101
|
Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, van der Wel PCA. The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 2011; 133:4558-66. [PMID: 21381744 DOI: 10.1021/ja110715f] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 17-residue N-terminus (htt(NT)) directly flanking the polyQ sequence in huntingtin (htt) N-terminal fragments plays a crucial role in initiating and accelerating the aggregation process that is associated with Huntington's disease pathogenesis. Here we report on magic-angle-spinning solid-state NMR studies of the amyloid-like aggregates of an htt N-terminal fragment. We find that the polyQ portion of this peptide exists in a rigid, dehydrated amyloid core that is structurally similar to simpler polyQ fibrils and may contain antiparallel β-sheets. In contrast, the htt(NT) sequence in the aggregates is composed in part of a well-defined helix, which likely also exists in early oligomeric aggregates. Further NMR experiments demonstrate that the N-terminal helical segment displays increased dynamics and water exposure. Given its specific contribution to the initiation, rate, and mechanism of fibril formation, the helical nature of htt(NT) and its apparent lack of effect on the polyQ fibril core structure seem surprising. The results provide new details about these disease-associated aggregates and also provide a clear example of an amino acid sequence that greatly enhances the rate of amyloid formation while itself not taking part in the amyloid structure. There is an interesting mechanistic analogy to recent reports pointing out the early-stage contributions of transient intermolecular helix-helix interactions in the aggregation behavior of various other amyloid fibrils.
Collapse
Affiliation(s)
- V N Sivanandam
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
102
|
Castillo V, Espargaró A, Gordo V, Vendrell J, Ventura S. Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Proteomics 2011; 10:4172-85. [PMID: 21086517 DOI: 10.1002/pmic.201000260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The formation of insoluble deposits by globular proteins underlies the onset of many human diseases. Recent studies suggest a relationship between the thermodynamic stability of proteins and their in vivo aggregation. However, it has been argued that, in the cell, the occurrence of irreversible aggregation might shift the system from equilibrium, in such a way that it could be the rate of unfolding and associated kinetic stability instead of the conformational stability that controls protein deposition. This is an important but difficult to decipher question, because kinetic and thermodynamic stabilities appear usually correlated. Here we address this issue by comparing the in vitro folding kinetics and stability features of a set of non-natural SH3 domains with their aggregation properties when expressed in bacteria. In addition, we compare the in vitro stability of the isolated domains with their effective stability in conditions that mimic the cytosolic environment. Overall, the data argue in favor of a thermodynamic rather than a kinetic control of the intracellular aggregation propensities of small globular proteins in which folding and unfolding velocities largely exceed aggregation rates. These results have implications regarding the evolution of proteins.
Collapse
Affiliation(s)
- Virginia Castillo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | | | |
Collapse
|
103
|
Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 2011; 18:328-36. [PMID: 21317897 PMCID: PMC3075957 DOI: 10.1038/nsmb.1992] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/24/2010] [Indexed: 01/29/2023]
Abstract
Since polyglutamine (polyQ) aggregate formation has been implicated as playing an important role in expanded CAG repeat diseases, it is important to understand the biophysics underlying the initiation of aggregation. Previously we showed that relatively long polyQ peptides aggregate by nucleated growth polymerization and a monomeric critical nucleus. We show here that, over a short repeat length range from Q26 to Q23, the size of the critical nucleus for aggregation increases from monomeric to dimeric to tetrameric. This variation in nucleus size suggests a common duplex anti-parallel β-sheet framework for the nucleus, and further supports the feasibility of an organized monomeric aggregation nucleus for longer polyQ repeat peptides. The data also suggest that a change in aggregation nucleus size may play a role in the pathogenicity of polyQ expansion in this series of familial neurodegenerative diseases.
Collapse
|
104
|
Jayaraman M, Thakur AK, Kar K, Kodali R, Wetzel R. Assays for studying nucleated aggregation of polyglutamine proteins. Methods 2011; 53:246-54. [PMID: 21232603 DOI: 10.1016/j.ymeth.2011.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/18/2023] Open
Abstract
The aggregation of polyglutamine containing protein sequences is implicated in a family of familial neurodegenerative diseases, the expanded CAG repeat diseases. While the cellular aggregation process undoubtedly depends on the flux and local environment of these proteins, their intrinsic physical properties and folding/aggregation propensities must also contribute to their cellular behavior. Here we describe a series of methods for determining mechanistic details of the spontaneous aggregation of polyQ-containing sequences, including the identification and structural examination of aggregation intermediates.
Collapse
Affiliation(s)
- Murali Jayaraman
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
105
|
Reinke AA, Abulwerdi GA, Gestwicki JE. Quantifying prefibrillar amyloids in vitro by using a "thioflavin-like" spectroscopic method. Chembiochem 2011; 11:1889-95. [PMID: 20677203 DOI: 10.1002/cbic.201000358] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In Alzheimer's disease (AD) and other neurodegenerative disorders, proteins accumulate into ordered aggregates, called amyloids. Recent evidence suggests that these structures include both large, insoluble fibrils and smaller, prefibrillar structures, such as dimers, oligomers, and protofibrils. Recently, focus has shifted to the prefibrillar aggregates because they are highly neurotoxic and their levels appear to correlate with cognitive impairment. Thus, there is interest in finding methods for specifically quantifying these structures. One of the classic ways of detecting amyloid formation is through the fluorescence of the benzothiazole dye, thioflavin T (ThT). This reagent has been a "workhorse" of the amyloid field because it is robust and inexpensive. However, one of its limitations is that it does not distinguish between prefibrillar and fibrillar aggregates. We screened a library of 37 indoles for those that selectively change fluorescence in the presence of prefibrillar amyloid-beta (Abeta). From this process, we selected the most promising example, tryptophanol (TROL), to use in a quantitative "thioflavin-like" assay. Using this probe in combination with electron microscopy, we found that prefibrils are largely depleted during Abeta aggregation in vitro but that they remain present after the apparent saturation of the ThT signal. These results suggest that a combination of TROL and ThT provides greater insight into the process of amyloid formation by Abeta. In addition, we found that TROL also recognizes other amyloid-prone proteins, including ataxin-3, amylin, and CsgA. Thus, this assay might be an inexpensive spectroscopic method for quantifying amyloid prefibrils in vitro.
