101
|
Ahsan N, Huang Y, Tovar-Mendez A, Swatek KN, Zhang J, Miernyk JA, Xu D, Thelen JJ. A versatile mass spectrometry-based method to both identify kinase client-relationships and characterize signaling network topology. J Proteome Res 2013; 12:937-48. [PMID: 23270405 PMCID: PMC3888875 DOI: 10.1021/pr3009995] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While more than a thousand protein kinases (PK) have been identified in the Arabidopsis thaliana genome, relatively little progress has been made toward identifying their individual client proteins. Herein we describe the use of a mass spectrometry-based in vitro phosphorylation strategy, termed Kinase Client assay (KiC assay), to study a targeted-aspect of signaling. A synthetic peptide library comprising 377 in vivo phosphorylation sequences from developing seed was screened using 71 recombinant A. thaliana PK. Among the initial results, we identified 23 proteins as putative clients of 17 PK. In one instance protein phosphatase inhibitor-2 (AtPPI-2) was phosphorylated at multiple-sites by three distinct PK, casein kinase1-like 10, AME3, and a Ser PK-like protein. To confirm this result, full-length recombinant AtPPI-2 was reconstituted with each of these PK. The results confirmed multiple distinct phosphorylation sites within this protein. Biochemical analyses indicate that AtPPI-2 inhibits type 1 protein phosphatase (TOPP) activity, and that the phosphorylated forms of AtPPI-2 are more potent inhibitors. Structural modeling revealed that phosphorylation of AtPPI-2 induces conformational changes that modulate TOPP binding.
Collapse
Affiliation(s)
- Nagib Ahsan
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Yadong Huang
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Alejandro Tovar-Mendez
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Kirby N. Swatek
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Jingfen Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
- Department of Computer Science and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Ján A. Miernyk
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
- Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, Columbia, MO 65211 USA
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
- Department of Computer Science and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
102
|
Boens S, Szekér K, Van Eynde A, Bollen M. Interactor-guided dephosphorylation by protein phosphatase-1. Methods Mol Biol 2013; 1053:271-281. [PMID: 23860659 DOI: 10.1007/978-1-62703-562-0_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein phosphatase-1 (PP1) is an essential enzyme for every eukaryotic cell and catalyzes more than half of all protein dephosphorylations at serine and threonine residues. The free catalytic subunit of PP1 shows little substrate selectivity but is tightly regulated in vivo by a large variety of structurally unrelated PP1-interacting proteins (PIPs). PIPs form highly specific dimeric or trimeric PP1 holoenzymes by acting as substrates, inhibitors, and/or substrate-specifiers. The surface of PP1 contains many binding sites for short PP1-docking motifs that are combined by PIPs to create a PP1-binding code that is universal, specific, degenerate, nonexclusive, and dynamic. These properties of the PP1-binding code can be used for the rational design of small molecules that disrupt subsets of PP1 holoenzymes and have a therapeutic potential.
Collapse
Affiliation(s)
- Shannah Boens
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
103
|
How phosphorylation activates the protein phosphatase-1 • inhibitor-2 complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:71-86. [DOI: 10.1016/j.bbapap.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/28/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022]
|
104
|
Unusual biophysics of intrinsically disordered proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:932-51. [PMID: 23269364 DOI: 10.1016/j.bbapap.2012.12.008] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Research of a past decade and a half leaves no doubt that complete understanding of protein functionality requires close consideration of the fact that many functional proteins do not have well-folded structures. These intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered protein regions (IDPRs) are highly abundant in nature and play a number of crucial roles in a living cell. Their functions, which are typically associated with a wide range of intermolecular interactions where IDPs possess remarkable binding promiscuity, complement functional repertoire of ordered proteins. All this requires a close attention to the peculiarities of biophysics of these proteins. In this review, some key biophysical features of IDPs are covered. In addition to the peculiar sequence characteristics of IDPs these biophysical features include sequential, structural, and spatiotemporal heterogeneity of IDPs; their rough and relatively flat energy landscapes; their ability to undergo both induced folding and induced unfolding; the ability to interact specifically with structurally unrelated partners; the ability to gain different structures at binding to different partners; and the ability to keep essential amount of disorder even in the bound form. IDPs are also characterized by the "turned-out" response to the changes in their environment, where they gain some structure under conditions resulting in denaturation or even unfolding of ordered proteins. It is proposed that the heterogeneous spatiotemporal structure of IDPs/IDPRs can be described as a set of foldons, inducible foldons, semi-foldons, non-foldons, and unfoldons. They may lose their function when folded, and activation of some IDPs is associated with the awaking of the dormant disorder. It is possible that IDPs represent the "edge of chaos" systems which operate in a region between order and complete randomness or chaos, where the complexity is maximal. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
105
|
Oldfield CJ, Xue B, Van YY, Ulrich EL, Markley JL, Dunker AK, Uversky VN. Utilization of protein intrinsic disorder knowledge in structural proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:487-98. [PMID: 23232152 DOI: 10.1016/j.bbapap.2012.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 12/01/2022]
Abstract
Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.
