101
|
Structural and Biochemical Advances in Mammalian DNA Methylation. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
102
|
Zhu X, Mao X, Hurren R, Schimmer AD, Ezzat S, Asa SL. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J Clin Endocrinol Metab 2008; 93:3610-7. [PMID: 18544619 DOI: 10.1210/jc.2008-0578] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT AND OBJECTIVE Epigenetic dysregulation is implicated in pituitary neoplasia as the cause of silencing of several tumor suppressor genes. However, the upstream mediators of such events remain unknown. DESIGN We examined the three members of the DNA methyltransferase (DNMT) enzyme family in normal and neoplastic human and mouse pituitary cells. SETTING This study was performed at a university-affiliated cancer research institute. MAIN OUTCOME MEASURES Gene expression, promoter DNA methylation, histone modifications, and cell proliferation were determined. RESULTS In contrast to DNMT1 and DNMT3a, DNMT3b was expressed at relatively higher levels in neoplastic pituitary cells. However, examination of the human DNMT3b 5' region showed uniformly low DNA methylation levels with little difference between normal and tumor samples. Through pharmacological methylation inhibition or histone deacetylation inhibition, we identified that DNMT3b gene expression is subject to histone modifications. Down-regulation of DNMT3b resulted in induction of retinoblastoma, p21, and p27, and reduction in cell proliferation. These targeted effects were associated with enhanced histone 3 acetylation and diminished histone methylation. CONCLUSION Our findings identify DNMT3b as a putative mediator of epigenetic control through histone modifications of gene expression in pituitary cells.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University Health Network, The Ontario Cancer Institute, 610 University Avenue 8-327, Toronto, Ontario, Canada M5G 2M9
| | | | | | | | | | | |
Collapse
|
103
|
Sanders YY, Pardo A, Selman M, Nuovo GJ, Tollefsbol TO, Siegal GP, Hagood JS. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol 2008; 39:610-8. [PMID: 18556592 DOI: 10.1165/rcmb.2007-0322oc] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mechanisms regulating myofibroblastic differentiation of fibroblasts within fibroblastic foci in idiopathic pulmonary fibrosis (IPF) remain unclear. Epigenetic processes, including DNA methylation, produce heritable but potentially reversible changes in DNA or its associated proteins and are prominent in development and oncogenesis. We have shown that Thy-1 suppresses myofibroblastic differentiation of lung fibroblasts and that fibroblasts in fibroblastic foci are Thy-1(-). Epigenetic down-regulation of Thy-1 has been demonstrated in cellular transformation and clinical cancer. We hypothesized that epigenetic regulation of Thy-1 affects the lung fibroblast fibrogenic phenotype. RT-PCR, methylation-specific PCR (MSP), and bisulfite genomic sequencing were used to determine the methylation status of the Thy-1 promoter in Thy-1(+) and Thy-1(-) lung fibroblasts, and MSP-in situ hybridization (MSPISH) was performed on fibrotic tissue. Thy-1 gene expression is absent in Thy-1(-) human and rat fibroblasts despite intact Thy-1 genomic DNA. Cytosine-guanine islands in the Thy-1 gene promoter are hypermethylated in Thy-1(-), but not Thy-1(+), fibroblasts. RT-PCR and MSP demonstrate that, in IPF samples in which Thy-1 expression is absent, the Thy-1 promoter region is methylated, whereas in lung samples retaining Thy-1 expression, the promoter region is unmethylated. MSPISH confirms methylation of the Thy-1 promoter in fibroblastic foci in IPF. Treatment with DNA methyltransferase inhibitors restores Thy-1 expression in Thy-1(-) fibroblasts. Epigenetic regulation of Thy-1 is a novel and potentially reversible mechanism in fibrosis that may offer the possibility of new therapeutic options.