Collapse
Affiliation(s)
- Ashley A Reinke
- Department of Pathology, University of Michigan, 4000 Life Sciences Institute, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | | | | |
Collapse
|
106
|
Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010; 5:e15245. [PMID: 21209946 PMCID: PMC3011017 DOI: 10.1371/journal.pone.0015245] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt. METHODOLOGY/PRINCIPAL FINDINGS When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs. CONCLUSIONS/SIGNIFICANCE Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
107
|
Robertson AL, Bate MA, Androulakis SG, Bottomley SP, Buckle AM. PolyQ: a database describing the sequence and domain context of polyglutamine repeats in proteins. Nucleic Acids Res 2010; 39:D272-6. [PMID: 21059684 PMCID: PMC3013692 DOI: 10.1093/nar/gkq1100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The polyglutamine diseases are caused in part by a gain-of-function mechanism of neuronal toxicity involving protein conformational changes that result in the formation and deposition of β-sheet rich aggregates. Recent evidence suggests that the misfolding mechanism is context-dependent, and that properties of the host protein, including the domain architecture and location of the repeat tract, can modulate aggregation. In order to allow the bioinformatic investigation of the context of polyglutamines, we have constructed a database, PolyQ (http://pxgrid.med.monash.edu.au/polyq). We have collected the sequences of all human proteins containing runs of seven or more glutamine residues and annotated their sequences with domain information. PolyQ can be interrogated such that the sequence context of polyglutamine repeats in disease and non-disease associated proteins can be investigated.
Collapse
Affiliation(s)
- Amy L Robertson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
108
|
Harris GM, Dodelzon K, Gong L, Gonzalez-Alegre P, Paulson HL. Splice isoforms of the polyglutamine disease protein ataxin-3 exhibit similar enzymatic yet different aggregation properties. PLoS One 2010; 5:e13695. [PMID: 21060878 PMCID: PMC2965175 DOI: 10.1371/journal.pone.0013695] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/07/2010] [Indexed: 11/20/2022] Open
Abstract
Protein context clearly influences neurotoxicity in polyglutamine diseases, but the contribution of alternative splicing to this phenomenon has rarely been investigated. Ataxin-3, a deubiquitinating enzyme and the disease protein in SCA3, is alternatively spliced to encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif (termed 2UIM and 3UIM isoforms, respectively). In light of emerging insights into ataxin-3 function, we examined the significance of this splice variation. We confirmed neural expression of several minor 5′ variants and both of the known 3′ ataxin-3 splice variants. Regardless of polyglutamine expansion, 3UIM ataxin-3 is the predominant isoform in brain. Although 2UIM and 3UIM ataxin-3 display similar in vitro deubiquitinating activity, 2UIM ataxin-3 is more prone to aggregate and more rapidly degraded by the proteasome. Our data demonstrate how alternative splicing of sequences distinct from the trinucleotide repeat can alter properties of the encoded polyglutamine disease protein and thereby perhaps contribute to selective neurotoxicity.
Collapse
Affiliation(s)
- Ginny Marie Harris
- Graduate Program in Molecular and Cellular Biology and Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Katerina Dodelzon
- University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Lijie Gong
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pedro Gonzalez-Alegre
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
109
|
Hands SL, Wyttenbach A. Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 2010; 120:419-37. [PMID: 20514488 DOI: 10.1007/s00401-010-0703-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/20/2010] [Accepted: 05/23/2010] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are associated with a CAG/polyQ expansion mutation in unrelated proteins. Upon elongation of the glutamine tract, disease proteins aggregate within cells, mainly in the central nervous system (CNS) and this aggregation process is associated with neurotoxicity. However, it remains unclear to what extent and how this aggregation causes neuronal dysfunction in the CNS. Aiming at preventing neuronal dysfunction, it will be crucial to determine the links between aggregation and cellular dysfunction, understand the folding pathway of polyQ proteins and discover the relative neurotoxicity of polyQ protein species formed along the aggregation pathway. Here, we review what is known about conformations of polyQ peptides and proteins in their monomeric state from experimental and modelling data, how conformational changes of polyQ proteins relate to their oligomerisation and morphology of aggregates and which cellular function are impaired by oligomers, in vitro and in vivo. We also summarise the key modulatory cellular mechanisms and co-factors, which could affect the folding pathway and kinetics of polyQ aggregation. Although many studies have investigated the relationship between polyQ aggregation and toxicity, these have mainly focussed on investigating changes in the formation of the classical hallmark of polyQ diseases, i.e. microscopically visible inclusion bodies. However, recent studies in which oligomeric species have been considered start to shed light on the identity of neurotoxic oligomeric species. Initial evidence suggests that conformational changes induced by polyQ expansions and their surrounding sequence lead to the formation of particular oligomeric intermediates that may differentially affect neurotoxicity.
