DOI: 10.1007/s00432-007-0280-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 07/03/2007] [Indexed: 12/28/2022]
Abstract
The protein kinase C (PKC) family represents a large group of phospholipid dependent enzymes catalyzing the covalent transfer of phosphate from ATP to serine and threonine residues of proteins. Phosphorylation of the substrate proteins induces a conformational change resulting in modification of their functional properties. The PKC family consists of at least ten members, divided into three subgroups: classical PKCs (alpha, betaI, betaII, gamma), novel PKCs (delta, epsilon, eta, theta), and atypical PKCs (zeta, iota/lambda). The specific cofactor requirements, tissue distribution, and cellular compartmentalization suggest differential functions and fine tuning of specific signaling cascades for each isoform. Thus, specific stimuli can lead to differential responses via isoform specific PKC signaling regulated by their expression, localization, and phosphorylation status in particular biological settings. PKC isoforms are activated by a variety of extracellular signals and, in turn, modify the activities of cellular proteins including receptors, enzymes, cytoskeletal proteins, and transcription factors. Accordingly, the PKC family plays a central role in cellular signal processing. Accumulating data suggest that various PKC isoforms participate in the regulation of cell proliferation, differentiation, survival and death. These findings have enabled identification of abnormalities in PKC isoform function, as they occur in several cancers. Specifically, the initiation of squamous cell carcinoma formation and progression to the malignant phenotype was found to be associated with distinct changes in PKC expression, activation, distribution, and phosphorylation. These studies were recently further extended to transgenic and knockout animals, which allowed a more direct analysis of individual PKC functions. Accordingly, this review is focused on the involvement of PKC in physiology and pathology of the skin.
Collapse
Affiliation(s)
- D Breitkreutz
- Division of Differentiation and Carcinogenesis (A080/A110), German Cancer Research Center (DKFZ), POB 101949, Im Neuenheimer Feld 280, 69009, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
106
|
Durgan J, Michael N, Totty N, Parker PJ. Novel phosphorylation site markers of protein kinase C delta activation. FEBS Lett 2007; 581:3377-81. [PMID: 17603046 DOI: 10.1016/j.febslet.2007.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/15/2007] [Indexed: 01/23/2023]
Abstract
Protein kinase C delta (PKCdelta) is a Ser/Thr kinase which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. Here, we demonstrate that PKCdelta undergoes in vitro autophosphorylation at three sites within its V3 region (S299, S302, S304), each of which is unique to this PKC isoform and evolutionarily conserved. We demonstrate that S299 and S304 can be phosphorylated in mammalian cells following phorbol ester stimulation and that S299-phosphorylated PKCdelta is localised to both the plasma and nuclear membranes. These data indicate that PKCdelta is phosphorylated upon activation and that phospho-S299 represents a useful marker of the activated enzyme.
Collapse
Affiliation(s)
- Joanne Durgan
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK
| | | | | | | |
Collapse
|
107
|
Gomel R, Xiang C, Finniss S, Lee HK, Lu W, Okhrimenko H, Brodie C. The Localization of Protein Kinase Cδ in Different Subcellular Sites Affects Its Proapoptotic and Antiapoptotic Functions and the Activation of Distinct Downstream Signaling Pathways. Mol Cancer Res 2007; 5:627-39. [PMID: 17579121 DOI: 10.1158/1541-7786.mcr-06-0255] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase Cdelta (PKCdelta) regulates cell apoptosis and survival in diverse cellular systems. PKCdelta translocates to different subcellular sites in response to apoptotic stimuli; however, the role of its subcellular localization in its proapoptotic and antiapoptotic functions is just beginning to be understood. Here, we used a PKCdelta constitutively active mutant targeted to the cytosol, nucleus, mitochondria, and endoplasmic reticulum (ER) and examined whether the subcellular localization of PKCdelta affects its apoptotic and survival functions. PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc induced cell apoptosis, whereas no apoptosis was observed with the PKCdelta-ER. PKCdelta-Cyto and PKCdelta-Mito underwent cleavage, whereas no cleavage was observed in the PKCdelta-Nuc and PKCdelta-ER. Similarly, caspase-3 activity was increased in cells overexpressing PKCdelta-Cyto and PKCdelta-Mito. In contrast to the apoptotic effects of the PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc, the PKCdelta-ER protected the cells from tumor necrosis factor-related apoptosis-inducing ligand-induced and etoposide-induced apoptosis. Moreover, overexpression of a PKCdelta kinase-dead mutant targeted to the ER abrogated the protective effect of the endogenous PKCdelta and increased tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. The localization of PKCdelta differentially affected the activation of downstream signaling pathways. PKCdelta-Cyto increased the phosphorylation of p38 and decreased the phosphorylation of AKT and the expression of X-linked inhibitor of apoptosis protein, whereas PKCdelta-Nuc increased c-Jun NH(2)-terminal kinase phosphorylation. Moreover, p38 phosphorylation and the decrease in X-linked inhibitor of apoptosis protein expression played a role in the apoptotic effect of PKCdelta-Cyto, whereas c-Jun NH(2)-terminal kinase activation mediated the apoptotic effect of PKCdelta-Nuc. Our results indicate that the subcellular localization of PKCdelta plays important roles in its proapoptotic and antiapoptotic functions and in the activation of downstream signaling pathways.