Collapse
Affiliation(s)
- Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
Ogawa D, Morita H, Hattori T, Takeda S. Molecular characterization of the rice protein RSS1 required for meristematic activity under stressful conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:54-60. [PMID: 23041461 DOI: 10.1016/j.plaphy.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/11/2012] [Indexed: 05/13/2023]
Abstract
Post embryonic growth of plants depends on cell division activity in the shoot and root meristems, in conjunction with subsequent cell differentiation. Under environmental stress conditions, where plant growth is moderately impaired, the meristematic activity is maintained by mechanisms as yet unknown. We previously showed that the rice protein RSS1, whose stability is regulated depending on the cell cycle phases, is a key factor for the maintenance of meristematic activity under stressful conditions. RSS1 interacts with a catalytic subunit of protein phosphatase 1 (PP1), but other molecular characteristics are largely unknown. Here we show that RSS1 interacts with all the PP1 expressed in the shoot apex of rice. This interaction requires one of the conserved regions of RSS1, which is important for RSS1 function. Interestingly, the recombinant RSS1 protein is highly resistant to heat with respect to its anti-coagulability and binding activity to PP1. The features of RSS1 are reminiscent of those of inhibitor-2 of animals, although it is likely that the mode of function of RSS1 is different from that of inhibitor-2. Noticeably, RSS1 binds to PP1 under extremely high ionic strength conditions in vitro. Therefore, RSS1 possibly functions by forming a stable complex with PP1.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
107
|
Esteves SLC, Korrodi-Gregório L, Cotrim CZ, van Kleeff PJM, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1γ isoforms linked interactions in the brain. J Mol Neurosci 2012; 50:179-97. [PMID: 23080069 DOI: 10.1007/s12031-012-9902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023]
Abstract
Posttranslational protein modifications, in particular reversible protein phosphorylation, are important regulatory mechanisms involved in cellular signaling transduction pathways. Thousands of human proteins are phosphorylatable and the tight regulation of phosphorylation states is crucial for cell maintenance and development. Protein phosphorylation occurs primarily on serine, threonine, and tyrosine residues, through the antagonistic actions of protein kinases and phosphatases. The catalytic subunit of protein phosphatase 1 (PP1), a major Ser/Thr-phosphatase, associates with a large variety of regulatory subunits that define substrate specificity and determine specific cellular pathway responses. PP1 has been shown to bind to different proteins in the brain in order to execute key and differential functions. This work reports the identification of proteins expressed in the human brain that interact with PP1γ1 and PP1γ2 isoforms by the yeast two-hybrid method. An extensive search of PP1-binding motifs was performed for the proteins identified, revealing already known PP1 regulators but also novel interactors. Moreover, our results were integrated with the data of PP1γ interacting proteins from several public web databases, permitting the development of physical maps of the novel interactions. The PP1γ interactome thus obtained allowed for the identification of novel PP1 interacting proteins, supporting novel functions of PP1γ isoforms in the human brain.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
108
|
O'Connell N, Nichols SR, Heroes E, Beullens M, Bollen M, Peti W, Page R. The molecular basis for substrate specificity of the nuclear NIPP1:PP1 holoenzyme. Structure 2012; 20:1746-56. [PMID: 22940584 PMCID: PMC3472097 DOI: 10.1016/j.str.2012.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/18/2022]
Abstract
Regulation of protein phosphatase 1 (PP1) is controlled by a diverse array of regulatory proteins. However, how these proteins direct PP1 specificity is not well understood. More than one-third of the nuclear pool of PP1 forms a holoenzyme with the nuclear inhibitor of PP1, NIPP1, to regulate chromatin remodeling, among other essential biological functions. Here, we show that the PP1-binding domain of NIPP1 is an intrinsically disordered protein, which binds PP1 in an unexpected manner. NIPP1 forms an α helix that engages PP1 at a unique interaction site, using polar rather than hydrophobic contacts. Importantly, the structure also reveals a shared PP1 interaction site outside of the RVxF motif, the ΦΦ motif. Finally, we show that NIPP1:PP1 substrate selectivity is determined by altered electrostatics and enhanced substrate localization. Together, our results provide the molecular basis by which NIPP1 directs PP1 substrate specificity in the nucleus.
Collapse
Affiliation(s)
- Nichole O'Connell
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Skrabana R, Cehlar O, Flachbartova Z, Kovac A, Sevcik J, Novak M. Crystallization and preliminary X-ray diffraction analysis of two peptides from Alzheimer PHF in complex with the MN423 antibody Fab fragment. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1186-90. [PMID: 23027744 PMCID: PMC3497976 DOI: 10.1107/s1744309112033477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022]
Abstract
The major constituent of the Alzheimer's disease paired helical filaments (PHF) core is the intrinsically disordered protein (IDP) tau. Globular binding partners, e.g. monoclonal antibodies, can stabilize the fold of disordered tau in complexes. A previously published structure of a proteolytically generated tau fragment in a complex with the PHF-specific monoclonal antibody MN423 revealed a turn-like structure of the PHF core C-terminus [Sevcik et al. (2007). FEBS Lett. 581, 5872-5878]. To examine the structures of longer better-defined PHF segments, crystals of the MN423 Fab fragment were grown in the presence of two synthetic peptides derived from the PHF core C-terminus. For each, X-ray diffraction data were collected at 100 K at a synchrotron source and initial phases were obtained by molecular replacement.
Collapse
Affiliation(s)
- Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84 510 Bratislava, Slovakia
- Axon Neuroscience SE, Grosslingova 45, 81 109 Bratislava, Slovakia
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84 510 Bratislava, Slovakia
| | - Zuzana Flachbartova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84 510 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84 510 Bratislava, Slovakia
- Axon Neuroscience SE, Grosslingova 45, 81 109 Bratislava, Slovakia
| | - Jozef Sevcik
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 84 251 Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84 510 Bratislava, Slovakia
- Axon Neuroscience SE, Grosslingova 45, 81 109 Bratislava, Slovakia
| |
Collapse
|
110
|
Marsh JA, Teichmann SA, Forman-Kay JD. Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 2012; 22:643-50. [PMID: 22999889 DOI: 10.1016/j.sbi.2012.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/16/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
Protein flexibility spans a broad spectrum, from highly stable folded to intrinsically disordered states. In this review, we discuss how various techniques, including X-ray crystallography, nuclear magnetic resonance spectroscopy and ensemble-modeling strategies employing various experimental measurements, have enabled detailed structural and dynamic characterizations of proteins in their free and bound states. This has revealed a variety of possible binding scenarios in which flexibility can either decrease or increase upon binding. Furthermore, dynamic free-state ensembles have repeatedly been observed to contain transiently formed conformations that partially or completely resemble bound states. These results demonstrate an intimate connection between protein flexibility and protein interactions and illustrate the huge diversity of structure and dynamics in both free proteins and protein complexes.
Collapse
Affiliation(s)
- Joseph A Marsh
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | | | | |
Collapse
|
111
|
Eto M, Brautigan DL. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012; 64:732-9. [PMID: 22815089 DOI: 10.1002/iub.1067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 01/23/2023]
Abstract
Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes, acting in addition to, not instead of, regulatory subunits. The cellular actions of the endogenous inhibitors are controlled by phosphorylation, connecting them to kinase pathways. More recent progress has unveiled additional functions of PP1 inhibitor-2 (I-2), including regulation of protein kinases. Transcriptional mechanisms govern the expression levels of CPI-17 in response to stimuli. If true for other inhibitor proteins, they have the potential of being diagnostic markers for pathological conditions. We discuss specific examples of PP1 inhibitor proteins regulating particular cellular functions and the rationale for incorporating phosphatase inhibitor proteins in development of new therapeutic strategies.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
112
|
Kakiya N, Saito T, Nilsson P, Matsuba Y, Tsubuki S, Takei N, Nawa H, Saido TC. Cell surface expression of the major amyloid-β peptide (Aβ)-degrading enzyme, neprilysin, depends on phosphorylation by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and dephosphorylation by protein phosphatase 1a. J Biol Chem 2012; 287:29362-72. [PMID: 22767595 PMCID: PMC3436156 DOI: 10.1074/jbc.m112.340372] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain.