Collapse
Affiliation(s)
- Sarah L Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | | |
Collapse
|
110
|
Masino L, Nicastro G, Calder L, Vendruscolo M, Pastore A. Functional interactions as a survival strategy against abnormal aggregation. FASEB J 2010; 25:45-54. [PMID: 20810784 PMCID: PMC3005437 DOI: 10.1096/fj.10-161208] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions. Ataxin-3, the protein responsible for Spinocerebellar ataxia type 3, a polyglutamine expansion disease, represents one of such examples. Polyglutamine expansion is central for determining solubility and aggregation rates of ataxin-3, but these properties are profoundly modulated by its N-terminal Josephin domain. This work aims at identifying the regions that promote Josephin fibrillogenesis and rationalizing the mechanisms that protect Josephin and nonexpanded ataxin-3 from aberrant aggregation. Using different biophysical techniques, aggregation propensity predictions and rational design of amino acid substitutions, we show that Josephin has an intrinsic tendency to fibrillize under native conditions and that fibrillization is promoted by two solvent-exposed patches, which are also involved in recognition of natural substrates, such as ubiquitin. Indeed, designed mutations at these patches or substrate binding significantly reduce Josephin aggregation kinetics. Our results provide evidence that protein nonpathologic function can play an active role in preventing aberrant fibrillization and suggest the molecular mechanism whereby this occurs in ataxin-3.—Masino, L., Nicastro, G., Calder, L., Vendruscolo, M., Pastore, A. Functional interactions as a survival strategy against abnormal aggregation.
Collapse
Affiliation(s)
- Laura Masino
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
111
|
Nicastro G, Todi SV, Karaca E, Bonvin AMJJ, Paulson HL, Pastore A. Understanding the role of the Josephin domain in the PolyUb binding and cleavage properties of ataxin-3. PLoS One 2010; 5:e12430. [PMID: 20865150 PMCID: PMC2928749 DOI: 10.1371/journal.pone.0012430] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Sokol V. Todi
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ezgi Karaca
- Science Faculty, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Science Faculty, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Annalisa Pastore
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
- * E-mail:
| |
Collapse
|
112
|
Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, Bottomley SP. Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 2010; 107:10424-9. [PMID: 20484674 PMCID: PMC2890844 DOI: 10.1073/pnas.0914773107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Small heat-shock proteins (sHsps) are molecular chaperones that play an important protective role against cellular protein misfolding by interacting with partially unfolded proteins on their off-folding pathway, preventing their aggregation. Polyglutamine (polyQ) repeat expansion leads to the formation of fibrillar protein aggregates and neuronal cell death in nine diseases, including Huntington disease and the spinocerebellar ataxias (SCAs). There is evidence that sHsps have a role in suppression of polyQ-induced neurodegeneration; for example, the sHsp alphaB-crystallin (alphaB-c) has been identified as a suppressor of SCA3 toxicity in a Drosophila model. However, the molecular mechanism for this suppression is unknown. In this study we tested the ability of alphaB-c to suppress the aggregation of a polyQ protein. We found that alphaB-c does not inhibit the formation of SDS-insoluble polyQ fibrils. We further tested the effect of alphaB-c on the aggregation of ataxin-3, a polyQ protein that aggregates via a two-stage aggregation mechanism. The first stage involves association of the N-terminal Josephin domain followed by polyQ-mediated interactions and the formation of SDS-resistant mature fibrils. Our data show that alphaB-c potently inhibits the first stage of ataxin-3 aggregation; however, the second polyQ-dependent stage can still proceed. By using NMR spectroscopy, we have determined that alphaB-c interacts with an extensive region on the surface of the Josephin domain. These data provide an example of a domain/region flanking an amyloidogenic sequence that has a critical role in modulating aggregation of a polypeptide and plays a role in the interaction with molecular chaperones to prevent this aggregation.
Collapse
Affiliation(s)
- Amy L. Robertson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stephen J. Headey
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Helen M. Saunders
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia; and
| | - Martin J. Scanlon
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - John A. Carver
- School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Stephen P. Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
113
|
Knaupp AS, Levina V, Robertson AL, Pearce MC, Bottomley SP. Kinetic Instability of the Serpin Z α1-Antitrypsin Promotes Aggregation. J Mol Biol 2010; 396:375-83. [PMID: 19944704 DOI: 10.1016/j.jmb.2009.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Anja S Knaupp
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
114
|
Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009; 110:1737-65. [PMID: 19650870 DOI: 10.1111/j.1471-4159.2009.06302.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expansion of CAG trinucleotide repeat within the coding region of several genes results in the production of proteins with expanded polyglutamine (PolyQ) stretch. The expression of these pathogenic proteins leads to PolyQ diseases, such as Huntington's disease or several types of spinocerebellar ataxias. This family of neurodegenerative disorders is characterized by constant progression of the symptoms and molecularly, by the accumulation of mutant proteins inside neurons causing their dysfunction and eventually death. So far, no effective therapy actually preventing the physical and/or mental decline has been developed. Experimental therapeutic strategies either target the levels or processing of mutant proteins in an attempt to prevent cellular deterioration, or they are aimed at the downstream pathologic effects to reverse or ameliorate the caused damages. Certain pathomechanistic aspects of PolyQ disorders are discussed here. Relevance of disease models and recent knowledge of therapeutic possibilities is reviewed and updated.
Collapse
Affiliation(s)
- Peter O Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | | |
Collapse
|
115
|
Saunders HM, Bottomley SP. Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins. Protein Eng Des Sel 2009; 22:447-51. [DOI: 10.1093/protein/gzp033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
116
|
Stawoska I, Wesełucha-Birczyńska A, Regonesi ME, Riva M, Tortora P, Stochel G. Interaction of selected divalent metal ions with human ataxin-3 Q36. J Biol Inorg Chem 2009; 14:1175-85. [DOI: 10.1007/s00775-009-0561-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 06/18/2009] [Indexed: 11/24/2022]
|
117
|
Bernacki JP, Murphy RM. Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 2009; 96:2871-87. [PMID: 19348769 DOI: 10.1016/j.bpj.2008.12.3903] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 12/11/2022] Open
Abstract
Given the importance of protein aggregation in amyloid diseases and in the manufacture of protein pharmaceuticals, there has been increased interest in measuring and modeling the kinetics of protein aggregation. Several groups have analyzed aggregation data quantitatively, typically measuring aggregation kinetics by following the loss of protein monomer over time and invoking a nucleated growth mechanism. Such analysis has led to mechanistic conclusions about the size and nature of the nucleus, the aggregation pathway, and/or the physicochemical properties of aggregation-prone proteins. We have examined some of the difficulties that arise when extracting mechanistic meaning from monomer-loss kinetic data. Using literature data on the aggregation of polyglutamine, a mutant beta-clam protein, and protein L, we determined parameter values for 18 different kinetic models. We developed a statistical model discrimination method to analyze protein aggregation data in light of competing mechanisms; a key feature of the method is that it penalizes overparameterization. We show that, for typical monomer-loss kinetic data, multiple models provide equivalent fits, making mechanistic determination impossible. We also define the type and quality of experimental data needed to make more definitive conclusions about the mechanism of aggregation. Specifically, we demonstrate how direct measurement of fibril size provides robust discrimination.
