101
|
Wang Y, Mei Y, Song Y, Bachus C, Sun C, Sheshbaradaran H, Glogauer M. AP-002: A novel inhibitor of osteoclast differentiation and function without disruption of osteogenesis. Eur J Pharmacol 2020; 889:173613. [PMID: 33007291 DOI: 10.1016/j.ejphar.2020.173613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
AP-002 is a novel, gallium-based, anti-cancer oral compound in clinical development for cancer patients with bone metastases. We examined the effects of AP-002 on osteoclastogenesis, fusion, and osteogenesis. AP-002 exhibited a dramatic effect on osteoclast function without causing osteoclast cell death. The expression of tartrate-resistant acid phosphatase and cathepsin K mRNA levels was down-regulated in RAW264.7 cells treated with AP-002 in the presence of soluble receptor activator of NF-κB ligand. AP-002 was also found to block the fusion of osteoclasts from RAW264.7 cells. AP-002 had a similar inhibitory effect on RANKL-induced mouse primary bone marrow monocytes fusion. Human blood monocytes treated with AP-002 failed to form TRAcP/ACP5-positive cells. AP-002 caused these inhibitory effects without causing osteoclast cell death, which was in contrast to zoledronic acid controls. Furthermore, unlike zoledronic acid, AP-002 did not inhibit Rac1 activation. Gene expression analysis by microarrays showed that AP-002 significantly reverses the effects of RANKL-induced gene expression. These include several key osteoclast-differentiation/function-associated genes such as: Scinderin, OCSTAMP, Atp6v0d2, OSCAR, RhoU, Usp18, MMP9, and Trim30. The difference between AP-002 and zoledronic acid is also seen in its effects on osteogenesis. Osteoblast mineralization was promoted by AP-002 (0.1-3.0 μM), whereas zoledronic acid showed toxicity to osteoblasts at the concentration >0.5 μM, in the same dose range where it causes osteoclast cell death. Zoledronic acid therefore has no therapeutic window in its toxic effect on osteoclasts and osteoblasts. AP-002 promotes osteogenesis in this therapeutic window, while blocking osteoclast development. We therefore conclude that AP-002 has potential as a new anti-bone resorption agent, with a mechanism of action different compared with other currently marketed anti-bone resorption agents.
Collapse
Affiliation(s)
- Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yixue Mei
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yushan Song
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Carly Bachus
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
102
|
Jann J, Drevelle O, Lauzon MA, Faucheux N. Adhesion, intracellular signalling and osteogenic differentiation of mesenchymal progenitor cells and preosteoblasts on poly(epsilon)caprolactone films functionalized by peptides derived from fibronectin and/or BMP-9. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111088. [DOI: 10.1016/j.msec.2020.111088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
103
|
Farhat T, Dudakovic A, Chung JH, van Wijnen AJ, St-Arnaud R. Inhibition of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. J Cell Physiol 2020; 236:1195-1213. [PMID: 32686190 DOI: 10.1002/jcp.29927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.
Collapse
Affiliation(s)
- Theresa Farhat
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jay H Chung
- Laboratory of Obesity & Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute (NIH), Bethesda, Maryland
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
104
|
Lu C, Dong X, Yu WP, Ding JL, Yang W, Gong Y, Liu JC, Tang YH, Xu JJ, Zhou JL. Inorganic phosphate-osteogenic induction medium promotes osteogenic differentiation of valvular interstitial cells via the BMP-2/Smad1/5/9 and RhoA/ROCK-1 signaling pathways. Am J Transl Res 2020; 12:3329-3345. [PMID: 32774703 PMCID: PMC7407741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Calcific aortic valve disease (CAVD) currently lacks a highly effective in vitro model. The presence of high concentrations of serum inorganic phosphate in patients with end-stage renal disease leads to calcification of vascular and aortic valves. Therefore, we applied inorganic phosphate to induce the osteogenic differentiation of valvular interstitial cells (VICs) and mimic its in vivo pathophysiological effects. Calcification and inflammatory response assays determined that inorganic phosphate-osteogenic induction medium (IP-OIM) was more efficient than classic osteogenic induction medium (OIM) containing organic glycerophosphate. Levels of BMP-2, RhoA, and ROCK-1 were significantly increased in IP-OIM cells. Knockdown efficiency of BMP-2- and RhoA-siRNA in VICs was evaluated, and expression of RhoA and its downstream target ROCK-1 was decreased after BMP-2-siRNA transfection. Moreover, ROCK-1 was significantly downregulated after RhoA knockdown, whereas expression of BMP-2 was unchanged. Interference of BMP-2 had a stronger anti-calcification effect than RhoA, further identifying BMP-2 as an upstream regulator of RhoA/ROCK-1. Stimulation of VICs by IP-OIM led to increased Smad1/5/9 phosphorylation, which peaked at 60 min, while pre-treatment of VICs with the Smad1/5/9 inhibitor Compound C attenuated VICs calcification. These results suggest that IP-OIM induced VICs osteogenic differentiation via Smad1/5/9 signaling. Knockdown of BMP-2 or RhoA also decreased Smad1/5/9 phosphorylation also decreased. We conclude that the RhoA/ROCK-1 axis participates in VICs osteogenic differentiation as a "bypass mediator" of the BMP-2/Smad1/5/9 signaling pathway.
Collapse
Affiliation(s)
- Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Wen Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jing Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Ji Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Yan Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jian Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jian Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| |
Collapse
|
105
|
Xie L, Liu N, Xiao Y, Liu Y, Yan C, Wang G, Jing X. In Vitro and In Vivo Osteogenesis Induced by Icariin and Bone Morphogenetic Protein-2: A Dynamic Observation. Front Pharmacol 2020; 11:1058. [PMID: 32760277 PMCID: PMC7373825 DOI: 10.3389/fphar.2020.01058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
In the present study, we aimed to compare the effects of icariin (ICA) and bone morphogenetic protein-2 (BMP-2) on osteoblast proliferation and osteogenesis in bone defects. We found that in vitro ICA or BMP-2 treatment is able to increase osteoblast proliferation, which was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Specifically, ICA at a concentration of 30 µg/ml had the strongest ability to promote cell proliferation, which is equivalent with the effect of BMP-2 at a concentration of 50 µg/ml. Furthermore, Western blot and RT-qPCR analyses showed that treatment with ICA (20–30 µg/ml) had similar increase effect with BMP-2 (50 µg/ml) on the protein and mRNA levels of BMP-2, osteoprotegerin (OPG), and alkaline phosphatase (ALP) mRNAs. In addition, the animal model of bone defects was successfully prepared. The in vivo data showed that compared with the control group, highest osteogenesis in the ICA or BMP-2 groups was observed at different observational times. Four weeks after surgery, osteogenesis in the BMP-2 group was slightly higher than that in the ICA group, but there was no significant difference between the two groups until the eighth week. ICA promotes osteoblast proliferation by stimulating the expression of BMP-2 and OPG proteins and upregulating the expression of BMP-2, OPG, and ALP mRNAs. ICA at a certain concentration has the same osteogenic effect as BMP-2. ICA or BMP-2 composite nanomaterials can be used as a framework to guide bone regeneration and promote osteogenesis. In addition, the combined use of hematoxylin-eosin and Goldner’s trichrome staining techniques contributes to acquiring better bone morphometric information about bone defects.
Collapse
Affiliation(s)
- Lina Xie
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning Liu
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Ye Xiao
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yanhui Liu
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunge Yan
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gailing Wang
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangdong Jing
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
106
|
A Novel Peptide, CK2.3, Improved Bone Formation in Ovariectomized Sprague Dawley Rats. Int J Mol Sci 2020; 21:ijms21144874. [PMID: 32664215 PMCID: PMC7402306 DOI: 10.3390/ijms21144874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a bone disease that has no definite cure. Current treatments for osteoporosis are divided into two categories: anti-resorptive and anabolic. However, these treatments are not perfect and have considerable risks. In addition, bone quality often declines over time with these treatments. We designed a peptide, CK2.3, that has both anabolic and anti-resorptive effects on bone. We reported that CK2.3 induced osteoblastic mineralization, promoted bone formation, and suppressed osteoclastogenesis in vivo. The effect of CK2.3 to rescue an osteoporosis phenotype model has never been shown. In this study, we demonstrated the effect of CK2.3 in ovariectomized rats, a standard model of osteoporosis. We systemically injected CK2.3 at 2.3 µg/kg each day for five consecutive days. Micro-computed tomography indicated that CK2.3 increased bone mineral density, (bone volume/tissue volume) BV/TV and (trabecular number) TbN, and decreased (trabecular space) TbSp in the femoral head. Similarly, single photon absorptiometry showed that treatment with CK2.3 increased bone mineral density in the lumbar spine and the pelvis. Additionally, we observed increased femoral shaft stiffness with ovariectomized rats treated with CK2.3. We also detected no significant changes in the weight of organs such as the heart, lung, liver, kidney, and spleen. An advantage of CK2.3 over current treatments was that it not only promoted bone formation but also improved fracture resistance. In conclusion, we demonstrated CK2.3 as a new anabolic treatment for osteoporosis.