Collapse
Affiliation(s)
- Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Esteves SLC, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1α interacting proteins in the human brain. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:3-17. [PMID: 22321011 DOI: 10.1089/omi.2011.0041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, Portugal
| | | | | | | | | |
Collapse
|
114
|
Parnell SC, Puri S, Wallace DP, Calvet JP. Protein phosphatase-1α interacts with and dephosphorylates polycystin-1. PLoS One 2012; 7:e36798. [PMID: 22675472 PMCID: PMC3366979 DOI: 10.1371/journal.pone.0036798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme.
Collapse
Affiliation(s)
- Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SCP); (JPC)
| | - Sanjeev Puri
- Biotechnology Department, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Darren P. Wallace
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Medicine and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SCP); (JPC)
| |
Collapse
|
115
|
Identification and characterization of the core region of protein phosphatase-1. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
116
|
Heroes E, Lesage B, Görnemann J, Beullens M, Van Meervelt L, Bollen M. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J 2012; 280:584-95. [PMID: 22360570 DOI: 10.1111/j.1742-4658.2012.08547.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo.
Collapse
Affiliation(s)
- Ewald Heroes
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
117
|
Wang BJ, Tang W, Zhang P, Wei Q. Regulation of the catalytic domain of protein phosphatase 1 by the terminal region of protein phosphatase 2B. J Biochem 2012; 151:283-90. [DOI: 10.1093/jb/mvr144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
118
|
Abstract
The ubiquitous serine/threonine protein phosphatase 1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. However, the free catalytic subunit of PP1, while an effective enzyme, lacks substrate specificity. Instead, it depends on a diverse set of regulatory proteins (≥ 200) to confer specificity towards distinct substrates. Here, we discuss recent advances in structural studies of PP1 holoenzyme complexes and summarize the new insights these studies have provided into the molecular basis of PP1 regulation and specificity.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
119
|
Fuxreiter M, Tompa P. Fuzzy Complexes: A More Stochastic View of Protein Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:1-14. [DOI: 10.1007/978-1-4614-0659-4_1] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
120
|
Uhrig RG, Moorhead GB. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties. PLANT PHYSIOLOGY 2011; 157:1778-92. [PMID: 21976480 PMCID: PMC3327225 DOI: 10.1104/pp.111.182493] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.
Collapse
|
121
|
Uhrig RG, Moorhead GB. Okadaic acid and microcystin insensitive PPP-family phosphatases may represent novel biotechnology targets. PLANT SIGNALING & BEHAVIOR 2011; 6:2057-9. [PMID: 22112445 PMCID: PMC3337206 DOI: 10.4161/psb.6.12.18541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reversible protein phosphorylation is of central importance to the proper cellular functioning of all living organisms. Catalyzed by the opposing reactions of protein kinases and phosphatases, dysfunction in reversible protein phosphorylation can result in a wide variety of cellular aberrations. In eukaryotic organisms there exists four classes of protein phosphatases, of which the PPP-family protein phosphatases have documented susceptibility to a range of protein and small molecule inhibitors. These inhibitors have been of great importance to the biochemical characterization of PPP-family protein phosphatases since their discovery, but also maintain in natura biological significance with their endogenous regulatory properties (protein inhibitors) and toxicity (small molecule inhibitors). Recently, two unique PPP-family protein phosphatases, named the Shewanella-like protein phosphatases (SLP phosphatases), from Arabidopsis thaliana were characterized and found to be phylogenetically similar to the PPP-family protein phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), while completely lacking sensitivity to the classic PPP-family phosphatase small molecule inhibitors okadaic acid and microcystin-LR. SLP phosphatases were also found to be absent in metazoans, but present in a wide range of bacteria, fungi and protozoa responsible for human disease. The unique biochemical properties and evolutionary heritage of SLP phosphatases suggests they could not only be potential biotechnology targets for agriculture, but may also prove to be of interest for future therapeutic drug development.
Collapse
|
122
|
Fréville A, Landrieu I, García-Gimeno MA, Vicogne J, Montbarbon M, Bertin B, Verger A, Kalamou H, Sanz P, Werkmeister E, Pierrot C, Khalife J. Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival. J Biol Chem 2011; 287:1306-21. [PMID: 22128182 DOI: 10.1074/jbc.m111.276865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Growing evidence indicates that the protein regulators governing protein phosphatase 1 (PP1) activity have crucial functions because their deletion drastically affects cell growth and division. PP1 has been found to be essential in Plasmodium falciparum, but little is known about its regulators. In this study, we have identified a homolog of Inhibitor-3 of PP1, named PfI3. NMR analysis shows that PfI3 belongs to the disordered protein family. High affinity interaction of PfI3 and PfPP1 is demonstrated in vitro using several methods, with an apparent dissociation constant K(D) of 100 nm. We further show that the conserved (41)KVVRW(45) motif is crucial for this interaction as the replacement of the Trp(45) by an Ala(45) severely decreases the binding to PfPP1. Surprisingly, PfI3 was unable to rescue a yeast strain deficient in I3 (Ypi1). This lack of functional orthology was supported as functional assays in vitro have revealed that PfI3, unlike yeast I3 and human I3, increases PfPP1 activity. Reverse genetic approaches suggest an essential role of PfI3 in the growth and/or survival of blood stage parasites because attempts to obtain knock-out parasites were unsuccessful, although the locus of PfI3 is accessible. The main localization of a GFP-tagged PfI3 in the nucleus of all blood stage parasites is compatible with a regulatory role of PfI3 on the activity of nuclear PfPP1.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, University of Lille Nord de France, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ. Attributes of short linear motifs. MOLECULAR BIOSYSTEMS 2011; 8:268-81. [PMID: 21909575 DOI: 10.1039/c1mb05231d] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Traditionally, protein-protein interactions were thought to be mediated by large, structured domains. However, it has become clear that the interactome comprises a wide range of binding interfaces with varying degrees of flexibility, ranging from rigid globular domains to disordered regions that natively lack structure. Enrichment for disorder in highly connected hub proteins and its correlation with organism complexity hint at the functional importance of disordered regions. Nevertheless, they have not yet been extensively characterised. Shifting the attention from globular domains to disordered regions of the proteome might bring us closer to elucidating the dense and complex connectivity of the interactome. An important class of disordered interfaces are the compact mono-partite, short linear motifs (SLiMs, or eukaryotic linear motifs (ELMs)). They are evolutionarily plastic and interact with relatively low affinity due to the limited number of residues that make direct contact with the binding partner. These features confer to SLiMs the ability to evolve convergently and mediate transient interactions, which is imperative to network evolution and to maintain robust cell signalling, respectively. The ability to discriminate biologically relevant SLiMs by means of different attributes will improve our understanding of the complexity of the interactome and aid development of bioinformatics tools for motif discovery. In this paper, the curated instances currently available in the Eukaryotic Linear Motif (ELM) database are analysed to provide a clear overview of the defining attributes of SLiMs. These analyses suggest that functional SLiMs have higher levels of conservation than their surrounding residues, frequently evolve convergently, preferentially occur in disordered regions and often form a secondary structure when bound to their interaction partner. These results advocate searching for small groupings of residues in disordered regions with higher relative conservation and a propensity to form the secondary structure. Finally, the most interesting conclusions are examined in regard to their functional consequences.