Collapse
Affiliation(s)
- Joseph P Bernacki
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
118
|
Kvam E, Nannenga BL, Wang MS, Jia Z, Sierks MR, Messer A. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One 2009; 4:e5727. [PMID: 19492089 PMCID: PMC2683928 DOI: 10.1371/journal.pone.0005727] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/29/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes. METHODOLOGY/PRINCIPAL FINDINGS Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains. CONCLUSIONS/SIGNIFICANCE These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases.
Collapse
Affiliation(s)
- Erik Kvam
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
| | - Brent L. Nannenga
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Min S. Wang
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Zongjian Jia
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Michael R. Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Anne Messer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
| |
Collapse
|
119
|
Knaupp AS, Bottomley SP. Serpin polymerization and its role in disease--the molecular basis of alpha1-antitrypsin deficiency. IUBMB Life 2009; 61:1-5. [PMID: 18785256 DOI: 10.1002/iub.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein aggregation is the cause of several human diseases. Understanding the molecular mechanisms involved in protein aggregation requires knowledge of the kinetics and structures populated during the reaction. Arguably, the best structurally characterized misfolding reaction is that of alpha(1)-antitrypsin. Alpha(1)-antitrypsin misfolding leads to both liver disease and emphysema and affect approximately 1 in 2000 of the population. This review will focus on the mechanism of alpha(1)-antitrypsin misfolding and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Anja S Knaupp
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
120
|
Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009; 16:380-9. [PMID: 19270701 PMCID: PMC2706102 DOI: 10.1038/nsmb.1570] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 01/30/2009] [Indexed: 11/08/2022]
Abstract
Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17-amino-acid flanking sequence (HTT(NT)) N-terminal to the polyQ in the toxic huntingtin exon 1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation, the HTT(NT) peptide is a compact coil that resists aggregation. When polyQ is fused to this sequence, it induces in HTT(NT), in a repeat-length dependent fashion, a more extended conformation that greatly enhances its aggregation into globular oligomers with HTT(NT) cores and exposed polyQ. In a second step, a new, amyloid-like aggregate is formed with a core composed of both HTT(NT) and polyQ. The results indicate unprecedented complexity in how primary sequence controls aggregation within a substantially disordered peptide and have implications for the molecular mechanism of Huntington's disease.
Collapse
|
121
|
Williams AJ, Knutson TM, Colomer Gould VF, Paulson HL. In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol Dis 2009; 33:342-53. [PMID: 19084066 PMCID: PMC2662361 DOI: 10.1016/j.nbd.2008.10.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/23/2008] [Indexed: 01/13/2023] Open
Abstract
Perturbations in neuronal protein homeostasis likely contribute to disease pathogenesis in polyglutamine (polyQ) neurodegenerative disorders. Here we provide evidence that the co-chaperone and ubiquitin ligase, CHIP (C-terminus of Hsp70-interacting protein), is a central component to the homeostatic mechanisms countering toxic polyQ proteins in the brain. Genetic reduction or elimination of CHIP accelerates disease in transgenic mice expressing polyQ-expanded ataxin-3, the disease protein in Spinocerebellar Ataxia Type 3 (SCA3). In parallel, CHIP reduction markedly increases the level of ataxin-3 microaggregates, which partition in the soluble fraction of brain lysates yet are resistant to dissociation with denaturing detergent, and which precede the appearance of inclusions. The level of microaggregates in the CNS, but not of ataxin-3 monomer, correlates with disease severity. Additional cell-based studies suggest that either of two quality control ubiquitin ligases, CHIP or E4B, can reduce steady state levels of expanded, but not wild-type, ataxin-3. Our results support an aggregation model of polyQ disease pathogenesis in which ataxin-3 microaggregates are a neurotoxic species, and suggest that enhancing CHIP activity is a possible route to therapy for SCA3 and other polyQ diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Graduate Program in Neuroscience and Medical Scientist Training Program, University of Iowa, 2206 MERF, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
122
|
Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 2009; 28:372-82. [PMID: 19153604 DOI: 10.1038/emboj.2008.289] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/15/2008] [Indexed: 11/09/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) control the ubiquitination status of proteins in various cellular pathways. Regulation of the activity of DUBs, which is critically important to cellular homoeostasis, can be achieved at the level of gene expression, protein complex formation, or degradation. Here, we report that ubiquitination also directly regulates the activity of a DUB, ataxin-3, a polyglutamine disease protein implicated in protein quality control pathways. Ubiquitination enhances ubiquitin (Ub) chain cleavage by ataxin-3, but does not alter its preference for K63-linked Ub chains. In cells, ubiquitination of endogenous ataxin-3 increases when the proteasome is inhibited, when excess Ub is present, or when the unfolded protein response is induced, suggesting that the cellular functions of ataxin-3 in protein quality control are modulated through ubiquitination. Ataxin-3 is the first reported DUB in which ubiquitination directly regulates catalytic activity. We propose a new function for protein ubiquitination in regulating the activity of certain DUBs and perhaps other enzymes.