Collapse
|
107
|
Homaeigohar S, Tsai TY, Zarie ES, Elbahri M, Young TH, Boccaccini AR. Bovine Serum Albumin (BSA)/polyacrylonitrile (PAN) biohybrid nanofibers coated with a biomineralized calcium deficient hydroxyapatite (HA) shell for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111248. [PMID: 32806254 DOI: 10.1016/j.msec.2020.111248] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023]
Abstract
Here, for the first time, a nanofibrous (NF) wound dressing comprising biomineralized polyacrylonitrile (PAN) nanofibers is developed. In contrast to the majority of the currently available nanofibrous wound dressings that are based on natural polymers, PAN is a synthetic, industrial polymer, which has been rarely considered for this purpose. PAN NFs are first hydrolyzed to allow for tethering of biofunctional agents (here Bovine Serum Albumin (BSA)). Later, the biofunctionlized PAN NFs are biomineralized by immersion in simulated body fluid (SBF). As a result, core-shell, calcium deficient hydroxyapatite (HA)/BSA/PAN nanofibers form, that are mechanically stronger (elastic modulus; 8.5 vs. 6 MPa) compared to the untreated PAN NFs. The biomineralized PAN NFs showed promising bioactivity as reflected in the cell biology tests with fibroblast and keratinocyte cells. Hs68 fibroblasts and HaCat keratinocytes were found to be more viable in the presence of the biomineralized NFs than when they were co-cultured with the neat PAN NFs. Such mechanical and biological characteristics of the biomineralized PAN NFs are favorable for wound dressing applications.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany; Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland.
| | - Ting-Yu Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Eman S Zarie
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland; Department of Therapeutical Chemistry, Pharmaceutical and Drug Industries Research Division National Research Centre, Dokki 12311, Giza, Egypt
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| | - Tai-Horng Young
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| |
Collapse
|
108
|
Karadeniz F, Oh JH, Lee JI, Seo Y, Kong CS. 3,5-dicaffeoyl‑epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153225. [PMID: 32464299 DOI: 10.1016/j.phymed.2020.153225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Impaired bone formation is one of the reasons behind osteoporosis. Alterations in the patterns of mesenchymal stromal cell differentiation towards adipocytes instead of osteoblasts contribute to osteoporosis progression. Natural anti-osteoporotic agents are effective and safe alternatives for osteoporosis treatment. PURPOSE In this context, 3,5-dicaffeoyl‑epi-quinic acid (DCEQA) which is a derivative of chlorogenic acid with reported bioactivities was studied for its osteogenic differentiation enhancing potential in vitro. METHODS Anti-osteoporotic effects of DCEQA were investigated in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) which were induced to differentiate into osteoblasts or adipocytes with or without DCEQA treatment. Changes in the osteogenic and adipogenic markers such as ALP activity and lipid accumulation, respectively, were observed along with differentiation-specific activation of mitogen activated protein kinase (MAPK) pathways. RESULTS At 10 μM concentration, DCEQA increased the proliferation of bone marrow-derived human mesenchymal stromal cells (hBM-MSCs) during osteoblast differentiation. The expression of osteogenic markers ALP, osteocalcin, Runx2, BMP2 and Wnt 10a was upregulated by DCEQA treatment. The ALP activity and extracellular mineralization were also increased. DCEQA elevated the phosphorylation levels of p38 and JNK MAPKs as well as the activation of β-catenin and Smad1/5. DCEQA suppressed the lipid accumulation and downregulated expression of adipogenic markers PPARγ, C/EBPα and SREBP1c in adipo-induced hBM-MSCs. DCEQA also decreased the phosphorylation of p38 and ERK MAPKs and stimulated the activation of AMPK in hBM-MSC adipocytes. CONCLUSION DCEQA was suggested to enhance osteoblast differentiation via stimulating Wnt/BMP signaling. The adipocyte differentiation inhibitory effect of DCEQA was suggested to arise from its ability to increase AMPK phosphorylation. Overall, DCEQA was shown to possess osteogenesis enhancing and adipogenesis inhibitory properties which might facilitate its use against osteoporotic conditions.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Baegyang-dero 700beon-gil 140, Sasang-gu, Busan 46958, Korea.
| |
Collapse
|
109
|
Doolittle ML, Calabrese GM, Mesner LD, Godfrey DA, Maynard RD, Ackert-Bicknell CL, Farber CR. Genetic analysis of osteoblast activity identifies Zbtb40 as a regulator of osteoblast activity and bone mass. PLoS Genet 2020; 16:e1008805. [PMID: 32497039 PMCID: PMC7326283 DOI: 10.1371/journal.pgen.1008805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/30/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a genetic disease characterized by progressive reductions in bone mineral density (BMD) leading to an increased risk of fracture. Over the last decade, genome-wide association studies (GWASs) have identified over 1000 associations for BMD. However, as a phenotype BMD is challenging as bone is a multicellular tissue affected by both local and systemic physiology. Here, we focused on a single component of BMD, osteoblast-mediated bone formation in mice, and identified associations influencing osteoblast activity on mouse Chromosomes (Chrs) 1, 4, and 17. The locus on Chr. 4 was in an intergenic region between Wnt4 and Zbtb40, homologous to a locus for BMD in humans. We tested both Wnt4 and Zbtb40 for a role in osteoblast activity and BMD. Knockdown of Zbtb40, but not Wnt4, in osteoblasts drastically reduced mineralization. Additionally, loss-of-function mouse models for both genes exhibited reduced BMD. Our results highlight that investigating the genetic basis of in vitro osteoblast mineralization can be used to identify genes impacting bone formation and BMD.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Gina M. Calabrese
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Larry D. Mesner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dana A. Godfrey
- Department of Orthopedics, University of Colorado, Aurora, Colorado, United States of America
| | - Robert D. Maynard
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- Department of Orthopedics, University of Colorado, Aurora, Colorado, United States of America
| | - Cheryl L. Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
- Department of Orthopedics, University of Colorado, Aurora, Colorado, United States of America
| | - Charles R. Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
110
|
Maung WM, Nakata H, Miura M, Miyasaka M, Kim YK, Kasugai S, Kuroda S. Low-Intensity Pulsed Ultrasound Stimulates Osteogenic Differentiation of Periosteal Cells In Vitro. Tissue Eng Part A 2020; 27:63-73. [PMID: 32164486 DOI: 10.1089/ten.tea.2019.0331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adequate bone volume is required for osseointegrated implants to restore lost teeth and oral function. Several studies have demonstrated potential advantage of stem cells in regenerative medicine using osteoblasts. The periosteum is composed of osteoblasts, fibroblasts, and osteoprogenitor cells. It may be an alternative source for bone tissue engineering because of easy isolation and rapid proliferation in vivo and in vitro. Low-intensity pulsed ultrasound (LIPUS) has proved successful in recoveries from nonunions, delayed unions, and fracture of the bone in both animal experiments and clinical treatments. The study was to investigate the influence of LIPUS on the osteogenic differentiation in murine periosteum-derived cells (PDCs) and the underlying mechanism of LIPUS. PDCs were treated daily with LIPUS for 20 min up to 21 days with 3 MHz frequency, 30 mW/cm2 intensity, and pulse repetition frequency of 1 kHz. The effects of LIPUS on cell proliferation and viability were investigated. Osteogenic differentiation was analyzed by alkaline phosphatase (ALP)-positive cell staining, ALP activity assay, mineralized nodule formation, real-time reverse transcription-polymerase chain reaction, as well as western blotting. The results indicated that ultrasound stimulation did not significantly affect the proliferation of PDCs. But LIPUS significantly increased ALP activity on day 7 and markedly promoted formation of mineralized nodules on day 21. mRNA expression of ALP and osteocalcin was significantly upregulated by stimulation with LIPUS. LIPUS enhanced gene expression of both bone morphogenetic protein-2 (BMP-2) and osterix only in the presence of osteogenic medium. LIPUS stimulation did not affect Smad 1 and Smad 5 protein expression, but significantly upregulated protein levels of BMP-2 and phosphor-Smad 1/5/9 in PDCs. Thus, LIPUS stimulation increased early osteogenic differentiation in a normal medium and further enhanced expression of BMP-2 and subsequent osterix expression through the canonical Smad-signaling pathway in an osteogenic medium, leading to mineral apposition. Therefore, LIPUS might have potential to promote osteogenesis in PDCs. Impact statement There are few studies on periosteum-derived cells (PDCs) because conventional methods of their isolation are relatively difficult to procure abundant cells for cell culture and the total cell numbers are limited. In this study, a modified isolation technique of murine calvarial PDCs using gelatin is described. PDCs were initiated to emerge as early as day 3 and showed increased proliferation, which can be used for further studies. Low-intensity pulsed ultrasound stimulation increased early osteogenic differentiation in a normal medium and further enhanced expression of bone morphogenic protein-2 and subsequent osterix expression through the canonical Smad-signaling pathway in an osteogenic medium, leading to mineral apposition.
Collapse
Affiliation(s)
- Wai Myo Maung
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Hidemi Nakata
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Motoi Miura
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Munemitsu Miyasaka
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - You-Kyoung Kim
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Shohei Kasugai
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Shinji Kuroda
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| |
Collapse
|
111
|
Zhao S, Yu S, Zhu D, Dai L, Yang P, Xing X. Stimulatory effects of simvastatin on bone regeneration of the expanded suture in rats. Am J Transl Res 2020; 12:1767-1778. [PMID: 32509175 PMCID: PMC7270041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Simvastatin belongs to the family of statins and is found to have some osteopromotive properties in recent years. The aim of the present study was to investigate the potential effects of simvastatin on bone formation of the expanded mid-palatal suture of rats. Forty-five Wistar rats were randomly divided into three groups: control (C), expansion (EP), and expansion plus simvastatin (ES) groups. Rats in the ES group were administrated with simvastatin (20 mg/kg/d body weight). According to the schedule of sacrifice (days 3, 7 and 14), the suture width and bone volume changes of the region of interest (ROI) were detected by micro-computed tomography during RME. Besides, morphological changes and bone morphogenetic protein 2 (BMP-2) expression in the mid-palatal suture were observed by hematoxylin and eosin (HE) and immunohistochemical staining. Kruskal-Wallis one-way analysis of variance (ANOVA) and LSD method were applied to analyze the data at P<0.05 level. By the RME appliance, the suture was successfully widened. On days 7, 14, the bone volume of ROI in the ES group was more than that in the EP group (P<0.05). Besides, histological examinations also demonstrated that more bone regeneration and capillaries in the suture in the ES group were observed than that in the EP group. The BMP-2 expression in the ES group was more (P<0.05) than that in the EP and C groups on days 3, 7, 14. Consequently, those findings showed that simvastatin can induce a favorable effect on bone regeneration in the mid-palatal suture of rats during RME.