Collapse
Affiliation(s)
- Ruth Gomel
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
DeVries-Seimon TA, Ohm AM, Humphries MJ, Reyland ME. Induction of apoptosis is driven by nuclear retention of protein kinase C delta. J Biol Chem 2007; 282:22307-14. [PMID: 17562707 DOI: 10.1074/jbc.m703661200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein kinase C delta (PKC delta) mediates apoptosis downstream of many apoptotic stimuli. Because of its ubiquitous expression, tight regulation of the proapoptotic function of PKC delta is critical for cell survival. Full-length PKC delta is found in all cells, whereas the catalytic fragment of PKC delta, generated by caspase cleavage, is only present in cells undergoing apoptosis. Here we show that full-length PKC delta transiently accumulates in the nucleus in response to etoposide and that nuclear translocation precedes caspase cleavage of PKC delta. Nuclear PKC delta is either cleaved by caspase 3, resulting in accumulation of the catalytic fragment in the nucleus, or rapidly exported by a Crm1-sensitive pathway, thereby assuring that sustained nuclear accumulation of PKC delta is coupled to caspase activation. Nuclear accumulation of PKC delta is necessary for caspase cleavage, as mutants of PKC delta that do not translocate to the nucleus are not cleaved. However, caspase cleavage of PKC delta per se is not required for apoptosis, as an uncleavable form of PKC delta induces apoptosis when retained in the nucleus by the addition of an SV-40 nuclear localization signal. Finally, we show that kinase negative full-length PKC delta does not translocate to the nucleus in apoptotic cells but instead inhibits apoptosis by blocking nuclear import of endogenous PKC delta. These studies demonstrate that generation of the PKC delta catalytic fragment is a critical step for commitment to apoptosis and that nuclear import and export of PKC delta plays a key role in regulating the survival/death pathway.