Collapse
Affiliation(s)
- Norman E Davey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Sami F, Smet-Nocca C, Khan M, Landrieu I, Lippens G, Brautigan DL. Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2. Biochemistry 2011; 50:6567-78. [PMID: 21714498 DOI: 10.1021/bi200553e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ∼50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.
Collapse
Affiliation(s)
- Furqan Sami
- Center for Cell Signaling and Department of Microbiology, University of Virginia School of Medicine, Box 800577-MSB7225, Charlottesville, Virginia 22908, United States
| | | | | | | | | | | |
Collapse
|
125
|
Identification and characterization of AtI-2, an Arabidopsis homologue of an ancient protein phosphatase 1 (PP1) regulatory subunit. Biochem J 2011; 435:73-83. [PMID: 21222654 DOI: 10.1042/bj20101035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.
Collapse
|
126
|
Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:693-712. [DOI: 10.1016/j.bbapap.2011.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/16/2011] [Accepted: 03/16/2011] [Indexed: 12/30/2022]
|
127
|
Tompa P. Unstructural biology coming of age. Curr Opin Struct Biol 2011; 21:419-25. [PMID: 21514142 DOI: 10.1016/j.sbi.2011.03.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/28/2011] [Accepted: 03/24/2011] [Indexed: 12/19/2022]
Abstract
It is now generally accepted that many proteins or protein domains (intrinsically disordered proteins, IDPs) lack a well-defined tertiary structure under functional conditions. Due to recent concerted activity, a critical transition in this field is gaining momentum, in which qualitative observations are turned into quantitative structural models of IDPs. Here, it is suggested that the transition is set up by the synergy of: (i) more advanced bioinformatic tools for the prediction of disorder and function of IDPs, (ii) ensemble description of their structure and dynamics in both free and bound states, down to the single molecule level, (iii) advent of in-cell approaches for characterizing their structure and function in vivo, and (iv) generation of small-molecule inhibitors both against their binding partners and IDPs themselves. In all, we suggest that due to steady advance in these areas, the field of 'unstructural' biology is rapidly maturing to a state where it can provide quantitative models of proteins functioning without well-defined three-dimensional structures.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
128
|
Dancheck B, Ragusa MJ, Allaire M, Nairn AC, Page R, Peti W. Molecular investigations of the structure and function of the protein phosphatase 1-spinophilin-inhibitor 2 heterotrimeric complex. Biochemistry 2011; 50:1238-46. [PMID: 21218781 PMCID: PMC3040262 DOI: 10.1021/bi101774g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of the major Ser/Thr phosphatase protein phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry, and small-angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and inhibitor 2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1-spinophilin-I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1-spinophilin and PP1-I-2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1-I-2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multifunctional PP1 holoenzymes.
Collapse
Affiliation(s)
- Barbara Dancheck
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Michael J. Ragusa
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Marc Allaire
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
129
|
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
130
|
Uversky VN. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 2011; 40:1623-34. [DOI: 10.1039/c0cs00057d] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
131
|
Pinheiro AS, Marsh JA, Forman-Kay JD, Peti W. Structural signature of the MYPT1-PP1 interaction. J Am Chem Soc 2010; 133:73-80. [PMID: 21142030 DOI: 10.1021/ja107810r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Muscle relaxation is triggered by the dephosphorylation of Ser19 in the myosin regulatory light chain. This reaction is catalyzed by the holoenzyme myosin phosphatase (MP), which includes the catalytic subunit protein phosphatase 1 (PP1) and the regulatory targeting subunit (MYPT). MYPT1 (myosin phosphatase targeting subunit 1) is responsible for both targeting the holoenzyme to subcellular compartments in the muscle and directing PP1 specificity toward myosin. To understand the molecular events leading to the MYPT1-PP1 holoenzyme formation, we used NMR spectroscopy to determine the structural and dynamic characteristics of unbound MYPT1. This allowed the conformations of MYPT1 in the free, unbound state to be directly compared to the PP1-bound state. Our results show that MYPT1(1-98) behaves like a two-domain protein in solution. The first 40 residues of MYPT1(1-98), the disordered region, are intrinsically disordered and highly dynamic, whereas residues 41-98, the folded ankyrin-repeat region, are well-structured and rigid. Furthermore, the integrated use of NMR and biophysical data enabled us to calculate an ensemble model for MYPT1(1-98). The most prominent structural feature of the MYPT1(1-98) ensemble is a 25% populated transient α-helix in the disordered region of MYPT1(1-98). This α-helix becomes fully populated when bound to PP1 and, as we show, likely plays a central role in the formation of the MYPT1-PP1 holoenzyme complex. Finally, this combined analysis shows that the structural and dynamic behaviors exhibited by MYPT1 for PP1 are distinct from those of any other previously analyzed PP1 regulatory protein. Collectively, these data enable us to present a new model of the molecular events that drive MYPT1-PP1 holoenzyme formation and demonstrate that there are structural differences in unbound PP1 regulators that have not been previously observed. Thus, this work adds significant insights to the currently limited data for molecular structures and dynamics of PP1 regulators.