Collapse
Affiliation(s)
- Shuya Zhao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Shibin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical UniversityTaiyuan, China
| | - Dinggui Zhu
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Li Dai
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Panpan Yang
- Department of Bone Metabolism, Shandong University School of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue RegenerationJinan, China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
112
|
Cai C, Wang J, Huo N, Wen L, Xue P, Huang Y. Msx2 plays an important role in BMP6-induced osteogenic differentiation of two mesenchymal cell lines: C3H10T1/2 and C2C12. Regen Ther 2020; 14:245-251. [PMID: 32455154 PMCID: PMC7232041 DOI: 10.1016/j.reth.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), have been shown to enhance the osteogenic differentiation of mesenchymal cells (MCs) and to promote bone formation. BMP6 is known to play an important role in the process of MCs towards osteogenic differentiation by virtue of their osteoinductive and cell type specific proliferative activity. However, the molecular mechanism relate to BMP6 osteoinductive activity is still unclear and continues to warrant further investigation. Msx2 is a member of the homeobox gene family of transcription factors and promotes calcification. Hence, we wondered if it might also play a role in BMP6-induced osteogenesis. In this study, two mouse mesenchymal cell lines were treated with BMP6, adenovirus-Msx2 (Ad-Msx2) or adenovirus-siMsx2 (Ad-siMsx2). Based on the results of mRNA and protein expression, it was indicated that BMP6 could enhance the expression of Msx2 and activate the phosphorylation of Smad 1/5/8, p38 and ERK1/2. Being transfected by Ad-Msx2, the BMP6-induced activation of phosphorylation was significantly promoted. On the contrary, two cell lines transfected by Ad-siMsx2 presented an inhibited expression of three phosphorylated proteins even after being induced by BMP6. The evaluation of ALP, OPN, OC and calcium deposits revealed the osteogenic results those were corresponding to the results of mRNA and protein. Taken together, these findings can be a novel viewpoint for the understanding of the mechanisms of BMP6-induced osteogenesis and provide therapeutic targets of bone defect.
Collapse
Affiliation(s)
- Chuan Cai
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Wen
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Xue
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ye Huang
- Department of Dermatology, Air Force General Hospital of Chinese PLA, Beijing, 100412, China
| |
Collapse
|
113
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
114
|
Dudakovic A, Samsonraj RM, Paradise CR, Galeano-Garces C, Mol MO, Galeano-Garces D, Zan P, Galvan ML, Hevesi M, Pichurin O, Thaler R, Begun DL, Kloen P, Karperien M, Larson AN, Westendorf JJ, Cool SM, van Wijnen AJ. Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem 2020; 295:7877-7893. [PMID: 32332097 DOI: 10.1074/jbc.ra119.011685] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 μm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 μg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from μCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Merel O Mol
- Department of Orthopedic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Kloen
- Department of Orthopedic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA .,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
115
|
Shi Y, Zhao M, He M. PfSMAD1/5 Can Interact with PfSMAD4 to Inhibit PfMSX to Regulate Shell Biomineralization in Pinctada fucata martensii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:246-262. [PMID: 31960221 DOI: 10.1007/s10126-020-09948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The BMP2 signal transduced by SMAD1/5 plays an important role in osteoblast differentiation and bone formation. Shell formation of Pinctada fucata martensii is a typical biomineralization process that is similar to that of teeth/bone formation. However, whether the Pinctada fucata BMP2 (PfBMP2) signal transduced by PfSMAD1/5 occurs in P. f. martensii, how the PfBMP2 signal is transduced by PfSMAD1/5, and how PfSMAD1/5 regulates the biomineralization process in this species and other shellfish are poorly understood. Therefore, injection experiments of recombinant PfBMP2 and inhibitor dorsomorphin revealed that PfSMAD1/5 can transduce PfBMP2 signals. Subcellular localization and bimolecular fluorescence complementation assays indicated that PfSMAD1/5 phosphorylated by PfBMPR1b interacts with PfSMAD4 in the cytoplasm to form a complex, which translocates to the nucleus to transduce PfBMP2 signals. Co-immunoprecipitation and luciferase assays revealed that PfSMAD1/5 may interact with PfMSX to dislodge it from its binding element, resulting in initiation of mantle gene transcription. The in vivo functional assay showed that knockdown of PfMSAD1/5 decreased expression of shell matrix genes and disordered the nacreous layer, and the correlation assay of shell regeneration showed the concomitant expression pattern of PfSMAD1/5 and shell matrix genes. Together, these data showed that PfSMAD1/5 can transduce PfBMP2 signals to regulate shell biomineralization in P. f. martensii, which illustrated conservation of the BMP2-SMAD signal pathway among invertebrates. Particularly, the results suggest that there is only one PfMSX gene, which functions like the Hox gene in vertebrates, that interacts with PfSMAD1/5 in a protein-protein action form and plays the role of transcription repressor.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
116
|
Sanjeev G, Sidharthan DS, Pranavkrishna S, Pranavadithya S, Abhinandan R, Akshaya RL, Balagangadharan K, Siddabathuni N, Srinivasan S, Selvamurugan N. An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett 2020; 30:127137. [PMID: 32245598 DOI: 10.1016/j.bmcl.2020.127137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023]
Abstract
In recent years, phytochemicals have been widely researched and utilized for the treatment of various medical conditions such as cancer, cardiovascular diseases, age-related problems and are also said to have bone regenerative effects. In this study, phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol), an acyclic unsaturated diterpene alcohol and a secondary metabolite derived from aromatic plants was investigated for its effect on osteogenesis. Phytol was found to be nontoxic in mouse mesenchymal stem cells (C3H10T1/2). At the cellular level, phytol-treatment promoted osteoblast differentiation, as seen by the increased calcium deposits. At the molecular level, phytol-treatment stimulated the expression of Runx2 (a bone-related transcription factor) and other osteogenic marker genes. MicroRNAs (miRNAs) play an essential role in controlling bone metabolism by targeting genes at the post-transcriptional level. Upon phytol-treatment in C3H10T1/2 cells, mir-21a and Smad7 levels were increased and decreased, respectively. It was previously reported that mir-21a targets Smad7 (an antagonist of TGF-beta1 signaling) and thus, protects Runx2 from its degradation. Thus, based on our results, we suggest that phytol-treatment promoted osteoblast differentiation in C3H10T1/2 cells via Runx2 due to downregulation of Smad7 by mir-21a. Henceforth, phytol was identified to bolster osteoblast differentiation, which in turn may be used for bone regeneration.
Collapse
Affiliation(s)
- Ganesh Sanjeev
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Saleth Sidharthan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Pranavkrishna
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Pranavadithya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R Abhinandan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nishitha Siddabathuni
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Swathi Srinivasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
117
|
Spieker J, Frieß JL, Sperling L, Thangaraj G, Vogel-Höpker A, Layer PG. Cholinergic control of bone development and beyond. Int Immunopharmacol 2020; 83:106405. [PMID: 32208165 DOI: 10.1016/j.intimp.2020.106405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
There is ample evidence that cholinergic actions affect the health status of bones in vertebrates including man. Nicotine smoking, but also exposure to pesticides or medical drugs point to the significance of cholinergic effects on bone status, as reviewed here in Introduction. Then, we outline processes of endochondral ossification, and review respective cholinergic actions. In Results, we briefly summarize our in vivo and in vitro studies on bone development of chick and mouse [1,2], including (i) expressions of cholinergic components (AChE, BChE, ChAT) in chick embryo, (ii) characterisation of defects during skeletogenesis in prenatal ChE knockout mice, (iii) loss-of-function experiments with beads soaked in cholinergic components and implanted into chicken limb buds, and finally (iv) we use an in vitro mesenchymal 3D-micromass model that mimics cartilage and bone formation, which also had revealed complex crosstalks between cholinergic, radiation and inflammatory mechanisms [3]. In Discussion, we evaluate non-cholinergic actions of cholinesterases during bone formation by considering: (i) how cholinesterases could function in adhesive mechanisms; (ii) whether and how cholinesterases can form bone-regulatory complexes with alkaline phosphatase (ALP) and/or ECM components, which could regulate cell division, migration and adhesion. We conclude that cholinergic actions in bone development are driven mainly by classic cholinergic, but non-neural cycles (e.g., by acetylcholine); in addition, both cholinesterases can exert distinct ACh-independent roles. Considering their tremendous medical impact, these results bring forward novel research directions that deserve to be pursued.
Collapse
Affiliation(s)
- Janine Spieker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Johannes L Frieß
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Laura Sperling
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Gopenath Thangaraj
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Astrid Vogel-Höpker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Paul G Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany.
| |
Collapse
|
118
|
Zhang ZH, Jia XY, Fang JY, Chai H, Huang Q, She C, Jia P, Geng DC, Xu W. Reduction of SOST gene promotes bone formation through the Wnt/β-catenin signalling pathway and compensates particle-induced osteolysis. J Cell Mol Med 2020; 24:4233-4244. [PMID: 32134561 PMCID: PMC7171346 DOI: 10.1111/jcmm.15084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.