Collapse
Affiliation(s)
- Yan Y Sanders
- Department of Pediatrics, Division of Pulmonary Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Collas P, Noer A, Sørensen AL. Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells. ACTA ACUST UNITED AC 2008; 35:205-215. [PMID: 21547118 DOI: 10.1159/000127449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/06/2008] [Indexed: 12/13/2022]
Abstract
SUMMARY: Stem cells have the ability to self-renew, and give rise to one or more differentiated cell types. Embryonic stem cells can differentiate into all cell types of the body and have unlimited self-renewal capacity. Somatic stem cells are found in many adult tissues. They have an extensive but finite lifespan and can differentiate into a more restricted range of cell types. Increasing evidence indicates that the multilineage differentiation ability of stem cells is defined by the potential for expression of developmentally regulated transcription factors and of lineage specification genes. Gene expression, or as emphasized here, the potential for gene expression, is largely controlled by epigenetic modifications of DNA (DNA methylation) and chromatin (such as post-translational histone modifications) in the regulatory regions of specific genes. Epigenetic modifications can also influence the timing of DNA replication. We highlight here how mechanisms by which genes are poised for transcription in undifferentiated stem cells are being uncovered through the mapping of DNA methylation profiles on differentiation-regulated promoters and at the genome-wide level, histone modifications, and transcription factor binding. Epigenetic marks on developmentally regulated and lineage specification genes in stem cells seem to define a state of pluripotency.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, Norway
| | | | | |
Collapse
|
105
|
Fleury L, Gerus M, Lavigne AC, Richard-Foy H, Bystricky K. Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells. Oncogene 2008; 27:4075-85. [PMID: 18317449 DOI: 10.1038/onc.2008.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In breast cancer, approximately one-third of tumors express neither the estrogen receptor (ERalpha) nor estrogen-regulated genes such as the progesterone receptor gene (PR). Our study provides new insights into the mechanism allowing hormone-activated expression of ERalpha target genes silenced in ERalpha-negative mammary tumor cells. In cell lines derived from ERalpha-negative MDA-MB231 cells, stable expression of different levels of ERalpha from a transgene did not result in transcription of PR. A quantitative comparative analysis demonstrates that inhibiting DNA methyltransferases using 5-aza-2'-deoxycytidine or specific disruption of DNMT1 by small interfering RNAs and treatment with the histone-deacetylase inhibitor trichostatin A enabled ERalpha-mediated hormone-dependent expression of endogenous PR. We show that demethylation of a CpG island located in the first exon of PR was a prerequisite for ERalpha binding to these regulatory sequences. Although not a general requirement, DNA demethylation is also necessary for derepression of a subset of ERalpha target genes involved in tumorigenesis. PR transcription did not subsist 4 days after removal of the DNA methyltransferase blocking agents, suggesting that hormone-induced expression of ERalpha target genes in ERalpha-negative tumor cells is transient. Our observations support a model where an epigenetic mark confers stable silencing by precluding ERalpha access to promoters.
Collapse
Affiliation(s)
- L Fleury
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
106
|
Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure 2008; 16:341-50. [PMID: 18334209 PMCID: PMC2597194 DOI: 10.1016/j.str.2008.01.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
The methylation of mammalian DNA, primarily at CpG dinucleotides, has long been recognized to play a major role in controlling gene expression, among other functions. Given their importance, it is surprising how many basic questions remain to be answered about the proteins responsible for this methylation and for coordination with the parallel chromatin-marking system that operates at the level of histone modification. This article reviews recent studies on, and discusses the resulting biochemical and structural insights into, the DNA nucleotide methyltransferase (Dnmt) proteins 1, 3a, 3a2, 3b, and 3L.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (X.C.), (R.M.B.)
| | - Robert M. Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics and Proteomics/Genomics, University of Toledo Health Science Campus, Toledo, OH 43614, USA
- Correspondence: (X.C.), (R.M.B.)
| |
Collapse
|
107
|
Dunican DS, Ruzov A, Hackett JA, Meehan RR. xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function. Development 2008; 135:1295-302. [PMID: 18305009 DOI: 10.1242/dev.016402] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously reported that the maintenance cytosine methyltransferase xDnmt1 is essential for gene silencing in early Xenopus laevis embryos. In the present study, we show that silencing is independent of its catalytic function and that xDnmt1 possesses an intrinsic transcription repression function. We show that reduction of xDnmt1p by morpholino (xDMO) injection prematurely activates gene expression without global changes in DNA methylation before the mid-blastula transition (MBT). Repression of xDnmt1p target genes can be reimposed in xDMO morphants with an mRNA encoding a catalytically inactive form of human DNMT1. Moreover, target gene promoter analysis indicates that silencing is not reliant on dynamic changes in DNA methylation. We demonstrate that xDnmt1 can suppress transcription activator function and can be specifically localised to non-methylated target promoters. These data imply that xDnmt1 has a major silencer role in early Xenopus development before the MBT as a direct transcription repressor protein.
Collapse
Affiliation(s)
- Donncha S Dunican
- Human Genetics Unit, MRC, Western General Hospital, Crewe Road, and Genes and Development Group, School of Biomedical Sciences, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
108
|
Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell Tissue Res 2007; 331:23-9. [DOI: 10.1007/s00441-007-0536-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/17/2007] [Indexed: 12/12/2022]
|
109
|
A mouse gene that coordinates epigenetic controls and transcriptional interference to achieve tissue-specific expression. Mol Cell Biol 2007; 28:836-48. [PMID: 17998333 DOI: 10.1128/mcb.01088-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse fpgs gene uses two distantly placed promoters to produce functionally distinct isozymes in a tissue-specific pattern. We queried how the P1 and P2 promoters were differentially controlled. DNA methylation of the CpG-sparse P1 promoter occurred only in tissues not initiating transcription at this site. The P2 promoter, which was embedded in a CpG island, appeared open to transcription in all tissues by several criteria, including lack of DNA methylation, yet was used only in dividing tissues. The patterns of histone modifications over the two promoters were very different: over P1, histone activation marks (acetylated histones H3 and H4 and H3 trimethylated at K4) reflected transcriptional activity and apparently reinforced the effects of hypomethylated CpGs; over P2, these marks were present in tissues whether P2 was active, inactive, or engaged in assembly of futile initiation complexes. Since P1 transcriptional activity coexisted with silencing of P2, we sought the mechanism of this transcriptional interference. We found RNA polymerase II, phosphorylated in a pattern consistent with transcriptional elongation, and only minimal levels of initiation factors over P2 in liver. We concluded that mouse fpgs uses DNA methylation to control tissue-specific expression from a CpG-sparse promoter, which is dominant over a downstream promoter masked by promoter occlusion.