Collapse
Affiliation(s)
- Anderson S Pinheiro
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
132
|
Florek P, Levdikov VM, Blagova E, Lebedev AA, Škrabana R, Resetárová S, Pavelcíková P, Barak I, Wilkinson AJ. The structure and interactions of SpoIISA and SpoIISB, a toxin-antitoxin system in Bacillus subtilis. J Biol Chem 2010; 286:6808-19. [PMID: 21147767 PMCID: PMC3057836 DOI: 10.1074/jbc.m110.172429] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spore formation in Bacillus subtilis begins with an asymmetric cell division, following which differential gene expression is established by alternative compartment-specific RNA polymerase σ factors. The spoIISAB operon of B. subtilis was identified as a locus whose mutation leads to increased activity of the first sporulation-specific sigma factor, σF. Inappropriate spoIISA expression causes lysis of vegetatively growing B. subtilis cells and Escherichia coli cells when expressed heterologously, effects that are countered by co-expression of spoIISB, identifying SpoIISA-SpoIISB as a toxin-antitoxin system. SpoIISA has three putative membrane-spanning segments and a cytoplasmic domain. Here, the crystal structure of a cytoplasmic fragment of SpoIISA (CSpoIISA) in complex with SpoIISB has been determined by selenomethionine-multiwavelength anomalous dispersion phasing to 2.5 Å spacing, revealing a CSpoIISA2·SpoIISB2 heterotetramer. CSpoIISA has a single domain α/β structure resembling a GAF domain with an extended α-helix at its N terminus. The two CSpoIISA protomers form extensive interactions through an intermolecular four-helix bundle. Each SpoIISB chain is highly extended and lacking tertiary structure. The SpoIISB chains wrap around the CSpoIISA dimer, forming extensive interactions with both CSpoIISA protomers. CD spectroscopy experiments indicate that SpoIISB is a natively disordered protein that adopts structure only in the presence of CSpoIISA, whereas surface plasmon resonance experiments revealed that the CSpoIISA·SpoIISB complex is stable with a dissociation constant in the nanomolar range. The results are interpreted in relation to sequence conservation and mutational data, and possible mechanisms of cell killing by SpoIISA are discussed.
Collapse
Affiliation(s)
- Patrik Florek
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava 45, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Flexibility in the PP1:spinophilin holoenzyme. FEBS Lett 2010; 585:36-40. [PMID: 21094159 DOI: 10.1016/j.febslet.2010.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/19/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022]
Abstract
Protein phosphatase 1 (PP1) interacts with ∼200 regulatory proteins to form holoenzymes, which target PP1 to specific locations and regulate its specificity. While it is known that many PP1 regulatory proteins are dynamic in the unbound state, much less is known about the residual flexibility after PP1 holoenzyme formation. Here, we have used small angle X-ray scattering to investigate the flexibility of the PP1:spinophilin holoenzyme in solution. Collectively, our data shows that the PP1:spinophilin holoenzyme is dynamic in solution, which allows for an increased capture radius of spinophilin and is likely important for its biological role.
Collapse
|
134
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
135
|
Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W. Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 2010; 18:1094-103. [PMID: 20826336 PMCID: PMC2936704 DOI: 10.1016/j.str.2010.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/07/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three nonhomologous, intrinsically disordered proteins: I-2, spinophilin, and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, preformed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex.
Collapse
Affiliation(s)
- Joseph A. Marsh
- Molecular Structure & Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada & Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Barbara Dancheck
- Department of Molecular Pharmacology, Physiology and Biotechnology & Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Michael J. Ragusa
- Department of Molecular Pharmacology, Physiology and Biotechnology & Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Marc Allaire
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Julie D. Forman-Kay
- Molecular Structure & Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada & Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology & Department of Chemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
136
|
Ma CT, Ghosh G, Fu XD, Adams JA. Mechanism of dephosphorylation of the SR protein ASF/SF2 by protein phosphatase 1. J Mol Biol 2010; 403:386-404. [PMID: 20826166 DOI: 10.1016/j.jmb.2010.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/08/2023]
Abstract
SR proteins are essential splicing factors whose function is controlled by multi-site phosphorylation of a C-terminal domain rich in arginine-serine repeats (RS domain). The protein kinase SRPK1 has been shown to polyphosphorylate the N-terminal portion of the RS domain (RS1) of the SR protein ASF/SF2, a modification that promotes nuclear entry of this splicing factor and engagement in splicing function. Later, dephosphorylation is required for maturation of the spliceosome and other RNA processing steps. While phosphates are attached to RS1 in a sequential manner by SRPK1, little is known about how they are removed. To investigate factors that control dephosphorylation, we monitored region-specific mapping of phosphorylation sites in ASF/SF2 as a function of the protein phosphatase PP1. We showed that 10 phosphates added to the RS1 segment by SRPK1 are removed in a preferred N-to-C manner, directly opposing the C-to-N phosphorylation by SRPK1. Two N-terminal RNA recognition motifs in ASF/SF2 control access to the RS domain and guide the directional mechanism. Binding of RNA to the RNA recognition motifs protects against dephosphorylation, suggesting that engagement of the SR protein with exonic splicing enhancers can regulate phosphoryl content in the RS domain. In addition to regulation by N-terminal domains, phosphorylation of the C-terminal portion of the RS domain (RS2) by the nuclear protein kinase Clk/Sty inhibits RS1 dephosphorylation and disrupts the directional mechanism. The data indicate that both RNA-protein interactions and phosphorylation in flanking sequences induce conformations of ASF/SF2 that increase the lifetime of phosphates in the RS domain.