Collapse
Affiliation(s)
- Zai Hang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Yu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Yi Fang
- The Experiment Center, The Medical College of Soochow University, Suzhou, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Jia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
119
|
Hidaka Y, Chiba-Ohkuma R, Karakida T, Onuma K, Yamamoto R, Fujii-Abe K, Saito MM, Yamakoshi Y, Kawahara H. Combined Effect of Midazolam and Bone Morphogenetic Protein-2 for Differentiation Induction from C2C12 Myoblast Cells to Osteoblasts. Pharmaceutics 2020; 12:pharmaceutics12030218. [PMID: 32131534 PMCID: PMC7150865 DOI: 10.3390/pharmaceutics12030218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/01/2022] Open
Abstract
In drug repositioning research, a new concept in drug discovery and new therapeutic opportunities have been identified for existing drugs. Midazolam (MDZ) is an anesthetic inducer used for general anesthesia. Here, we demonstrate the combined effects of bone morphogenetic protein-2 (BMP-2) and MDZ on osteogenic differentiation. An immortalized mouse myoblast cell line (C2C12 cell) was cultured in the combination of BMP-2 and MDZ (BMP-2+MDZ). The differentiation and signal transduction of C2C12 cells into osteoblasts were investigated at biological, immunohistochemical, and genetic cell levels. Mineralized nodules formed in C2C12 cells were characterized at the crystal engineering level. BMP-2+MDZ treatment decreased the myotube cell formation of C2C12 cells, and enhanced alkaline phosphatase activity and expression levels of osteoblastic differentiation marker genes. The precipitated nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. BMP-2+MDZ treatment reduced the immunostaining for both α1 and γ2 subunits antigens on the gamma-aminobutyric acid type A (GABAA) receptor in C2C12 cells, but enhanced that for BMP signal transducers. Our investigation showed that BMP-2+MDZ has a strong ability to induce the differentiation of C2C12 cells into osteoblasts and has the potential for drug repositioning in bone regeneration.
Collapse
Affiliation(s)
- Yukihiko Hidaka
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Kazuo Onuma
- National Institute of Advanced Industrial Science & Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Keiko Fujii-Abe
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| | - Mari M. Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
- Correspondence: ; Tel.: +81-45-580-8479; Fax: +81-45-573-9599
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| |
Collapse
|
120
|
Qi XB, Jia B, Wang W, Xu GH, Guo JC, Li X, Liu JN. Role of miR-199a-5p in osteoblast differentiation by targeting TET2. Gene 2020; 726:144193. [PMID: 31669647 DOI: 10.1016/j.gene.2019.144193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 10/20/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE miR-199a-5p was increased during osteoblast differentiation, which may target and regulate TET2, a gene attracted a lot of attention in the osteoblast differentiation in the past few years. However, the role of miR-199a-5p in osteoblast differentiation by targeting TET2 is not established. METHODS The correlation between miR-199a-5p and TET2 was verified through dual luciferase reporter assay, and their expressions in human bone marrow stromal cells (hBMSCs) during the osteoblast differentiation were detected. hBMSCs were transfected with TET2 siRNA, miR-199a-5p mimic or/and TET2 CRISPR activation plasmid., and then prepared for the induction of osteoblast differentiation, followed by alkaline phosphatase (ALP) and alizarin red staining, qRT-PCR and Western blotting. In vivo, ovariectomized (OVX) mice were injected with agomir-miR-199a-5p, antagomiR-199a-5p or/and TET2 siRNA to calculate the BMD and BV/TV ratio of mice, as well as to measure the expressions of osteogenesis-related genes in bone tissues. RESULTS A gradual increase of miR-199a-5p was observed in hBMSCs during the induction of osteoblast differentiation, while TET2 expression was decreased. Besides, miR-199a-5p was reduced in the bone tissue of OVX mice, while TET2 was up-regulated. In addition, overexpression of miR-199a-5p and inhibition of TET2 augmented ALP activity in hBMSCs, with the enhanced calcification and the up-regulated expressions of Runx2, OSX and OCN, which also increased the quality of bone in OVX mice accompanying the enhancement BV/TV ratio, BMD and osteogenesis-related genes. CONCLUSION MiR-199a-5p may promote the osteoblast differentiation and prevent OVX-induced osteoporosis by targeting TET2.
Collapse
Affiliation(s)
- Xiang-Bei Qi
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, China
| | - Bei Jia
- Department of Infectious Diseases, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Wei Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, China
| | - Guo-Hui Xu
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, China
| | - Ji-Chao Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, China
| | - Xu Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, China
| | - Jian-Ning Liu
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, China.
| |
Collapse
|
121
|
Abstract
Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of NF-κB. Although the NF-κB pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.
Collapse
Affiliation(s)
- Inyoung Kim
- Departments of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Jung Ha Kim
- Departments of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Kabsun Kim
- Departments of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Semun Seong
- Departments of Pharmacology and Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Departments of Pharmacology and Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
122
|
Li X, Li H, He Z, Tan Z, Yan Q. Effects of maternal intake restriction during early pregnancy on fetal growth and bone metabolism in goats. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
123
|
Limraksasin P, Kondo T, Zhang M, Okawa H, Osathanon T, Pavasant P, Egusa H. In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21020581. [PMID: 31963264 PMCID: PMC7014254 DOI: 10.3390/ijms21020581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Weintraub Center for Reconstructive Biotechnology, UCLA (University of California, Los Angeles) School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Correspondence:
| |
Collapse
|
124
|
Zujur D, Kanke K, Onodera S, Tani S, Lai J, Azuma T, Xin X, Lichtler AC, Rowe DW, Saito T, Tanaka S, Masaki H, Nakauchi H, Chung UI, Hojo H, Ohba S. Stepwise strategy for generating osteoblasts from human pluripotent stem cells under fully defined xeno-free conditions with small-molecule inducers. Regen Ther 2020; 14:19-31. [PMID: 31988991 PMCID: PMC6965656 DOI: 10.1016/j.reth.2019.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Clinically relevant human induced pluripotent stem cell (hiPSC) derivatives require efficient protocols to differentiate hiPSCs into specific lineages. Here we developed a fully defined xeno-free strategy to direct hiPSCs toward osteoblasts within 21 days. The strategy successfully achieved the osteogenic induction of four independently derived hiPSC lines by a sequential use of combinations of small-molecule inducers. The induction first generated mesodermal cells, which subsequently recapitulated the developmental expression pattern of major osteoblast genes and proteins. Importantly, Col2.3-Cherry hiPSCs subjected to this strategy strongly expressed the cherry fluorescence that has been observed in bone-forming osteoblasts in vivo. Moreover, the protocol combined with a three-dimensional (3D) scaffold was suitable for the generation of a xeno-free 3D osteogenic system. Thus, our strategy offers a platform with significant advantages for bone biology studies and it will also contribute to clinical applications of hiPSCs to skeletal regenerative medicine.
Collapse
Affiliation(s)
- Denise Zujur
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kanke
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Shoichiro Tani
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jenny Lai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Masaki
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
125
|
Alipour M, Aghazadeh M, Akbarzadeh A, Vafajoo Z, Aghazadeh Z, Raeisdasteh Hokmabad V. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3431-3437. [PMID: 31411067 DOI: 10.1080/21691401.2019.1652627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presently, tissue engineering has been developed as an effective option in the restoration and repair of tissue defects. One of the tissue engineering strategies is to use both biodegradable scaffolds and stimulating factors for enhancing cell responses. In this study, the effect of zeolite was assessed on cell viability, proliferation, osteo/odontogenic differentiation, and mineralization of human dental pulp stem cells (hDPSCs) cultured on poly (ε-coprolactone) - poly (ethylene glycol)-poly (ε-caprolactone) (PCL-PEG-PCL) nanofibers. For this purpose, PCL-PEG-PCL nanofibrous scaffolds incorporated with zeolite were prepared via electrospinning. Both PCL-PEG-PCL and PCL-PEG-PCL/Zeolite nanofibrous scaffolds revealed bead-less constructions with average diameters of 430 nm and 437 nm, respectively. HDPSCs were transferred to PCL-PEG-PCL nanofibrous scaffolds containing zeolite nanoparticles. Cell adhesion and proliferation of hDPSCs and their osteo/odontogenic differentiation on these scaffolds were evaluated using MTT assay, Alizarin red S staining, and qRT-PCR assay. The results revealed that PCL-PEG-PCL/Zeolite nanofibrous scaffolds could support better cell adhesion, proliferation and osteogenic differentiation of hDPSCs and as such is expected to be a promising scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahdieh Alipour
- a Research Assistant, Dental and Periodontal Research Center, Faculty of dentistry, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Marziyeh Aghazadeh
- b Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of medical Sciences , Tabriz , Iran
| | - Abolfaz Akbarzadeh
- c Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zahra Vafajoo
- d Dentistry Student, Dental Faculty, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zahra Aghazadeh
- b Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of medical Sciences , Tabriz , Iran
| | - Vahideh Raeisdasteh Hokmabad
- c Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,e Department of chemistry, University of Zanjan , Zanjan , Iran
| |
Collapse
|
126
|
Strecker SE, Unterman S, Charles LF, Pivovarchick D, Maye PF, Edelman ER, Artzi N. Osterix-mCherry Expression Allows for Early Bone Detection in a Calvarial Defect Model. ADVANCED BIOSYSTEMS 2019; 3:e1900184. [PMID: 32648681 PMCID: PMC7393777 DOI: 10.1002/adbi.201900184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Indexed: 11/09/2022]
Abstract
The process of new bone formation following trauma requires the temporal recruitment of cells to the site, including mesenchymal stem cells, preosteoblasts, and osteoblasts, the latter of which deposit minerals. Hence, bone repair, a process that is assessed by the extent of mineralization within the defect, can take months before it is possible to determine if a treatment is successful. Here, a fluorescently tagged Osterix, an early key gene in the bone formation cascade, is used as a predictive measure of bone formation. Using a calvarial defect model in mice, the ability to noninvasively track the Osterix transcription factor in an Osterix-mCherry mouse model is evaluated as a measure for bone formation following treatment with recombinant human Bone-Morphogenetic-Protein 2 (rhBMP-2). Two distinct delivery materials are utilized, an injectable nanocomposite hydrogel and a collagen sponge, that afford distinct release kinetics and it is found that cherry-fluorescent protein can be detected as early as 2 weeks following treatment. Osterix intensity correlates with subsequent bone formation and hence can serve as a rapid screening tool for osteogenic drugs or for the evaluation and optimization of delivery platforms.