Collapse
Affiliation(s)
- Sokol V Todi
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
123
|
Hatters DM. Protein misfolding inside cells: the case of huntingtin and Huntington's disease. IUBMB Life 2009; 60:724-8. [PMID: 18756529 DOI: 10.1002/iub.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Huntington's disease is one of the several neurodegenerative diseases caused by dominant mutations that expand the number of glutamine codons within an existing poly-glutamine (polyQ) repeat sequence of a gene. An expanded polyQ sequence in the huntingtin gene is known to cause the huntingtin protein to aggregate and form intracellular inclusions as disease progresses. However, the role that polyQ-induced aggregation plays in disease is yet to be fully determined. This review focuses on key questions remaining for how the expanded polyQ sequences affect the aggregation properties of the huntingtin protein and the corresponding effects on cellular machinery. The scope includes the technical challenges that remain for rigorously assessing the effects of aggregation on the cellular machinery.
Collapse
Affiliation(s)
- Danny M Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
124
|
Jia NL, Fei EK, Ying Z, Wang HF, Wang GH. PolyQ-expanded ataxin-3 interacts with full-length ataxin-3 in a polyQ length-dependent manner. Neurosci Bull 2008; 24:201-8. [PMID: 18668148 DOI: 10.1007/s12264-008-0326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a dominant neurodegenerative disorder caused by an expansion of the polyglutamine (polyQ) tract in MJD-1 gene product, ataxin-3 (AT3). This disease is characterized by the formation of intraneuronal inclusions, but the mechanism underlying their formation is still poorly understood. The present study is to explore the relationship between wild type (WT) AT3 and polyQ expanded AT3. METHODS Mouse neuroblastoma (N2a) cells or HEK293 cells were co-transfected with WT AT3 and different truncated forms of expanded AT3. The expressions of WT AT3 and the truncated forms of expanded AT3 were detected by Western blotting, and observed by an inverted fluorescent microscope. The interactions between AT3 and different truncated forms of expanded AT3 were detected by immunoprecipitation and GST pull-down assays. RESULTS Using fluorescent microscope, we observed that the truncated forms of expanded AT3 aggregate in transfected cells, and the full-length WT AT3 is recruited onto the aggregates. However, no aggregates were observed in cells transfected with the truncated forms of WT AT3. Immunoprecipitation and GST pull-down analyses indicate that WT AT3 interacts with the truncated AT3 in a polyQ length-dependent manner. CONCLUSION WT AT3 deposits in the aggregation that was formed by polyQ expanded AT3, which suggests that the formation of AT3 aggregation may affect the normal function of WT AT3 and increase polyQ protein toxicity in MJD.
Collapse
Affiliation(s)
- Na-Li Jia
- Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
125
|
Abstract
Polyglutamine (polyQ) expansion leads to protein aggregation and neurodegeneration in Huntington's disease and eight other inherited neurological conditions. Expansion of the polyQ tract beyond a threshold of 37 glutamines leads to the formation of toxic nuclear aggregates. This suggests that polyQ expansion causes a conformational change within the protein, the nature of which is unclear. There is a trend in the disease proteins that the polyQ tract is located external to but not within a structured domain. We have created a model polyQ protein in which the repeat location mimics the flexible environment of the polyQ tract in the disease proteins. Our model protein recapitulates the aggregation features observed with the clinical proteins and allows structural characterization. With the use of NMR spectroscopy and a range of biophysical techniques, we demonstrate that polyQ expansion into the pathological range has no effect on the structure, dynamics, and stability of a domain adjacent to the polyQ tract. To explore the clinical significance of repeat location, we engineered a variant of the model protein with a polyQ tract within the domain, a location that does not mimic physiological context, demonstrating significant destabilization and structural perturbation. These different effects highlight the importance of repeat location. We conclude that protein misfolding within the polyQ tract itself is the driving force behind the key characteristics of polyQ disease, and that structural perturbation of flanking domains is not required.
Collapse
|
126
|
Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proc Natl Acad Sci U S A 2008; 105:14424-9. [PMID: 18796612 DOI: 10.1073/pnas.0803086105] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A key issue in understanding the pathogenic conditions associated with the aberrant aggregation of misfolded proteins is the identification and characterization of species formed during the aggregation process. Probing the nature of such species has, however, proved to be extremely challenging to conventional techniques because of their transient and heterogeneous character. We describe here the application of a two-color single-molecule fluorescence technique to examine the assembly of oligomeric species formed during the aggregation of the SH3 domain of PI3 kinase. The single-molecule experiments show that the species formed at the stage of the reaction where aggregates have previously been found to be maximally cytotoxic are a heterogeneous ensemble of oligomers with a median size of 38 +/- 10 molecules. This number is remarkably similar to estimates from bulk measurements of the critical size of species observed to seed ordered fibril formation and of the most infective form of prion particles. Moreover, although the size distribution of the SH3 oligomers remains virtually constant as the time of aggregation increases, their stability increases substantially. These findings together provide direct evidence for a general mechanism of amyloid aggregation in which the stable cross-beta structure emerges via internal reorganization of disordered oligomers formed during the lag phase of the self-assembly reaction.
