101
|
Lou J, Best MD. A General Approach to Enzyme‐Responsive Liposomes. Chemistry 2020; 26:8597-8607. [DOI: 10.1002/chem.202000529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Jinchao Lou
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Michael D. Best
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| |
Collapse
|
102
|
Chen Y, Cong H, Shen Y, Yu B. Biomedical application of manganese dioxide nanomaterials. NANOTECHNOLOGY 2020; 31:202001. [PMID: 31978932 DOI: 10.1088/1361-6528/ab6fe1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Manganese dioxide nanomaterial is a new type of inorganic nanomaterial offering numerous advantages: simple preparation, low cost, and environmental friendliness. This review summarizes the traditional and novel synthetic methods for manganese dioxide nanomaterials and mainly discusses their potential in biomedical applications. Manganese dioxide nanomaterials are mainly used as drug carriers in tumor therapy. In recent years, the construction of multifunctional nano-platforms using manganese dioxide has gradually improved. The main mechanism is that manganese dioxide nanomaterials can combine with reactive oxygen species in the tumor microenvironment to alleviate tumor hypoxia. Manganese dioxide has also been used to quench fluorescent carbon dots in fluorescent probes. Based on the oxidation ability and catalytic activity of MnO2, MnO2 nanosheets are widely used to build biosensors. New research shows that manganese dioxide nanomaterials also have great potential in gene therapy and nuclear magnetic imaging.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | | | | | | |
Collapse
|
103
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
104
|
Knaff PM, Kersten C, Willbold R, Champanhac C, Crespy D, Wittig R, Landfester K, Mailänder V. From In Silico to Experimental Validation: Tailoring Peptide Substrates for a Serine Protease. Biomacromolecules 2020; 21:1636-1643. [PMID: 32191450 DOI: 10.1021/acs.biomac.0c00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Smart nanocarriers for the transport of drugs to tumor cells are nowadays of great interest for treating cancer. The use of enzymatic stimuli to cleave peptide-based drug nanocapsules for the selective release of nanocapsule cargo in close proximity to tumor cells opens new possibilities in cancer research. In the present work, we demonstrate a methodology for finding and optimizing cleavable substrate sequences by the type II transmembrane serine protease hepsin, which is highly overexpressed in prostate cancer. The design and screening of combinatorial libraries in silico against the binding cavity of hepsin allow the identification of a panel of promising substrates with high-calculated docking scores. In vitro screening verifies the predictions and showed that all substrates are cleaved by hepsin with higher efficiency than the literature known hepsin substrate RQLR↓VVGG. The introduction of d-amino acids on a selected peptide with the highest catalytic efficiency (kcat/Km) renders it resistant to cleavage by plasma or serum while maintaining their susceptibility to hepsin.
Collapse
Affiliation(s)
- Philip Maximilian Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Medical Clinic (Hematology, Oncology and Pulmonology), University Medicine of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Christian Kersten
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Ramona Willbold
- Biology Group, Institute for Laser Technologies in Medicine and Metrology (ILM) at Ulm University, Helmholtzstraße 12, 89081 Ulm, Germany
| | - Carole Champanhac
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210 Rayong, Thailand
| | - Rainer Wittig
- Biology Group, Institute for Laser Technologies in Medicine and Metrology (ILM) at Ulm University, Helmholtzstraße 12, 89081 Ulm, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Medical Clinic (Hematology, Oncology and Pulmonology), University Medicine of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
105
|
Wang J. Combination Treatment of Cervical Cancer Using Folate-Decorated, pH-Sensitive, Carboplatin and Paclitaxel Co-Loaded Lipid-Polymer Hybrid Nanoparticles. Drug Des Devel Ther 2020; 14:823-832. [PMID: 32161442 PMCID: PMC7049774 DOI: 10.2147/dddt.s235098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/01/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Cervical cancer is one of the most common causes of death among women globally. Combinations of cisplatin, paclitaxel, bevacizumab, carboplatin, topotecan, and gemcitabine are recommended as first-line therapies. METHODS This study focuses on the development of folate-decorated, pH-sensitive lipid-polymer hybrid nanoparticles (LPNs). Loading carboplatin (CBP) and paclitaxel (PTX), LPNs were expected to combine the therapeutic effects of CBP and PTX, thus show synergistic ability on cervical cancer. RESULTS FA-CBP/PTX-LPNs showed the sizes of 169.9 ± 5.6 nm, with a narrow size distribution of 0.151 ± 0.023. FA-CBP/PTX-LPNs exhibited pH-responsive drug release, high cellular uptake efficiency (66.7 ± 3.1%), and prominent cell inhibition capacity (23 ± 1.1%). In vivo tumor distribution and tumor inhibition efficiency of FA-CBP/PTX-LPNs was the highest, with no obvious body weight lost. CONCLUSION High tumor distribution and remarkable antitumor efficiency obtained using in vitro as well as in vivo models further proved the FA-CBP/PTX-LPNs is a promising tool for cervical cancer therapy.