Collapse
Affiliation(s)
- Chen-Ting Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
137
|
Lee JH, You J, Dobrota E, Skalnik DG. Identification and characterization of a novel human PP1 phosphatase complex. J Biol Chem 2010; 285:24466-76. [PMID: 20516061 DOI: 10.1074/jbc.m110.109801] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian Wdr82 is a regulatory component of the Setd1a and Setd1b histone H3-lysine 4 methyltransferase complexes and is implicated in the tethering of Setd1 complexes to transcriptional start sites of active genes. In the studies reported here, immunoprecipitation and mass spectrometry analyses reveal that Wdr82 additionally associates with multiple protein complexes, including an RNA polymerase II complex, four distinct histone H3-Lys(4) methyltransferase complexes, protein phosphatase 1 (PP1)-associated proteins, a chaperonin-containing Tcp1 complex, and other uncharacterized proteins. Further characterization of the PP1-associated proteins identified a stable multimeric complex composed of regulatory subunits PNUTS, Tox4, and Wdr82 and a PP1 catalytic subunit (denoted as the PTW/PP1 phosphatase complex). The PTW/PP1 complex exhibits in vitro phosphatase activity in a PP1-dependent manner. Analysis of protein-protein interactions reveals that PNUTS mediates phosphatase complex formation by providing a binding platform to each component. The PNUTS and Tox4 subunits are predominantly associated with the PTW/PP1 phosphatase complex in HEK293 cells, and the integrity of this complex remains intact throughout cell cycle progression. Inducible expression of a PP1 interaction-defective form of PNUTS (W401A) or small interfering RNA-mediated depletion of PNUTS in HEK293 cells causes cell cycle arrest at mitotic exit and apoptotic cell death. PNUTS (W401A) shows normal association with chromosomes but causes defects in the process of chromosome decondensation at late telophase. These data reveal that mammalian Wdr82 functions in a variety of cellular processes and reveal a potential role of the PTW/PP1 phosphatase complex in the regulation of chromatin structure during the transition from mitosis into interphase.
Collapse
Affiliation(s)
- Jeong-Heon Lee
- Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Department of Pediatrics and Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
138
|
Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 2010; 35:450-8. [PMID: 20399103 DOI: 10.1016/j.tibs.2010.03.002] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 01/03/2023]
Abstract
Protein Ser/Thr phosphatase-1 (PP1) catalyzes the majority of eukaryotic protein dephosphorylation reactions in a highly regulated and selective manner. Recent studies have identified an unusually diversified PP1 interactome with the properties of a regulatory toolkit. PP1-interacting proteins (PIPs) function as targeting subunits, substrates and/or inhibitors. As targeting subunits, PIPs contribute to substrate selection by bringing PP1 into the vicinity of specific substrates and by modulating substrate specificity via additional substrate docking sites or blocking substrate-binding channels. Many of the nearly 200 established mammalian PIPs are predicted to be intrinsically disordered, a property that facilitates their binding to a large surface area of PP1 via multiple docking motifs. These novel insights offer perspectives for the therapeutic targeting of PP1 by interfering with the binding of PIPs or substrates.
Collapse
Affiliation(s)
- Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Molecular Cell Biology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
139
|
Li X, Lin HH, Chen H, Xu X, Shih HM, Ann DK. SUMOylation of the transcriptional co-repressor KAP1 is regulated by the serine and threonine phosphatase PP1. Sci Signal 2010; 3:ra32. [PMID: 20424263 DOI: 10.1126/scisignal.2000781] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Krüppel-associated box (KRAB) domain-associated protein 1 [KAP1, also known as transcription intermediary factor-1beta (TIF1beta)] is a ubiquitous transcriptional co-repressor that is susceptible to phosphorylation at Ser(824) by ataxia-telangiectasia mutated (ATM) and to modification by small ubiquitin-like modifying (SUMO) proteins. Here, we found that, whereas the protein phosphatase 1alpha isoform (PP1alpha) directly interacted with KAP1 under basal conditions, PP1beta interacted with KAP1 only in response to genotoxic stress. Changes in the abundance of PP1alpha or PP1beta had differential effects on the phosphorylation and SUMOylation states of KAP1 under basal conditions and in response to DNA double-strand breaks (DSBs). Chromatin immunoprecipitation and re-immunoprecipitation experiments revealed that PP1alpha and PP1beta were recruited to KAP1 with different kinetics before and after the induction of DNA DSBs, which provided a mechanistic basis for the switch in the phosphorylation and SUMOylation states of KAP1. PP1beta-dependent SUMOylation of KAP1 occurred by mechanisms that were dependent and independent of the phosphorylation status of Ser(824). We posit a mechanism whereby the combined actions of PP1alpha and PP1beta cause dephosphorylation of KAP1 at Ser(824) and assure its SUMOylation to counter the effect of ATM, thereby regulating the transcription of KAP1 target genes in unstressed and stressed cells.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
140
|
Zagórska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR, Alessi DR. New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 2010; 3:ra25. [PMID: 20354225 DOI: 10.1126/scisignal.2000616] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The AMPK-related kinases NUAK1 and NUAK2 are activated by the tumor suppressor LKB1. We found that NUAK1 interacts with several myosin phosphatases, including the myosin phosphatase targeting-1 (MYPT1)-protein phosphatase-1beta (PP1beta) complex, through conserved Gly-Ile-Leu-Lys motifs that are direct binding sites for PP1beta. Phosphorylation of Ser(445), Ser(472), and Ser(910) of MYPT1 by NUAK1 promoted the interaction of MYPT1 with 14-3-3 adaptor proteins, thereby suppressing phosphatase activity. Cell detachment induced phosphorylation of endogenous MYPT1 by NUAK1, resulting in 14-3-3 binding to MYPT1 and enhanced phosphorylation of myosin light chain-2. Inhibition of the LKB1-NUAK1 pathway impaired cell detachment. Our data indicate that NUAK1 controls cell adhesion and functions as a regulator of myosin phosphatase complexes. Thus, LKB1 can influence the phosphorylation of targets not only through the AMPK family of kinases but also by controlling phosphatase complexes.
Collapse
Affiliation(s)
- Anna Zagórska
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 2010; 17:459-64. [PMID: 20305656 PMCID: PMC2924587 DOI: 10.1038/nsmb.1786] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/08/2010] [Indexed: 01/14/2023]
Abstract
The serine/threonine Protein Phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets. PP1 associates with ≥200 regulatory proteins to form highly specific holoenzymes. These regulatory proteins target PP1 to its point of action within the cell and prime its enzymatic specificity for particular substrates. However, how they direct PP1’s specificity is not understood. Here we show that spinophilin, a neuronal PP1 regulator, is entirely unstructured in its unbound form and binds PP1, through a folding-upon-binding mechanism, in an elongated fashion, blocking one of PP1’s three putative substrate binding sites, without altering its active site. This mode of binding is sufficient for spinophilin to restrict PP1’s activity toward a model substrate in vitro, without affecting its ability to dephosphorylate its neuronal substrate GluR1. Thus, our work provides the molecular basis for the ability of spinophilin to dictate PP1 substrate specificity.