Collapse
|
127
|
Wong SLA, Chan WM, Chan HYE. Sodium dodecyl sulfate-insoluble oligomers are involved in polyglutamine degeneration. FASEB J 2008; 22:3348-57. [PMID: 18559990 DOI: 10.1096/fj.07-103887] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In polyglutamine (polyQ) degeneration, disease protein that carries an expanded polyQ tract is neurotoxic. Expanded polyQ protein exists in different conformations that display distinct solubility properties. In this study, an inducible transgenic Drosophila model is established to define the pathogenic form of polyQ protein at an early stage of degeneration in vivo. We show that microscopic polyQ aggregates are neither pathogenic nor protective. Further, no toxic effect of sodium dodecyl sulfate (SDS) -soluble polyQ protein is observed in our model. By means of filtration, 2 forms of SDS-insoluble protein species are identified according to their size. Coexpression of an ATPase-defective form of the molecular chaperone Hsc70 (Hsc70-K71S) selectively reduces the abundance of the large SDS-insoluble polyQ species, but such modulation has no modifying effects on degeneration. Notably, we detect a distinct Hsc70-K71S-resistant, small, SDS-insoluble polyQ oligomeric species that is closely correlated with degeneration. Our data highlight the toxic role of SDS-insoluble oligomers in polyQ degeneration in vivo.
Collapse
Affiliation(s)
- S L Alan Wong
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | | | | |
Collapse
|
128
|
Hinz J, Gierasch LM, Ignatova Z. Orthogonal cross-seeding: an approach to explore protein aggregates in living cells. Biochemistry 2008; 47:4196-200. [PMID: 18330996 DOI: 10.1021/bi800002j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with the pathology of many diseases, especially neurodegenerative diseases. A variety of structurally polymorphic aggregates or preaggregates including amyloid fibrils is accessible to any aggregating protein. Preaggregates are now believed to be the toxic culprits in pathologies rather than mature aggregates. Although clearly valuable, understanding the mechanism of formation and the structural characteristics of these prefibrillar species is currently lacking. We report here a simple new approach to map the nature of the aggregate core of transient aggregated species directly in the cell. The method is conceptually based on the highly discriminating ability of aggregates to recruit new monomeric species with equivalent molecular structure. Different soluble segments comprising parts of an amyloidogenic protein were transiently pulse-expressed in a tightly controlled, time-dependent manner along with the parent aggregating full-length protein, and their recruitment into the insoluble aggregate was monitored immunochemically. We used this approach to determine the nature of the aggregate core of the metastable aggregate species formed during the course of aggregation of a chimera containing a long polyglutamine repeat tract in a bacterial host. Strikingly, we found that different segments of the full-length protein dominated the aggregate core at different times during the course of aggregation. In its simplicity, the approach is also potentially amenable to screen also for compounds that can reshape the aggregate core and induce the formation of alternative nonamyloidogenic species.
Collapse
Affiliation(s)
- Justyna Hinz
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
129
|
Ignatova Z, Thakur AK, Wetzel R, Gierasch LM. In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence. J Biol Chem 2007; 282:36736-43. [PMID: 17942400 PMCID: PMC2892112 DOI: 10.1074/jbc.m703682200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxicity in amyloid diseases is intimately linked to the nature of aggregates, with early oligomeric species believed to be more cytotoxic than later fibrillar aggregates. Yet mechanistic understanding of how aggregating species evolve with time is currently lacking. We have explored the aggregation process of a chimera composed of a globular protein (cellular retinoic acid-binding protein, CRABP) and huntingtin exon 1 with polyglutamine tracts either above (Q53) or below (Q20) the pathological threshold using Escherichia coli cells as a model intracellular environment. Previously we showed that fusion of the huntingtin exon 1 sequence with >40Q led to structural perturbation and decreased stability of CRABP (Ignatova, Z., and Gierasch, L. M. (2006) J. Biol. Chem. 281, 12959-12967). Here we report that the Q53 chimera aggregates in cells via a multistep process: early stage aggregates are spherical and detergent-soluble, characteristics of prefibrillar aggregates, and appear to be dominated structurally by CRABP, in that they can promote aggregation of a CRABP variant but not oligoglutamine aggregation, and the CRABP domain is relatively sequestered based on its protection from proteolysis. Late stage aggregates appear to be dominated by polyGln; they are fibrillar, detergent-resistant, capable of seeding aggregation of oligoglutamine but not the CRABP variant, and show relative protection of the polyglutamine-exon1 domain from proteolysis. These results point to an evolution of the dominant sequences in intracellular aggregates and may provide molecular insight into origins of toxic prefibrillar aggregates.
Collapse
Affiliation(s)
- Zoya Ignatova
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Ashwani K. Thakur
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15206
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15206
| | - Lila M. Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
130
|
Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 2007; 17:345-56. [PMID: 17947294 DOI: 10.1093/hmg/ddm311] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expanded polyglutamine (polyQ) repeats cause neurodegenerative disorders, but their cytotoxic structures remain to be elucidated. Although soluble polyQ oligomers have been proposed as a cytotoxic structure, the cytotoxicity of soluble polyQ oligomers, not inclusion bodies (IBs), has not been proven in living cells. To clarify the cytotoxicity of soluble polyQ oligomers, we carried our fluorescence resonance energy transfer (FRET) confocal microscopy and distinguished oligomers from monomers and IBs in a single living cell. FRET signals were detected when donor and acceptor fluorescent proteins were attached to the same side, not the opposite side, of polyQ repeats, which agrees with a parallel beta-sheet or a head-to-tail cylindrical beta-sheet model. These FRET signals disappeared in semi-intact cells, indicating that these polyQ oligomers are soluble. PolyQ monomers assembled into soluble oligomers in a length-dependent manner, which was followed by the formation of IBs. Notably, survival assay of neuronally differentiated cells revealed that cells with soluble oligomers died faster than those with IBs or monomers. These results indicate that a length-dependent formation of oligomers is an essential mechanism underlying neurodegeneration in polyQ-mediated disorders.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- School of Health Sciences, Faculty of Medicine, Niigata University, 1-757 Asahimachi, Niigata 951-8122, Japan
| | | | | | | | | | | |
Collapse
|
131
|
Abstract
PURPOSE OF REVIEW Here we discuss recent advances regarding the molecular genetic basis of dominantly inherited ataxias. RECENT FINDINGS Important recent observations include insights into the mechanisms by which expanded polyglutamine causes cerebellar degeneration; new findings regarding how noncoding expansions may cause disease; the discovery that conventional (i.e. nonrepeat) mutations underlie recently identified ataxias; and growing recognition that multiple biological pathways, when perturbed, can cause cerebellar degeneration. SUMMARY The dominant ataxias, also known as spinocerebellar ataxias, continue to grow in number. Here we review the major categories of spinocerebellar ataxias: expanded polyglutamine ataxias; noncoding repeat ataxias; and ataxias caused by conventional mutations. After discussing features shared by these disorders, we present recent evidence supporting a toxic protein mechanism for the polyglutamine spinocerebellar ataxias and the recognition that both protein misfolding and perturbations in nuclear events represent key events in pathogenesis. Less is known about pathogenic mechanisms in spinocerebellar ataxias due to noncoding repeats, though a toxic RNA effect remains possible. Newly discovered, conventional mutations in spinocerebellar ataxias suggest a wide range of biological pathways can be disrupted to cause progressive ataxia. Finally, we discuss how new mechanistic insights can drive the push toward preventive treatment.