Collapse
Affiliation(s)
- Sara E Strecker
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA, 02139, USA
| | - Shimon Unterman
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA, 02139, USA
| | - Lyndon F Charles
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA, 02139, USA
| | - Dmitry Pivovarchick
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT, 06032, USA
| | - Peter F Maye
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elazer R Edelman
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA, 02139, USA
- Ort Braude College, 51 Swallow Street, Karmiel, 2161002, Haifa, Israel
| | - Natalie Artzi
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
127
|
Chen X, Li J, Liang D, Zhang L, Wang Q. LncRNA AWPPH participates in the development of non-traumatic osteonecrosis of femoral head by upregulating Runx2. Exp Ther Med 2019; 19:153-159. [PMID: 31853285 PMCID: PMC6909627 DOI: 10.3892/etm.2019.8185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
AWPPH is a newly discovered long noncoding (lnc)RNA that plays an oncogenic role in development of several types of malignancies, whiles its involvement in non-traumatic osteonecrosis of femoral head (ONFH) is unknown. Therefore, the present study aimed to investigate the functionality of AWPPH in non-traumatic ONFH. Blood and mesenchymal stem cells (MSCs) were obtained from both non-traumatic ONFH patients and healthy controls, and expression of AWPPH in those tissues was detected by RT-qPCR. Receiver operating characteristic curve analysis was performed to investigate the diagnostic value of lncRNA AWPPH expression for non-traumatic ONFH. Bone morphogenic protein (BMP-2) was used to treat MSCs to induce osteogenic differentiation and the effects on lncRNA AWPPH expression was detected by RT-qPCR. LncRNA AWPPH overexpression and short hairpin (sh)RNA silencing cell lines were established and the effects on runt-related transcription factor 2 (Runx2) expression were detected by western blotting. It was demonstrated that AWPPH was significantly downregulated in non-traumatic ONFH patients compared with in healthy controls in both MSCs and serum. Expression of AWPPH in MSCs and serum is a sensitive diagnostic marker for non-traumatic ONFH. Expression of AWPPH exhibited no significant correlation with patients' age, gender and living habits, but was significantly correlated with course of disease. BMP-2 treatment significantly increased the expression level of AWPPH in human MSCs from bone marrow (hMSC-BM). AWPPH overexpression promoted, while AWPPH short hairpin RNA silencing inhibited the expression of Runx2 expression in hMSC-BM cells. Therefore, it was concluded that lncRNA AWPPH may participate in the development of ONFH by upregulating Runx2.
Collapse
Affiliation(s)
- Xiantao Chen
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Jing Li
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Dawei Liang
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Leilei Zhang
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Qingfeng Wang
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
128
|
Asa'ad F, Monje A, Larsson L. Role of epigenetics in alveolar bone resorption and regeneration around periodontal and peri‐implant tissues. Eur J Oral Sci 2019; 127:477-493. [DOI: 10.1111/eos.12657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Farah Asa'ad
- Institute of Odontology The Sahlgrenska Academy University of Gothenburg Göteborg Sweden
| | - Alberto Monje
- Department of Oral Surgery and Stomatology ZMK School of Dentistry Bern Switzerland
- Department of Periodontology Universitat Internacional de Catalunya Barcelona Spain
| | - Lena Larsson
- Department of Periodontology Institute of Odontology University of Gothenburg Göteborg Sweden
| |
Collapse
|
129
|
Fermented Oyster Extract Promotes Osteoblast Differentiation by Activating the Wnt/β-Catenin Signaling Pathway, Leading to Bone Formation. Biomolecules 2019; 9:biom9110711. [PMID: 31698882 PMCID: PMC6920898 DOI: 10.3390/biom9110711] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is well-known as a nutritious food. Recently, we revealed that fermented extract of C. gigas (FO) inhibited ovariectomy-induced osteoporosis, resulting from suppression of osteoclastogenesis. However, since the beneficial effect of FO on osteogenesis is poorly understood, it was examined in mouse preosteoblast MC3T3-E1 cells, human osteosarcoma MG-63 osteoblast-like cells, and zebrafish larvae in this study. We found that FO increased mitochondrial activity from days 1 to 7; however, total cell number of MC3T3-E1 cells gradually decreased without any change in cell viability, which suggests that FO stimulates the differentiation of MC3T3-E1 cells. FO also promoted the expression of osteoblast marker genes, including runt-related transcription factor 2 (mRUNX2), alkaline phosphatase (mALP), collagen type I α1 (mCol1α1), osteocalcin (mOCN), osterix (mOSX), bone morphogenetic protein 2 (mBMP2), and mBMP4 in MC3T3-E1 cells accompanied by a significant increase in ALP activity. FO also increased nuclear translocation of RUNX2 and OSX transcription factors, ALP activity, and calcification in vitro along with the upregulated expression of osteoblast-specific marker proteins such as RUNX2, ALP, Col1α1, OCN, OSX, and BMP4. Additionally, FO enhanced bone mineralization (calcein intensity) in zebrafish larvae at 9 days post-fertilization comparable to that in the β-glycerophosphate (GP)-treated group. All the tested osteoblast marker genes, including zRUNX2a, zRUNX2b, zALP, zCol1a1, zOCN, zBMP2, and zBMP4, were also remarkably upregulated in the zebrafish larvae in response to FO. It also promoted tail fin regeneration in adult zebrafish as same as the GP-treated groups. Furthermore, not only FO positively regulate β-catenin expression and Wnt/β-catenin luciferase activity, but pretreatment with a Wnt/β-catenin inhibitor (FH535) also significantly decreased FO-mediated bone mineralization in zebrafish larvae, which indicates that FO-induced osteogenesis depends on the Wnt/β-catenin pathway. Altogether, the current study suggests that the supplemental intake of FO has a beneficial effect on osteogenesis.
Collapse
|
130
|
Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, Mori Y, Kubota Y, Kajioka S. Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 2019; 83:102058. [DOI: 10.1016/j.ceca.2019.102058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/19/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
|
131
|
Li J, Li N, Chen Y, Hui S, Fan J, Ye B, Fan Z, Zhang J, Zhao RC, Zhuang Q. SPRY4 is responsible for pathogenesis of adolescent idiopathic scoliosis by contributing to osteogenic differentiation and melatonin response of bone marrow-derived mesenchymal stem cells. Cell Death Dis 2019; 10:805. [PMID: 31645544 PMCID: PMC6811559 DOI: 10.1038/s41419-019-1949-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex, three-dimensional deformity of the spine that commonly occurs in pubescent girls. Decreased osteogenic differentiation and aberrant melatonin signalling have been demonstrated in mesenchymal stem cells (MSCs) from AIS patients and are implicated in the pathogenesis of AIS. However, the molecular mechanisms underlying these abnormal cellular features remain largely unknown. Our previous work comparing gene expression profiles between MSCs from AIS patients and healthy controls identified 1027 differentially expressed genes. In the present study, we focused on one of the most downregulated genes, SPRY4, in the MAPK signalling pathway and examined its role in osteogenic differentiation. We found that SPRY4 is markedly downregulated in AIS MSCs. Knockdown of SPRY4 impaired differentiation of healthy MSCs to osteoblasts, while SPRY4 overexpression in AIS MSCs enhanced osteogenic differentiation. Furthermore, melatonin treatment boosted osteogenic differentiation, whereas SPRY4 ablation ablated the promotional effects of melatonin. Moreover, SPRY4 was upregulated by melatonin exposure and contributed to osteogenic differentiation and melatonin response in a MEK-ERK1/2 dependent manner. Thus, loss of SPRY4 in bone marrow derived-MSCs results in reduced osteogenic differentiation, and these defects are further aggravated under the influence of melatonin. Our findings provide new insights for understanding the role of melatonin in AIS aetiology and highlight the importance of MSCs in AIS pathogenesis.
Collapse
Affiliation(s)
- Jing Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Na Li
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Yunfei Chen
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Shangyi Hui
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Junfen Fan
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, P.R. China.
| | - Qianyu Zhuang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, P.R. China.
| |
Collapse
|
132
|
Korah L, Amri N, Bugueno IM, Hotton D, Tenenbaum H, Huck O, Berdal A, Davideau JL. Experimental periodontitis in Msx2 mutant mice induces alveolar bone necrosis. J Periodontol 2019; 91:693-704. [PMID: 31566253 DOI: 10.1002/jper.16-0435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Msx2 homeoprotein is a key transcription factor of dental and periodontal tissue formation and is involved in many molecular pathways controlling mineralized tissue homeostasis such as Wnt/sclerostin pathway. This study evaluated the effect of Msx2-null mutation during experimental periodontitis in mice. METHODS Experimental periodontitis was induced for 30 days in wild-type and Msx2 knock-in Swiss mice using Porphyromonas gingivalis infected ligatures. In knock-in mice, Msx2 gene was replaced by n-LacZ gene encoding β-galactosidase. Periodontal tissue response was assessed by histomorphometry, tartrate-resistant acid phosphatase histoenzymology, β-galactosidase, sclerostin immunochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling assay. Expression of Msx2 gene expression was also evaluated in human gingival biopsies using RT-qPCR. RESULTS During experimental periodontitis, osteonecrosis area and osteoclast number were significantly elevated in knock-in mice compared with wild-type mice. Epithelial downgrowth and bone loss was similar. Sclerostin expression in osteocytes appeared to be reduced during periodontitis in knock-in mice. Msx2 expression was detected in healthy and inflamed human gingival tissues. CONCLUSION These data indicated that Msx2 pathway influenced periodontal tissue response to experimental periodontitis and appeared to be a protective factor against alveolar bone osteonecrosis. As shown in other inflammatory processes such as atherothrombosis, genes initially characterized in early development could also play an important role in human periodontal pathogenesis.