Collapse
Affiliation(s)
- Michael J Ragusa
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
142
|
Characterization of a Caenorhabditis elegans glc seven-like phosphatase (gsp) orthologue from Haemonchus contortus (Nematoda). Mol Cell Probes 2010; 24:178-89. [PMID: 20153820 DOI: 10.1016/j.mcp.2010.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 01/17/2023]
Abstract
A full-length complementary DNA (cDNA; designated Hc-stp-1) encoding a serine/threonine phosphatase (Hc-STP-1) was isolated from Haemonchus contortus, a strongylid nematode parasite of small ruminants. Hc-stp-1 was shown to be transcribed in males of both adults and fourth-stage larvae, but not in females, early larval stages or eggs. The full-length gene (2854 bp) contained ten exons and nine introns, and encoded a cDNA of 951 bp. Comparisons of the conceptually translated protein (316 amino acids, estimated at approximately 35 kDa) with serine/threonine phosphatases (STPs) from other organisms revealed the presence of the conserved motif LRGNHE. Structural analysis, by comparative modelling, confirmed strict conservation of residues and features involved in catalytic activity, and variation in the ligand-binding interface. Phylogenetic analysis of amino acid sequence data revealed that Hc-STP-1 clustered with STPs from other nematodes (including Caenorhabditis elegans, Trichostrongylus vitrinus, Oesophagostomum dentatum, Ascaris suum and Brugia malayi) to the exclusion of STPs from other organisms. The protein was inferred to be most closely related to the PP1 class of STPs of C. elegans, within a group containing STPs encoded, amongst others, by the genes gsp-3 and gsp-4 in this free-living nematode. The functions of proteins GSP-3 and GSP-4 are known to be central to spermatogenesis and other male-specific processes in C. elegans. The findings from the present and previous studies support the proposal that Hc-stp-1 and its product play a significant role in reproductive and/or developmental processes in maturing or adult male H. contortus.
Collapse
|
143
|
Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 2010; 284:35273-7. [PMID: 19846560 DOI: 10.1074/jbc.r109.059972] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The regulatory circuit controlling cellular protein phosphatase-1 (PP1), an abundant group of Ser/Thr phosphatases, involves phosphorylation of PP1-specific inhibitor proteins. Malfunctions of these inhibitor proteins have been linked to a variety of diseases, including cardiovascular disease and cancer. Upon phosphorylation at Thr(38), the 17-kDa PP1 inhibitor protein, CPI-17, selectively inhibits a specific form of PP1, myosin light chain phosphatase, which transduces multiple kinase signals into the phosphorylation of myosin II and other proteins. Here, the mechanisms underlying PP1 inhibition and the kinase/PP1 cross-talk mediated by CPI-17 and its related proteins, PHI, KEPI, and GBPI, are discussed.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
144
|
Roy J, Cyert MS. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2009; 2:re9. [PMID: 19996458 DOI: 10.1126/scisignal.2100re9] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phosphoserine- and phosphothreonine-directed phosphatases display remarkable substrate specificity, yet the sites that they dephosphorylate show little similarity in amino acid sequence. Studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases, protein phosphatase 1 (PP1) and the Ca2+-calmodulin-dependent phosphatase calcineurin. In each case, a small degenerate sequence motif in the interacting protein directs low-affinity binding to a docking surface on the phosphatase that is distinct from the active site; several such interactions combine to confer overall binding specificity. Some docking surfaces are conserved, such as a hydrophobic groove on a face opposite the active site that serves as a major recognition surface for the "RVxF" motif of proteins that interact with PP1 and the "PxIxIT" motif of substrates of calcineurin. Secondary motifs combine with this primary targeting sequence to specify phosphatase binding. A comprehensive interactome for mammalian PP1 was described, analysis of which defines several PP1-binding motifs. Studies of "LxVP," a secondary calcineurin-binding sequence, establish that this motif is a conserved feature of calcineurin substrates and that the immunosuppressants FK506 and cyclosporin A inhibit the phosphatase by interfering with LxVP-mediated docking.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
145
|
Huang YC, Chen YC, Tsay HJ, Chyan CL, Chen CY, Huang HB, Lin TH. The effect of PKA-phosphorylation on the structure of inhibitor-1 studied by NMR spectroscopy. J Biochem 2009; 147:273-8. [DOI: 10.1093/jb/mvp178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
146
|
Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M. Docking motif-guided mapping of the interactome of protein phosphatase-1. ACTA ACUST UNITED AC 2009; 16:365-71. [PMID: 19389623 DOI: 10.1016/j.chembiol.2009.02.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 01/03/2023]
Abstract
The ubiquitous protein Ser/Thr phosphatase-1 (PP1) interacts with dozens of regulatory proteins that are structurally unrelated. However, most of them share a short, degenerate "RVxF"-type docking motif. Using a broad in silico screening based on a stringent definition of the RVxF motif, in combination with a multistep biochemical validation procedure, we have identified 78 novel mammalian PP1 interactors. A global analysis of the validated RVxF-based PP1 interactome not only provided insights into the conserved features of the RVxF motif but also led to the discovery of additional common PP1 binding elements, described as the "SILK" and "MyPhoNE" motifs. In addition to the doubling of the known mammalian PP1 interactome, our data contribute to the design of PP1 interaction networks. Notably, an interaction network linking PP1 interactors discloses a pleiotropic role of PP1 in cell polarity.
Collapse
Affiliation(s)
- Annick Hendrickx
- Laboratory of Biosignaling and Therapeutics, Department of Molecular Cell Biology, Faculty of Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Mészáros B, Simon I, Dosztányi Z. Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 2009; 5:e1000376. [PMID: 19412530 PMCID: PMC2671142 DOI: 10.1371/journal.pcbi.1000376] [Citation(s) in RCA: 454] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/30/2009] [Indexed: 12/24/2022] Open
Abstract
Many disordered proteins function via binding to a structured partner and undergo
a disorder-to-order transition. The coupled folding and binding can confer
several functional advantages such as the precise control of binding specificity
without increased affinity. Additionally, the inherent flexibility allows the
binding site to adopt various conformations and to bind to multiple partners.