Collapse
Affiliation(s)
- Bing-wen Soong
- Department of Neurology, National Yang-Ming University School of Medicine, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | |
Collapse
|
132
|
Fei E, Jia N, Zhang T, Ma X, Wang H, Liu C, Zhang W, Ding L, Nukina N, Wang G. Phosphorylation of ataxin-3 by glycogen synthase kinase 3β at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun 2007; 357:487-92. [PMID: 17434145 DOI: 10.1016/j.bbrc.2007.03.160] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Machado-Joseph disease (MJD) is a dominant neurodegenerative disorder caused by an expansion of the polyglutamine tract in MJD-1 gene product, ataxin-3. Recently, studies show that phosphorylation of polyglutamine disease proteins, such as huntingtin, ataxin-1 and DRPLA, plays an important role in regulating pathogenesis. However, the kinase that phosphorylates ataxin-3 remains unknown. Here we show that S256 site in ataxin-3 is phosphorylated by GSK 3beta. Moreover, S256A mutant of expanded ataxin-3 forms high molecular weight protein aggregation, whereas S256D mutant and expanded ataxin-3 without mutation on this site are monomeric. The molecular chaperone Hsp70 represses the aggregation of S256A mutant. Our results imply that phosphorylation of serine 256 in ataxin-3 by GSK 3beta regulates ataxin-3 aggregation.
Collapse
Affiliation(s)
- Erkang Fei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Neurobiology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Gonzalez-Couto E, Matteoni S, Gotta S, Magnoni L, Heitz F, Raggiaschi R, Terstappen GC, Kremer A. Huntington's disease: from experimental results to interaction networks, patho-pathway construction and disease hypothesis. BMC SYSTEMS BIOLOGY 2007. [DOI: 10.1186/1752-0509-1-s1-p45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
134
|
Peters TW, Huang M. Protein aggregation and polyasparagine-mediated cellular toxicity in Saccharomyces cerevisiae. Prion 2007; 1:144-53. [PMID: 19164913 DOI: 10.4161/pri.1.2.4630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well established that protein aggregation is associated with many neurodegenerative disorders including polyglutamine diseases, but a mechanistic understanding of the role of protein aggregates in the disease pathogenesis remains elusive. Previously thought to be the cause of cellular toxicity such as cellular dysfunction and cell death, protein aggregation is now proposed to serve a protective role by sequestering toxic oligomers from interfering with essential physiological processes. To investigate the relationship between protein aggregation and cellular toxicity, we have characterized and compared the effects of two GFP-fusion proteins that form aggregates in Saccharomyces cerevisiae, one with a polyasparagine repeat (GFP(N104)) and one without (GFP(C)). Although both proteins can form microscopically visible GFP-positive aggregates, only the GFP(N104)-containing aggregates exhibit morphological and biochemical characteristics that resemble the aggregates formed by mutant huntingtin in yeast cells. Formation of both the GFP(C) and GFP(N104) aggregates depends on microtubules, while only the GFP(N104) aggregate requires the chaperone Hsp104 and the prion Rnq1 and is resistant to SDS. Although no microscopically visible GFP(N104) aggregates were observed in the hsp104Delta and rnq1Delta mutant cells, SDS-insoluble aggregates can still be detected by the filter trap assay. These observations argue that the GFP(N104)-containing aggregates can exist in at least two distinct states in vivo. We also show that a nucleus-targeted GFP(N104) interferes with transcription from two SAGA-dependant promoters and results in a decrease in cell viability. Overall, the results imply that the GFP(N104) protein behaves similarly to the mutant huntingtin in yeast cells and provides a new model for investigating the interplay between protein aggregates and the associated phenotypes.
Collapse
Affiliation(s)
- Theodore W Peters
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | |
Collapse
|
135
|
Ellisdon AM, Pearce MC, Bottomley SP. Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol 2007; 368:595-605. [PMID: 17362987 DOI: 10.1016/j.jmb.2007.02.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
The polyglutamine diseases are a family of nine proteins where intracellular protein misfolding and amyloid-like fibril formation are intrinsically coupled to disease. Previously, we identified a complex two-step mechanism of fibril formation of pathologically expanded ataxin-3, the causative protein of spinocerebellar ataxia type-3 (Machado-Joseph disease). Strikingly, ataxin-3 lacking a polyglutamine tract also formed fibrils, although this occurred only via a single-step that was homologous to the first step of expanded ataxin-3 fibril formation. Here, we present the first kinetic analysis of a disease-associated polyglutamine repeat protein. We show that ataxin-3 forms amyloid-like fibrils by a nucleation-dependent polymerization mechanism. We kinetically model the nucleating event in ataxin-3 fibrillogenesis to the formation of a monomeric thermodynamic nucleus. Fibril elongation then proceeds by a mechanism of monomer addition. The presence of an expanded polyglutamine tract leads subsequently to rapid inter-fibril association and formation of large, highly stable amyloid-like fibrils. These results enhance our general understanding of polyglutamine fibrillogenesis and highlights the role of non-poly(Q) domains in modulating the kinetics of misfolding in this family.