Collapse
Affiliation(s)
- Linda Korah
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France
| | - Nawel Amri
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France
| | - Dominique Hotton
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France.,Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS (Federation of Translational Medicine Strasbourg), Strasbourg, France.,Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Ariane Berdal
- INSERM UMR 1138, Laboratory of Oral Molecular Physiopathology, Institut des Cordeliers, Paris, France
| | - Jean-Luc Davideau
- Department of Periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| |
Collapse
|
133
|
Adaptor protein CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Exp Mol Med 2019; 51:1-10. [PMID: 31554784 PMCID: PMC6802640 DOI: 10.1038/s12276-019-0314-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
The adaptor protein CrkII is involved in several biological activities, including mitogenesis, phagocytosis, and cytoskeleton reorganization. Previously, we demonstrated that CrkII plays an important role in osteoclast differentiation and function through Rac1 activation both in vitro and in vivo. In this study, we investigated whether CrkII also regulates the differentiation and function of another type of bone cells, osteoblasts. Overexpression of CrkII in primary osteoblasts inhibited bone morphogenetic protein (BMP) 2-induced osteoblast differentiation and function, whereas knockdown of CrkII expression exerted the opposite effect. Importantly, CrkII strongly enhanced c-Jun-N-terminal kinase (JNK) phosphorylation, and the CrkII overexpression-mediated attenuation of osteoblast differentiation and function was recovered by JNK inhibitor treatment. Furthermore, transgenic mice overexpressing CrkII under control of the alpha-1 type I collagen promoter exhibited a reduced bone mass phenotype. Together, these results indicate that CrkII negatively regulates osteoblast differentiation and function through JNK phosphorylation. Given that CrkII acts as a negative and positive regulator of osteoblast and osteoclast differentiation, respectively, the regulation of CrkII expression in bone cells may help to develop new strategies to enhance bone formation and inhibit bone resorption.
Collapse
|
134
|
Katarivas Levy G, Birch MA, Brooks RA, Neelakantan S, Markaki AE. Stimulation of Human Osteoblast Differentiation in Magneto-Mechanically Actuated Ferromagnetic Fiber Networks. J Clin Med 2019; 8:E1522. [PMID: 31546701 PMCID: PMC6833056 DOI: 10.3390/jcm8101522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
There is currently an interest in "active" implantable biomedical devices that include mechanical stimulation as an integral part of their design. This paper reports the experimental use of a porous scaffold made of interconnected networks of slender ferromagnetic fibers that can be actuated in vivo by an external magnetic field applying strains to in-growing cells. Such scaffolds have been previously characterized in terms of their mechanical and cellular responses. In this study, it is shown that the shape changes induced in the scaffolds can be used to promote osteogenesis in vitro. In particular, immunofluorescence, gene and protein analyses reveal that the actuated networks exhibit higher mineralization and extracellular matrix production, and express higher levels of osteocalcin, alkaline phosphatase, collagen type 1α1, runt-related transcription factor 2 and bone morphogenetic protein 2 than the static controls at the 3-week time point. The results suggest that the cells filling the inter-fiber spaces are able to sense and react to the magneto-mechanically induced strains facilitating osteogenic differentiation and maturation. This work provides evidence in support of using this approach to stimulate bone ingrowth around a device implanted in bone and can pave the way for further applications in bone tissue engineering.
Collapse
Affiliation(s)
- Galit Katarivas Levy
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Mark A Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Roger A Brooks
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | - Suresh Neelakantan
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
135
|
Li L, Li J, Zou Q, Zuo Y, Cai B, Li Y. Enhanced bone tissue regeneration of a biomimetic cellular scaffold with co-cultured MSCs-derived osteogenic and angiogenic cells. Cell Prolif 2019; 52:e12658. [PMID: 31297910 PMCID: PMC6797511 DOI: 10.1111/cpr.12658] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The bone tissue engineering primarily focuses on three-dimensional co-culture systems, which physical and biological properties resemble the cell matrix of actual tissues. The complex dialogue between bone-forming and endothelial cells (ECs) in a tissue-engineered construct will directly regulate angiogenesis and bone regeneration. The purpose of this study was to investigate whether co-culture between osteogenic and angiogenic cells derived by bone mesenchymal stem cells (MSCs) could affect cell activities and new bone formation. MATERIALS AND METHODS Mesenchymal stem cells were dually induced to differentiate into osteogenic cells (OMSCs) and ECs; both cell types were co-cultured at different ratios to investigate their effects and underlying mechanisms through ELISA, RT-qPCR and MTT assays. The selected cell mixture was transplanted onto a nano-hydroxyapatite/polyurethane (n-HA/PU) scaffold to form a cell-scaffold construct that was implanted in the rat femoral condyles. Histology and micro-CT were examined for further verification. RESULTS ELISA and gene expression studies revealed that co-cultured OMSCs/ECs (0.5/1.5) significantly elevated the transcription levels of osteogenic genes such as ALP, Col-I and OCN, as well as transcription factors Msx2, Runx2 and Osterix; it also upregulated angiogenic factors of vascular endothelial growth factor (VEGF) and CD31 when compared with cells cultured alone or in other ratios. The optimized OMSCs/ECs group had more abundant calcium phosphate crystal deposition, further facilitated their bone formation in vivo. CONCLUSIONS The OMSCs/ECs-scaffold constructs at an optimal cell ratio (0.5/1.5) achieved enhanced osteogenic and angiogenic factor expression and biomineralization, which resulted in more effective bone formation.
Collapse
Affiliation(s)
- Limei Li
- Research Center for Nano‐Biomaterials, Analytical & Testing CenterSichuan UniversityChengduChina
- Technology Transfer CenterKunming Medical UniversityKunmingChina
| | - Jidong Li
- Research Center for Nano‐Biomaterials, Analytical & Testing CenterSichuan UniversityChengduChina
| | - Qin Zou
- Research Center for Nano‐Biomaterials, Analytical & Testing CenterSichuan UniversityChengduChina
| | - Yi Zuo
- Research Center for Nano‐Biomaterials, Analytical & Testing CenterSichuan UniversityChengduChina
| | - Bin Cai
- Research Center for Nano‐Biomaterials, Analytical & Testing CenterSichuan UniversityChengduChina
| | - Yubao Li
- Research Center for Nano‐Biomaterials, Analytical & Testing CenterSichuan UniversityChengduChina
| |
Collapse
|
136
|
Rehmannia glutinosa Libosch Extracts Prevent Bone Loss and Architectural Deterioration and Enhance Osteoblastic Bone Formation by Regulating the IGF-1/PI3K/mTOR Pathway in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2019; 20:ijms20163964. [PMID: 31443143 PMCID: PMC6720794 DOI: 10.3390/ijms20163964] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Rehmanniae Radix Praeparata (RR, named as Shudihuang in traditional Chinese medicine), the steamed roots of Rehmannia glutinosa Libosch (Scrophulariaceae), has been demonstrated to have anti-diabetic and anti-osteoporotic activities. This study aimed to explore the protective effect and underlying mechanism of RR on diabetes-induced bone loss. It was found that RR regulated the alkaline phosphatase activity and osteocalcin level, enhanced bone mineral density, and improved the bone microarchitecture in diabetic rats. The catalpol (CAT), acteoside (ACT), and echinacoside (ECH) from RR increased the proliferation and differentiation of osteoblastic MC3T3-E1 cells injured by high glucose and promoted the production of IGF-1 and expression of related proteins in BMP and IGF-1/PI3K/mammalian target of rapamycin complex 1 (mTOR) signaling pathways. The verifying tests of inhibitors of BMP pathway (noggin) and IGF-1/PI3K/mTOR pathway (picropodophyllin) and molecular docking of IGF-1R further indicated that CAT, ACT, and ECH extracted from RR enhanced bone formation by regulating IGF-1/PI3K/mTOR signaling pathways. These findings suggest that RR may prove to be a promising candidate drug for the prevention and treatment of diabetes-induced osteoporosis.
Collapse
|
137
|
Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Sci Rep 2019; 9:11900. [PMID: 31417150 PMCID: PMC6695412 DOI: 10.1038/s41598-019-48429-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023] Open
Abstract
Non-availability of an ideal alternative for autografts in treating critical-size bone defects is a major challenge in orthopedics. Phytocompounds have been proven to enhance osteogenesis via various osteogenic signaling pathways, but its decreased bioavailability and increased renal clearance limit its application. In this study, we designed a biocomposite scaffold comprising gelatin (Gel) and nanohydroxyapatite (nHAp) incorporated with diosmin (DM) and we investigated its bone forming potential in vitro and in vivo. Physiochemical characterization of the scaffold showed that DM had no effect on altering the material characteristics of the scaffold. The addition of DM enhanced the osteoblast differentiation potential of the scaffold in mouse mesenchymal stem cells at both cellular and molecular levels, possibly via the integrin-mediated activation of FAK and ERK signaling components. Using the rat tibial bone defective model, we identified the effect of DM in Gel/nHAp scaffold on enhancing bone formation in vivo. Based on our results, we suggest that Gel/nHAp/DM can be a potential therapeutic agent in scaffold-mediated bone regeneration.
Collapse
|
138
|
Sun JT, Chen YY, Mao JY, Wang YP, Chen YF, Hu X, Yang K, Liu Y. Oxidized HDL, as a Novel Biomarker for Calcific Aortic Valve Disease, Promotes the Calcification of Aortic Valve Interstitial Cells. J Cardiovasc Transl Res 2019; 12:560-568. [PMID: 31367900 DOI: 10.1007/s12265-019-09903-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Calcific aortic valve disease (CAVD) is characterized by progressive mineralization of the aortic valve. Lipid infiltration and oxidative stress are the driving forces for the initiation and development of this disease. However, it remains unknown whether oxidized high-density lipoprotein (ox-HDL) plays a role in the mineralization of aortic valve interstitial cells (AVICs). Serum ox-HDL levels were determined in 168 severe CAVD patients and 168 age- and gender-matched non-CAVD controls. Results showed that ox-HDL concentrations were significantly increased in CAVD compared with the control group (131.52 ± 30.96 ng/mL vs. 112.58 ± 32.20 ng/mL, P < 0.001) and were correlated with CAVD severity. Multivariable logistic regression revealed that ox-HDL levels were independently associated with CAVD after adjusting for the incidence of coronary artery disease (CAD) (odds ratio 1.019, 95% CI 1.012-1.027, P < 0.001) or atherosclerotic risk factors (odds ratio 1.027, 95% CI 1.017-1.037, P < 0.001). Chronic ox-HDL stimulation of AVICs increased alkaline phosphatase activity (ALP) and calcium deposits in AVICs in vitro. Mechanistic studies further showed that ox-HDL upregulated several osteogenic factors, including BMP-2, Runx2, and Msx2 expressions in AVICs. This is the first study to demonstrate a relationship between increased ox-HDL concentration and CAVD incidence.