Collapse
|
110
|
Abstract
In opposition to terminally differentiated cells, stem cells can self-renew and give rise to multiple cell types. Embryonic stem cells retain the ability of the inner cell mass of blastocysts to differentiate into all cell types of the body and have acquired in culture unlimited self-renewal capacity. Somatic stem cells are found in many adult tissues, have an extensive but finite lifespan and can differentiate into a more restricted array of cell types. A growing body of evidence indicates that multi-lineage differentiation ability of stem cells can be defined by the potential for expression of lineage-specification genes. Gene expression, or as emphasized here, potential for gene expression, is largely controlled by epigenetic modifications of DNA and chromatin on genomic regulatory and coding regions. These modifications modulate chromatin organization not only on specific genes but also at the level of the whole nucleus; they can also affect timing of DNA replication. This review highlights how mechanisms by which genes are poised for transcription in undifferentiated stem cells are being uncovered through primarily the mapping of DNA methylation, histone modifications and transcription factor binding throughout the genome. The combinatorial association of epigenetic marks on developmentally regulated and lineage-specifying genes in undifferentiated cells seems to define a pluripotent state.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | | | | |
Collapse
|
111
|
DNMT1 interacts with the developmental transcriptional repressor HESX1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:131-43. [PMID: 17931718 PMCID: PMC2233781 DOI: 10.1016/j.bbamcr.2007.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 01/18/2023]
Abstract
Hesx1 is a highly conserved homeobox gene present in vertebrates, but absent from invertebrates. Gene targeting experiments in mice have shown that this transcriptional repressor is required for normal forebrain and pituitary development. In humans, mutations in HESX1 impairing either its repressing activity or DNA binding properties lead to a comparable phenotype to that observed in Hesx1 deficient mice. In an attempt to gain insights into the molecular function of HESX1, we have performed a yeast two-hybrid screen and identified DNA methyltransferase 1 (DNMT1) as a HESX1 binding protein. We show that Dnmt1 is co-expressed with Hesx1 within the anterior forebrain and in the developing Rathke's pouch. Mapping of the interacting regions indicates that the entire HESX1 protein is required to establish binding to a portion of the N-terminus of DNMT1 and its catalytic domain in the C-terminus. The HESX1–DNMT1 complexes can be immunoprecipitated in cells and co-localise in the nucleus. These results establish a link between HESX1 and DNMT1 and suggest a novel mechanism for the repressing properties of HESX1.
Collapse
|
112
|
Sun L, Zhao H, Xu Z, Liu Q, Liang Y, Wang L, Cai X, Zhang L, Hu L, Wang G, Zha X. Phosphatidylinositol 3-kinase/protein kinase B pathway stabilizes DNA methyltransferase I protein and maintains DNA methylation. Cell Signal 2007; 19:2255-63. [PMID: 17716861 DOI: 10.1016/j.cellsig.2007.06.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
DNA methylation, which affects gene expression and chromatin stability, is catalyzed by DNA methyltransferases (DNMTs) of which DNMT1 possesses most abundant activity. PI3K/PKB pathway is an important pathway involved in cell proliferation, viability, and metabolism and often disrupted in cancer. Here we investigated the impact of PKB on DNMT1 and DNA methylation. Positive correlation between PKB-Ser473-phosphorylation and DNMT1 protein level in 17 human cell lines (p<0.01) and in 27 human bladder cancer tissues (p<0.05) was found. With activator, inhibitor, siRNA and constitutively active or dominant-negative plasmids of PKB, we found that PKB increased the protein level of DNMT1 without coordinate mRNA change, which was specific rather than due to cell-cycle change. PKB enhanced DNMT1 protein stability independent of de novo synthesis of any protein, which was attributed to down-regulation of N-terminal-120-amino-acids-dependent DNMT1 degradation via ubiquitin-proteasome pathway. Gsk3beta inhibitor rescued the decrease of DNMT1 by PKB inhibition, suggesting that Gsk3beta mediated the stabilization of DNMT1 by PKB. Then role of PKB regulating DNMT1 was investigated. Inhibition of PKB caused observable DNA hypomethylation and chromatin decondensation and DNMT1 overexpression partially reversed cell growth inhibition by PKB inhibition. In conclusion, our results suggested that PKB enhanced DNMT1 stability and maintained DNA methylation and chromatin structure, which might contribute to cancer cell growth.
Collapse
Affiliation(s)
- Lidong Sun
- Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|