These features explain the prevalence of such binding elements in signaling and
regulatory processes. In this work, we report ANCHOR, a method for the
prediction of disordered binding regions. ANCHOR relies on the pairwise energy
estimation approach that is the basis of IUPred, a previous general disorder
prediction method. In order to predict disordered binding regions, we seek to
identify segments that are in disordered regions, cannot form enough favorable
intrachain interactions to fold on their own, and are likely to gain stabilizing
energy by interacting with a globular protein partner. The performance of ANCHOR
was found to be largely independent from the amino acid composition and adopted
secondary structure. Longer binding sites generally were predicted to be
segmented, in agreement with available experimentally characterized examples.
Scanning several hundred proteomes showed that the occurrence of disordered
binding sites increased with the complexity of the organisms even compared to
disordered regions in general. Furthermore, the length distribution of binding
sites was different from disordered protein regions in general and was dominated
by shorter segments. These results underline the importance of disordered
proteins and protein segments in establishing new binding regions. Due to their
specific biophysical properties, disordered binding sites generally carry a
robust sequence signal, and this signal is efficiently captured by our method.
Through its generality, ANCHOR opens new ways to study the essential functional
sites of disordered proteins. Intrinsically unstructured/disordered proteins (IUPs/IDPs) do not adopt a stable
structure in isolation but exist as a highly flexible ensemble of conformations.
Despite the lack of a well-defined structure these proteins carry out important
functions. Many IUPs/IDPs function via binding specifically to other
macromolecules that involves a disorder-to-order transition. The molecular
recognition functions of IUPs/IDPs include regulatory and signaling interactions
where binding to multiple partners and high-specificity/low-affinity
interactions play a crucial role. Due to their specific functional and
structural properties, these binding regions have distinct properties compared
to both globular proteins and disordered regions in general. Here, we present a
general method to identify disordered binding regions from the amino acid
sequence. Our method targets the essential feature of these regions: they behave
in a characteristically different manner in isolation than bound to their
partner protein. This prediction method allows us to compare the binding
properties of short and long binding sites. The evolutionary relationship
between the amount of disordered binding regions and general disordered regions
in various organisms was also analyzed. Our results suggest that disordered
binding regions can be recognized even without taking into account their adopted
secondary structure or their specific binding partner.
Collapse
Affiliation(s)
- Bálint Mészáros
- Institute of Enzymology, Biological Research Center, Hungarian Academy of
Sciences, Budapest, Hungary
| | - István Simon
- Institute of Enzymology, Biological Research Center, Hungarian Academy of
Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of
Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
148
|
The RCAN carboxyl end mediates calcineurin docking-dependent inhibition via a site that dictates binding to substrates and regulators. Proc Natl Acad Sci U S A 2009; 106:6117-22. [PMID: 19332797 DOI: 10.1073/pnas.0812544106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Specificity of signaling kinases and phosphatases toward their targets is usually mediated by docking interactions with substrates and regulatory proteins. Here, we characterize the motifs involved in the physical and functional interaction of the phosphatase calcineurin with a group of modulators, the RCAN protein family. Mutation of key residues within the hydrophobic docking-cleft of the calcineurin catalytic domain impairs binding to all human RCAN proteins and to the calcineurin interacting proteins Cabin1 and AKAP79. A valine-rich region within the RCAN carboxyl region is essential for binding to the docking site in calcineurin. Although a peptide containing this sequence compromises NFAT signaling in living cells, it does not inhibit calcineurin catalytic activity directly. Instead, calcineurin catalytic activity is inhibited by a motif at the extreme C-terminal region of RCAN, which acts in cis with the docking motif. Our results therefore indicate that the inhibitory action of RCAN on calcineurin-NFAT signaling results not only from the inhibition of phosphatase activity but also from competition between NFAT and RCAN for binding to the same docking site in calcineurin. Thus, competition by substrates and modulators for a common docking site appears to be an essential mechanism in the regulation of Ca(2+)-calcineurin signaling.
Collapse
|
149
|
Domain architecture of the regulators of calcineurin (RCANs) and identification of a divergent RCAN in yeast. Mol Cell Biol 2009; 29:2777-93. [PMID: 19273587 DOI: 10.1128/mcb.01197-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Regulators of calcineurin (RCANs) in fungi and mammals have been shown to stimulate and inhibit calcineurin signaling in vivo through direct interactions with the catalytic subunit of the phosphatase. The dual effects of RCANs on calcineurin were examined by performing structure-function analyses on yeast Rcn1 and human RCAN1 (a.k.a. DSCR1, MCIP1, and calcipressin 1) proteins expressed at a variety of different levels in yeast. At high levels of expression, the inhibitory effects required a degenerate PxIxIT-like motif and a novel LxxP motif, which may be related to calcineurin-binding motifs in human NFAT proteins. The conserved glycogen synthase kinase 3 (GSK-3) phosphorylation site was not required for inhibition, suggesting that RCANs can simply compete with other substrates for docking onto calcineurin. In addition to these docking motifs, two other highly conserved motifs plus the GSK-3 phosphorylation site in RCANs, along with the E3 ubiquitin ligase SCF(Cdc4), were required for stimulation of calcineurin signaling in yeast. These findings suggest that RCANs may function primarily as chaperones for calcineurin biosynthesis or recycling, requiring binding, phosphorylation, ubiquitylation, and proteasomal degradation for their stimulatory effect. Finally, another highly divergent yeast RCAN, termed Rcn2 (YOR220w), was identified through a functional genetic screen. Rcn2 lacks all stimulatory motifs, though its expression was still strongly induced by calcineurin signaling through Crz1 and it competed with other endogenous substrates when overexpressed, similar to canonical RCANs. These findings suggest a primary role for canonical RCANs in facilitating calcineurin signaling, but canonical RCANs may secondarily inhibit calcineurin signaling by interfering with substrate interactions and enzymatic activity.
Collapse
|
150
|
Virshup DM, Shenolikar S. From Promiscuity to Precision: Protein Phosphatases Get a Makeover. Mol Cell 2009; 33:537-45. [DOI: 10.1016/j.molcel.2009.02.015] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|