Collapse
Affiliation(s)
- Jia Teng Sun
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Yuan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200025, People's Republic of China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Jing Yan Mao
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Yan Ping Wang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Ya Fen Chen
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Xiang Hu
- Department of Cardiac Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Yang
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China.
| | - Yan Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
139
|
Abstract
The influence of polymer blend coatings on the differentiation of mouse mesenchymal stem cells was investigated. Polymer blending is a common means of producing new coating materials with variable properties. Stem cell differentiation is known to be influenced by both chemical and mechanical properties of the underlying scaffold. We therefore selected to probe the response of stem cells cultured separately on two very different polymers, and then cultured on a 1:1 blend. The response to mechanical properties was probed by culturing the cells on polybutadiene (PB) films, where the film moduli was varied by adjusting film thickness. Cells adjusted their internal structure such that their moduli scaled with the PB films. These cells expressed chondrocyte markers (osterix (OSX), alkaline phosphatase (ALP), collagen X (COL-X), and aggrecan (ACAN)) without mineralizing. In contrast, cells on partially sulfonated polystyrene (PSS28) deposited large amounts of hydroxyapatite and expressed differentiation markers consistent with chondrocyte hypertrophy (OSX, ALP, COL-X, but not ACAN). Cells on phase-segregated PB and PSS28 films differentiated identically to those on PSS28, underscoring the challenges of using polymer templates for cell patterning in tissue engineering.
Collapse
|
140
|
Ei Hsu Hlaing E, Ishihara Y, Wang Z, Odagaki N, Kamioka H. Role of intracellular Ca 2+-based mechanotransduction of human periodontal ligament fibroblasts. FASEB J 2019; 33:10409-10424. [PMID: 31238000 PMCID: PMC6704454 DOI: 10.1096/fj.201900484r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human periodontal ligament (hPDL) fibroblasts are thought to receive mechanical stress (MS) produced by orthodontic tooth movement, thereby regulating alveolar bone remodeling. However, the role of intracellular calcium ([Ca2+]i)-based mechanotransduction is not fully understood. We explored the MS-induced [Ca2+]i responses both in isolated hPDL fibroblasts and in intact hPDL tissue and investigated its possible role in alveolar bone remodeling. hPDL fibroblasts were obtained from healthy donors' premolars that had been extracted for orthodontic reasons. The oscillatory [Ca2+]i activity induced by static compressive force was measured by a live-cell Ca2+ imaging system and evaluated by several feature extraction method. The spatial pattern of cell-cell communication was investigated by Moran's I, an index of spatial autocorrelation and the gap junction (GJ) inhibitor. The Ca2+-transporting ionophore A23187 was used to further investigate the role of [Ca2+]i up-regulation in hPDL cell behavior. hPDL fibroblasts displayed autonomous [Ca2+]i responses. Compressive MS activated this autonomous responsive behavior with an increased percentage of responsive cells both in vitro and ex vivo. The integration, variance, maximum amplitude, waveform length, and index J in the [Ca2+]i responses were also significantly increased, whereas the mean power frequency was attenuated in response to MS. The increased Moran's I after MS indicated that MS might affect the pattern of cell-cell communication via GJs. Similar to the findings of MS-mediated regulation, the A23187-mediated [Ca2+]i uptake resulted in the up-regulation of receptor activator of NF-κB ligand (Rankl) and Sost along with increased sclerostin immunoreactivity, suggesting that [Ca2+]i signaling networks may be involved in bone remodeling. In addition, A23187-treated hPDL fibroblasts also showed the suppression of osteogenic differentiation and mineralization. Our findings suggest that augmented MS-mediated [Ca2+]i oscillations in hPDL fibroblasts enhance the production and release of bone regulatory signals via Rankl/Osteoprotegerin and the canonical Wnt/β-catenin pathway as an early process in tooth movement-initiated alveolar bone remodeling.-Ei Hsu Hlaing, E., Ishihara, Y., Wang, Z., Odagaki, N., Kamioka, H. Role of intracellular Ca2+-based mechanotransduction of human periodontal ligament fibroblasts.
Collapse
Affiliation(s)
- Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Japan Society for the Promotion of Science (JSPS DC2), Tokyo, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
141
|
Nallasamy S, Kaya Okur HS, Bhurke A, Davila J, Li Q, Young SL, Taylor RN, Bagchi MK, Bagchi IC. Msx Homeobox Genes Act Downstream of BMP2 to Regulate Endometrial Decidualization in Mice and in Humans. Endocrinology 2019; 160:1631-1644. [PMID: 31125045 PMCID: PMC6591014 DOI: 10.1210/en.2019-00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Endometrial stromal cells differentiate to form decidual cells in a process known as decidualization, which is critical for embryo implantation and successful establishment of pregnancy. We previously reported that bone morphogenetic protein 2 (BMP2) mediates uterine stromal cell differentiation in mice and in humans. To identify the downstream target(s) of BMP2 signaling during decidualization, we performed gene-expression profiling of mouse uterine stromal cells, treated or not treated with recombinant BMP2. Our studies revealed that expression of Msx2, a member of the mammalian Msx homeobox gene family, was markedly upregulated in response to exogenous BMP2. Interestingly, conditional ablation of Msx2 in the uterus failed to prevent a decidual phenotype, presumably because of functional compensation of Msx2 by Msx1, a closely related member of the Msx family. Indeed, in Msx2-null uteri, the level of Msx1 expression in the stromal cells was markedly elevated. When conditional, tissue-specific ablation of both Msx1 and Msx2 was accomplished in the mouse uterus, a dramatically impaired decidual response was observed. In the absence of both Msx1 and Msx2, uterine stromal cells were able to proliferate, but they failed to undergo terminal differentiation. In parallel experiments, addition of BMP2 to human endometrial stromal cell cultures led to a robust enhancement of MSX1 and MSX2 expression and stimulated the differentiation process. Attenuation of MSX1 and MSX2 expression by small interfering RNAs greatly reduced human stromal differentiation in vitro, indicating a conservation of their roles as key mediators of BMP2-induced decidualization in mice and women.
Collapse
Affiliation(s)
| | - Hatice S Kaya Okur
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Arpita Bhurke
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
142
|
Li Y, Wang W, Chao Y, Zhang F, Wang C. CTRP13 attenuates vascular calcification by regulating Runx2. FASEB J 2019; 33:9627-9637. [PMID: 31145871 DOI: 10.1096/fj.201900293rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular calcification is strongly associated with increased cardiovascular mortality and morbidity. C1q/TNF-related protein-13 (CTRP13) is a secreted adipokine that plays important roles in the cardiovascular system. However, the functional role of CTRP13 in the development of vascular calcification has yet to be explored. In this study, we collected blood samples from patients with chronic renal failure (CRF) and from rats with adenine-induced CRF. We found that the serum CTRP13 levels were decreased in patients and rats with CRF and were negatively associated with calcium deposition in the abdominal aorta. Compared to those of the controls, ectopic CTRP13 treatment significantly attenuated the calcium accumulation and alkaline phosphatase activity in the abdominal aorta of CRF rats, and β-glycerophosphate induced the formation of arterial rings and of vascular smooth muscle cells (VSMCs) and decreased the number of VSMCs that transitioned from a contractile to an osteogenic phenotype. The overexpression of Runx2 blocked CTRP13-reduced VSMC calcification. Mechanistically, CTRP13 repressed the phosphorylation of tristetraprolin (TTP), thereby activating TTP and increasing the TTP binding to the 3'untranslated region of the Runx2 mRNA, accelerating the Runx2 mRNA destabilization and degradation. In summary, these findings reveal that CTRP13 regulation is a novel method for the prevention of vascular calcification, representing a novel mechanism of the regulation of Runx2 expression in VSMCs.-Li, Y., Wang, W., Chao, Y., Zhang, F., Wang, C. CTRP13 attenuates vascular calcification by regulating Runx2.