Collapse
Affiliation(s)
- Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, PO Box 13D Monash University, 3800, Australia
| | | | | |
Collapse
|
136
|
Kodali R, Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 2007; 17:48-57. [PMID: 17251001 DOI: 10.1016/j.sbi.2007.01.007] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 11/28/2006] [Accepted: 01/12/2007] [Indexed: 11/28/2022]
Abstract
Amyloid formation reactions exhibit two classes of polymorphisms: the metastable intermediates commonly observed during amyloid formation and the range of conformationally distinct mature fibrils often seen at the reaction endpoint. Although recent data suggest that spherical oligomers and protofibrils in most cases are not obligate intermediates of amyloid assembly, oligomeric states might sometimes serve as on-pathway intermediates. Mature amyloid polymorphs self-propagate as a result of the normally very high fidelity of amyloid elongation, giving rise to strain behavior and species barriers in prion phenomena. Oligomers, protofibrils and various polymorphic forms of mature amyloid fibrils seem to be distinguished by differences in atomic structure that give rise to differences in observed morphologies.
Collapse
Affiliation(s)
- Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, 2046 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
137
|
Powers GA, Pham CLL, Pearce MC, Howlett GJ, Bottomley SP. Serpin Acceleration of Amyloid Fibril Formation: A Role for Accessory Proteins. J Mol Biol 2007; 366:666-76. [PMID: 17174330 DOI: 10.1016/j.jmb.2006.11.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/13/2006] [Accepted: 11/17/2006] [Indexed: 11/26/2022]
Abstract
Protein aggregation underlies an increasing number of human diseases. Recent experiments have shown that the aggregation reaction is exquisitely specific involving particular interactions between non-native proteins. However, aggregation of certain proteins, for example beta-amyloid, in vivo leads to the recruitment of other proteins into the aggregate. Antichymotrypsin, a non-fibril forming protein, is always observed to be associated with beta-amyloid plaques in Alzheimer's sufferers. The role of antichymotrypsin is controversial with studies showing it can either accelerate or inhibit the aggregation reaction. To investigate the role of antichymotrypsin in fibrillogenesis we have studied its interaction with apolipoprotein C-II, a well characterized model system for the study of fibrillogenesis. Our data demonstrate that sub-stoichiometric amounts of antichymotrypsin and its alternate structural forms can dramatically accelerate the aggregation of apolipoprotein C-II, whereas the presence of alpha(1)-antitrypsin, a structural homologue of antichymotrypsin, cannot. Sedimentation velocity experiments show more apolipoprotein C-II fibrils were formed in the presence of antichymotrypsin. Using pull-down assays and immuno-gold labeling we demonstrate an interaction between antichymotrypsin and apolipoprotein C-II fibrils that specifically occurs during fibrillogenesis. Taken together these data demonstrate an interaction between antichymotrypsin and apolipoprotein C-II that accelerates fibrillogenesis and indicates a specific role for accessory proteins in protein aggregation.
Collapse
Affiliation(s)
- Glenn A Powers
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
138
|
Ricchelli F, Fusi P, Tortora P, Valtorta M, Riva M, Tognon G, Chieregato K, Bolognin S, Zatta P. Destabilization of non-pathological variants of ataxin-3 by metal ions results in aggregation/fibrillogenesis. Int J Biochem Cell Biol 2007; 39:966-77. [PMID: 17300980 DOI: 10.1016/j.biocel.2007.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Ataxin-3 (AT3), a protein that causes spinocerebellar ataxia type 3, has a C-terminus containing a polyglutamine stretch, the length of which can be expanded in its pathological variants. Here, we report on the role of Cu(2+), Mn(2+), Zn(2+) and Al(3+) in the induction of defective protein structures and subsequent aggregation/fibrillogenesis of three different non-pathological forms of AT3, i.e. murine (Q6), human non-expanded (Q26) and human moderately expanded (Q36). AT3 variants showed an intrinsic propensity to misfolding/aggregation; on the other hand, Zn(2+) and Al(3+) strongly stimulated the amplitude and kinetics of these conformational conversions. While both metal ions induced a time-dependent aggregation into amyloid-like fibrillar forms, only small oligomers and/or short protofibrillar species were detected for AT3s alone. The rate and extent of the metal-induced aggregation/fibrillogenesis processes increased with the size of the polyglutamine stretch. Mn(2+) and Cu(2+) had no effect on (Q6) or actually prevented (Q26 and Q36) the AT3 structural transitions. The observation that Zn(2+) and Al(3+) promote AT3 fibrillogenesis is consistent with similar results found for other amyloidogenic molecules, such as beta-amyloid and prion proteins. Plausibly, these metal ions are a major common factor/cofactor in the etiopathogenesis of neurodegenerative diseases. Studies of liposomes as membrane models showed dramatic changes in the structural properties of the lipid bilayer in the presence of AT3, which were enhanced after supplementing the protein with Zn(2+) and Al(3+). This suggests that cell membranes could be a potential primary target in the ataxin-3 pathogenesis and metals could be a biological factor capable of modulating their interaction with AT3.
Collapse
Affiliation(s)
- Fernanda Ricchelli
- C.N.R. Institute of Biomedical Technologies, Metalloproteins Unit, at the Department of Biology, University of Padova, Viale G. Colombo 3-35121 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|