Collapse
|
109
|
Abstract
Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used Aplysia as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented physiological roles for PKC in synaptic plasticity in this system. In particular, we have shown that distinct isoforms mediate distinct types of synaptic plasticity induced by the same neurotransmitter: The novel calcium-independent PKC Apl II is required for actions mediated by serotonin (5-HT) alone, while the classical calcium-dependent PKC Apl I is required for actions mediated when 5-HT is coupled to activity. We will discuss the reasons for PKC isoform specificity, assess the tools used to uncover isoform specificity, and discuss the implications of isoform specificity for understanding the roles of PKC in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
110
|
Abstract
Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes - effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters - have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
111
|
Zeidan YH, Hannun YA. Activation of Acid Sphingomyelinase by Protein Kinase Cδ-mediated Phosphorylation. J Biol Chem 2007; 282:11549-61. [PMID: 17303575 DOI: 10.1074/jbc.m609424200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although important for cellular stress signaling pathways, the molecular mechanisms of acid sphingomyelinase (ASMase) activation remain poorly understood. Previous studies showed that treatment of MCF-7 mammary carcinoma cells with the potent protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate (PMA), induces a transient drop in sphingomyelin concomitant with an increase in cellular ceramide levels (Becker, K. P., Kitatani, K., Idkowiak-Baldys, J., Bielawski, J., and Hannun, Y. A. (2005) J. Biol. Chem. 280, 2606-2612). Here we show that PMA selectively activates ASMase and that ASMase accounts for the majority of PMA-induced ceramide. Pharmacologic inhibition and RNA interference experiments indicated that the novel PKC, PKCdelta, is required for ASMase activation. Immunoprecipitation experiments revealed the formation of a novel PKCdelta-ASMase complex after PMA stimulation, and PKCdelta was able to phosphorylate ASMase in vitro and in cells. Using site-directed mutagenesis, we identify serine 508 as the key residue phosphorylated in response to PMA. Phosphorylation of Ser(508) proved to be an indispensable step for ASMase activation and membrane translocation in response to PMA. The relevance of the proposed mechanism of ASMase regulation is further validated in a model of UV radiation. UV radiation also induced phosphorylation of ASMase at serine 508. Moreover, when transiently overexpressed, ASMase(S508A) blocked the ceramide formation after PMA treatment, suggesting a dominant negative function for this mutant. Taken together, these results establish a novel direct biochemical mechanism for ASMase activation in which PKCdelta serves as a key upstream kinase.
Collapse
Affiliation(s)
- Youssef H Zeidan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
112
|
Cañibano C, Rodriguez NL, Saez C, Tovar S, Garcia-Lavandeira M, Borrello MG, Vidal A, Costantini F, Japon M, Dieguez C, Alvarez CV. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J 2007; 26:2015-28. [PMID: 17380130 PMCID: PMC1852774 DOI: 10.1038/sj.emboj.7601636] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 02/07/2007] [Indexed: 01/27/2023] Open
Abstract
Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.
Collapse
Affiliation(s)
- Carmen Cañibano
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Noela L Rodriguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Saez
- Department of Pathology, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Sulay Tovar
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Montse Garcia-Lavandeira
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Anxo Vidal
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | - Miguel Japon
- Department of Pathology, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Carlos Dieguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Clara V Alvarez
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Physiology, School of Medicine, University of Santiago de Compostela, c/San Francisco s/n, 15782 Santiago de Compostela, Spain. Tel.: +34981582658; Fax: +34981574145; E-mail:
| |
Collapse
|
113
|
Salem M, Kenney PB, Rexroad CE, Yao J. Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics 2006; 28:33-45. [PMID: 16882886 DOI: 10.1152/physiolgenomics.00114.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy is a physiological response to diverse physiological and pathological conditions that trigger muscle deterioration through specific cellular mechanisms. Despite different signals, the biochemical changes in atrophying muscle share many common cascades. Muscle deterioration as a physiological response to the energetic demands of fish vitellogenesis represents a unique model for studying the mechanisms of muscle degradation in non-mammalian animals. A salmonid microarray, containing 16,006 cDNAs, was used to study the transcriptome response to atrophy of fast-switch muscles from gravid rainbow trout compared with sterile fish. Eighty-two unique transcripts were upregulated and 120 transcripts were downregulated in atrophying muscles. Transcripts having gene ontology identifiers were grouped according to their functions. Muscle deterioration was associated with elevated expression of genes involved in the catheptic and collagenase proteolytic pathways; the aerobic production, buffering, and utilization of ATP; and growth arrest; whereas atrophying muscle showed downregulation of genes encoding a serine proteinase inhibitor, enzymes of anaerobic respiration, muscle proteins as well as genes required for RNA and protein biosynthesis/processing. Therefore, gene transcription of the trout muscle atrophy changed in a manner similar to mammalian muscle atrophy. These changes result in an arrest of normal cell growth, protein degradation, and decreased glycolytic cellular respiration that is characteristic of the fast-switch muscle. For the first time, other changes/mechanisms unique to fish were discussed including genes associated with muscle atrophy.
Collapse
Affiliation(s)
- Mohamed Salem
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | |
Collapse
|