Collapse
Affiliation(s)
- Yongxia Li
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhe Wang
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fengxao Zhang
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
143
|
Vrathasha V, Weidner H, Nohe A. Mechanism of CK2.3, a Novel Mimetic Peptide of Bone Morphogenetic Protein Receptor Type IA, Mediated Osteogenesis. Int J Mol Sci 2019; 20:E2500. [PMID: 31117181 PMCID: PMC6567251 DOI: 10.3390/ijms20102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. METHODS Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. RESULTS Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. CONCLUSION CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
144
|
Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 2019; 10:128. [PMID: 31029165 PMCID: PMC6487011 DOI: 10.1186/s13287-019-1232-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Background Odontoblast is a unique progenitor that plays a role in dentin formation. So far, the dentinogenic differentiation of dental pulp stem cells and the role of surface molecules of odontoblasts in dentinogenesis are not well known yet. In this study, we obtained odontoblast-like cells from human dental pulp cells and screened odontoblast-specific cell surface antigens by decoy immunization. Methods Through decoy immunization with intact odontoblast-like cells derived from human dental pulp cells, we constructed 12 monoclonal antibodies (mAbs) of IgG type, and their binding affinities for cell surface of odontoblast-like cells were analyzed by flow cytometry. Immunoprecipitation, mass spectrometry, and immunohistochemistry were performed to demonstrate odontoblast-specific antigens. Odontoblasts were sorted by these mAbs using magnetic-activated cell sorting system, and their mineralization efficiency was increased after sorting. Results We constructed 12 mAbs of IgG type, which had a strong binding affinity for cell surface antigens of odontoblast-like cells. In human adult tooth, these mAbs accumulated in the odontoblastic layer between dentin and pulp and in the perivascular region adjacent to the blood vessels in the pulp core. Cell surface expression of the antigenic molecules was increased during odontogenic cytodifferentiation and decreased gradually as dentinogenic maturation progressed. Proteomic analysis showed that two representative antigenic molecules, OD40 and OD46, had the potential to be components for cell adhesion and extracellular matrix structures. Conclusion These results suggest that mAbs will be useful for detecting and separating odontoblasts from the primary pulp cells and other lineage cells and will provide information on the structures of extracellular matrix and microenvironment that appears during the dentinogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Chun-Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
145
|
Riera-Heredia N, Lutfi E, Gutiérrez J, Navarro I, Capilla E. Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways. PLoS One 2019; 14:e0215926. [PMID: 31017945 PMCID: PMC6481918 DOI: 10.1371/journal.pone.0215926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/01/2023] Open
Abstract
Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, thus they have a great nutritional value for human health. In this study, the adipogenic potential of fatty acids commonly found in fish oil (EPA and DHA) and vegetable oils (linoleic (LA) and alpha-linolenic (ALA) acids), was evaluated in bone-derived mesenchymal stem cells (MSCs) from gilthead sea bream. At a morphological level, cells adopted a round shape upon all treatments, losing their fibroblastic form and increasing lipid accumulation, especially in the presence of the n-6 PUFA, LA. The mRNA levels of the key transcription factor of osteogenesis, runx2 significantly diminished and those of relevant osteogenic genes remained stable after incubation with all fatty acids, suggesting that the osteogenic process might be compromised. On the other hand, transcript levels of the main adipogenesis-inducer factor, pparg increased in response to EPA. Nevertheless, the specific PPARγ antagonist T0070907 appeared to suppress the effects being caused by EPA over adipogenesis. Moreover, LA, ALA and their combinations, significantly up-regulated the fatty acid transporter and binding protein, fatp1 and fabp11, supporting the elevated lipid content found in the cells treated with those fatty acids. Overall, this study has demonstrated that fatty acids favor lipid storage in gilthead sea bream bone-derived MSCs inducing their fate into the adipogenic versus the osteogenic lineage. This process seems to be promoted via different pathways depending on the fatty acid source, being vegetable oils-derived fatty acids more prone to induce unhealthier metabolic phenotypes.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
146
|
Pereira RC, Benelli R, Canciani B, Scaranari M, Daculsi G, Cancedda R, Gentili C. Beta-tricalcium phosphate ceramic triggers fast and robust bone formation by human mesenchymal stem cells. J Tissue Eng Regen Med 2019; 13:1007-1018. [PMID: 30811859 DOI: 10.1002/term.2848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Due to their osteoconductive and inductive properties, a variety of calcium phosphate (CaP) scaffolds are commonly used in orthopaedics as graft material to heal bone defects. In this study, we have used two CaP scaffolds with different hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ratios (MBCP®; 60/40 and MBCP+ ®; 20/80) to investigate their intrinsic capacity to favour human bone marrow stem cells (hBMSCs) osteogenic differentiation capacity. We report that MBCP+ ® showed in in vitro culture model a higher rate of calcium ion release in comparison with MBCP®. In two defined coculture systems, the hBMSC seeded onto MBCP+ ® presented an increased amount of VEGF secretion, resulting in an enhanced endothelial cell proliferation and capillary formation compared with hBMSC seeded onto MBCP®. When both ceramics combined with hBMSC were implanted in a nude mouse model, we observed a faster osteogenic differentiation and enhancement mature bone deposition sustained by the presence of a vast host vasculature within the MBCP+ ® ceramics. Bone formation was observed in samples highly positive to the activation of calcium sensing receptor protein (CaSr) on the surface of seeded hBMSC that also shown higher BMP-2 protein expression. With these data we provide valuable insights in the possible mechanisms of ossification and angiogenesis by hBMSC that we believe to be primed by calcium ions released from CaP scaffolds. Evidences could lead to an optimization of ceramic scaffolds to prime bone repair.
Collapse
Affiliation(s)
- Rui C Pereira
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Roberto Benelli
- Laboratory of Immunology, IRCCS AOU San Martino, Genoa, Italy
| | - Barbara Canciani
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Monica Scaranari
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Guy Daculsi
- INSERM LIOAD U791, Dental Faculty, Nantes University, Nantes, France
| | - Ranieri Cancedda
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Chiara Gentili
- Laboratory of Regenerative Medicine, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
147
|
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder in human populations. Nevertheless, there are presently no effective means for its prevention and treatment. It is therefore critical to comprehensively define key mechanisms of the disease. A major focus of cardiovascular research has been characterization of how regulation of gene expression maintains healthy physiologic status of the component tissues of the system and how derangements of gene regulation may become pathological. Recently, substantial evidence has emerged that noncoding RNAs, which are an enormous and versatile class of regulatory elements, such as microRNAs and long noncoding RNAs, have roles in onset and prognosis of CAVD. Authors of the present report have therefore here provided a summary of the current understanding of contributions made by noncoding RNAs major features of CAVD. It is anticipated that this article will serve as a valuable guide to research strategy in this field and may additionally provide both researchers and clinicians with an expanded range of CAVD-associated biomarkers.
Collapse
|
148
|
Wang Y, Chen H, Zhang H. Kaempferol promotes proliferation, migration and differentiation of MC3T3-E1 cells via up-regulation of microRNA-101. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1050-1056. [PMID: 30942633 DOI: 10.1080/21691401.2019.1591428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Orthopaedics, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Hanyang Zhang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
149
|
Mitomo K, Matsunaga S, Kitamura K, Nakamura T, Saito A, Komori T, Muramatsu T, Yamaguchi A. Sphenoid bone hypoplasia is a skeletal phenotype of cleidocranial dysplasia in a mouse model and patients. Bone 2019; 120:176-186. [PMID: 30391578 DOI: 10.1016/j.bone.2018.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder caused by heterozygous mutations in RUNX2. Affected individuals exhibit delayed maturation or hypoplasia in various bones, mainly including those formed by intramembranous ossification. Although several reports described deformation of the sphenoid bone in CCD patients, details of the associated changes have not been well documented. Most parts of the sphenoid bone are formed by endochondral ossification; however, the medial pterygoid process is formed by intramembranous ossification associated with secondary cartilage. We first investigated histological changes in the medial pterygoid process during different developmental stages in Runx2+/+ and Runx2+/- mice, finding that mesenchymal cell condensation of the anlage of this structure was delayed in Runx2+/- mice as compared with that in Runx2+/+ mice. Additionally, in Runx2+/+ mice, Osterix-positive osteoblastic cells appeared at the upper region of the anlage of the medial pterygoid process, and bone trabeculae appeared to associate with subsequent secondary cartilage formation. By contrast, few Osterix-positive osteoblastic cells appeared at the upper region of the anlage of the medial pterygoid process, and no bone trabeculae appeared thereafter in Runx2+/- mice. At more advanced embryonic stages, endochondral ossification occurred at the lower part of the medial pterygoid process in both Runx2+/+ and Runx2+/- mice. After birth, well-developed bone trabeculae occupied two-thirds of the cranial side of the medial pterygoid process, and cartilage appeared beneath these bones in Runx2+/+ mice, whereas thin trabecular bone appeared at the center of the cartilage of the medial pterygoid process in Runx2+/- mice. In adult mice, the body and medial pterygoid processes of the sphenoid bone comprised mature bones in both Runx2+/+ and Runx2+/- mice, although the axial length of the medial pterygoid processes was apparently lower in Runx2+/-mice as compared with that in Runx2+/+mice based on histological and micro-computed tomography (CT) examinations. Moreover, medical-CT examination revealed that in CCD patients, the medial pterygoid process of sphenoid bone was significantly shorter relative to that in healthy young adults. These results demonstrated that the medial pterygoid process of the sphenoid bone specifically exhibited hypoplasia in CCD.
Collapse
Affiliation(s)
- Keisuke Mitomo
- Department of Operative Dentistry, Cariology and Dental Pulp Biology, Tokyo Dental College, Tokyo, Japan; Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan; Department of Anatomy, Tokyo Dental College, Tokyo, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Kitamura
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan; Department of Histology, Tokyo Dental College, Tokyo, Japan
| | - Takashi Nakamura
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan; Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Dental Pulp Biology, Tokyo Dental College, Tokyo, Japan; Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Akira Yamaguchi
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
150
|
Qu S, Wu J, Bao Q, Yao B, Duan R, Chen X, Li L, Yuan H, Jin Y, Ma C. Osterix promotes the migration and angiogenesis of breast cancer by upregulation of S100A4 expression. J Cell Mol Med 2019; 23:1116-1127. [PMID: 30450809 PMCID: PMC6349213 DOI: 10.1111/jcmm.14012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022] Open
Abstract
As a key transcription factor required for bone formation, osterix (OSX) has been reported to be overexpressed in various cancers, however, its roles in breast cancer progression remain poorly understood. In this study, we demonstrated that OSX was highly expressed in metastatic breast cancer cells. Moreover, it could upregulate the expression of S100 calcium binding protein A4 (S100A4) and potentiate breast cancer cell migration and tumor angiogenesis in vitro and in vivo. Importantly, inhibition of S100A4 impaired OSX-induced cell migration and capillary-like tube formation. Restored S100A4 expression rescued OSX-short hairpin RNA-suppressed cell migration and capillary-like tube formation. Moreover, the expression levels of OSX and S100A4 correlated significantly in human breast tumors. Our study suggested that OSX acts as an oncogenic driver in cell migration and tumor angiogenesis, and may serve as a potential therapeutic target for human breast cancer treatment.
Collapse
Affiliation(s)
- Shuang Qu
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Jiahui Wu
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Qianyi Bao
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Bing Yao
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Rui Duan
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Xiang Chen
- Department of General SurgeryThe Affiliated Yixing Hospital of Jiangsu UniversityYixingChina
| | - Lingyun Li
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterLombardi Comprehensive Cancer CenterWashingtonDistrict of Columbia
| | - Yucui Jin
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Changyan Ma
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| |
Collapse
|