Collapse
Affiliation(s)
- Junjian Wang
- Institution of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang Province, People’s Republic of China
- Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, Zhejiang Province, People’s Republic of China
- Department of Gynecological Surgery, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang Province, People’s Republic of China
| |
Collapse
|
106
|
Wu S, Zhang D, Yu J, Dou J, Li X, Mu M, Liang P. Chemotherapeutic Nanoparticle-Based Liposomes Enhance the Efficiency of Mild Microwave Ablation in Hepatocellular Carcinoma Therapy. Front Pharmacol 2020; 11:85. [PMID: 32174827 PMCID: PMC7054279 DOI: 10.3389/fphar.2020.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer, and the 5-year overall survival (OS) rate for HCC remains unsatisfying worldwide. Microwave ablation (MWA) is a minimally invasive therapy that has made progress in treating HCC. However, HCC recurrence remains problematic. Therefore, combination therapy may offer better outcomes and enhance MWA efficiency through improved tumor control. We have developed doxorubicin-loaded liposomes (DNPs) as an efficient nanoplatform to enhance MWA of hepatocellular carcinoma even at the mild ablation condition. In this study, we demonstrated that the uptake of DNPs by HCC cells was increased 1.5-fold compared with that of free DOX. Enhanced synergism was observed in the combination of DNPs and MWA, which induced nearly 80% cell death. The combination of mild MWA and DNPs enhanced the ablation efficiency of HCC with significant inhibition of liver tumors and accounted for the longest survival rate among all groups. A much higher accumulation of the DNPs was observed in the transitional zone than in the ablation zone. No apparent systemic toxicity was observed for any of the treatments after 14 days. The present work demonstrates that DNPs combined with MWA could be a promising nanoparticle-based therapeutic approach for the treatment of hepatocellular carcinoma and shows potential for future clinical applications.
Collapse
Affiliation(s)
- Songsong Wu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China.,Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Dongyun Zhang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jianping Dou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Mengjuan Mu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
107
|
Yu Z, Li H, Jia Y, Qiao Y, Wang C, Zhou Q, He X, Yu S, Yang T, Wu H. Ratiometric co-delivery of doxorubicin and docetaxel by covalently conjugating with mPEG-poly(β-malic acid) for enhanced synergistic breast tumor therapy. Polym Chem 2020. [DOI: 10.1039/d0py01130d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ratiometric codelivery of doxorubicin and docetaxel through an engineered nanoconjugate based on mPEG-PMLA facilitates the accumulation of drugs at the tumor site and enhances synergistic antitumor response.
Collapse
|
108
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
109
|
Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020; 4:40-56. [PMID: 31911893 PMCID: PMC6940203 DOI: 10.7150/ntno.37738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Abstract
The hydrophobicity and high potency of many therapeutic agents makes them difficult to use effectively in clinical practice. This work focuses on conjugating phospholipid tails (2T) onto podophyllotoxin (P) and its analogue (N) using a linker and characterizing the effects of their incorporation into lipid-based drug delivery vehicles for triggered ultrasound delivery. Differential Scanning Calorimetry results show that successfully synthesized lipophilic prodrugs, 2T-P (~28 % yield) and 2T-N(~26 % yield), incorporate within the lipid membranes of liposomes. As a result of this, increased stability and incorporation are observed in 2T-P and 2T-N in comparison to the parent compounds P and N. Molecular dynamic simulation results support that prodrugs remain within the lipid membrane over a relevant range of concentrations. 2T-N's (IC50: 20 nM) biological activity was retained in HeLa cells (cervical cancer), whereas 2T-P's (IC50: ~4 µM) suffered, presumably due to steric hindrance. Proof-of-concept studies using ultrasound in vitro microbubble and nanodroplet delivery vehicles establish that these prodrugs are capable of localized drug delivery. This study provides useful information about the synthesis of double tail analogues of insoluble chemotherapeutic agents to facilitate incorporation into drug delivery vehicles. The phospholipid attachment strategy presented here could be applied to other well suited drugs such as gemcitabine, commonly known for its treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mendi G Márquez
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Rachel Dotson
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Sally Pias
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Liliya V Frolova
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Michaelann S Tartis
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| |
Collapse
|
110
|
Pal S, Medatwal N, Kumar S, Kar A, Komalla V, Yavvari PS, Mishra D, Rizvi ZA, Nandan S, Malakar D, Pillai M, Awasthi A, Das P, Sharma RD, Srivastava A, Sengupta S, Dasgupta U, Bajaj A. A Localized Chimeric Hydrogel Therapy Combats Tumor Progression through Alteration of Sphingolipid Metabolism. ACS CENTRAL SCIENCE 2019; 5:1648-1662. [PMID: 31660434 PMCID: PMC6813554 DOI: 10.1021/acscentsci.9b00551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 05/14/2023]
Abstract
Rapid proliferation of cancer cells assisted by endothelial cell-mediated angiogenesis and acquired inflammation at the tumor microenvironment (TME) lowers the success rate of chemotherapeutic regimens. Therefore, targeting these processes using localized delivery of a minimally toxic drug combination may be a promising strategy. Here, we present engineering of a biocompatible self-assembled lithocholic acid-dipeptide derived hydrogel (TRI-Gel) that can maintain sustained delivery of antiproliferating doxorubicin, antiangiogenic combretastatin-A4 and anti-inflammatory dexamethasone. Application of TRI-Gel therapy to a murine tumor model promotes enhanced apoptosis with a concurrent reduction in angiogenesis and inflammation, leading to effective abrogation of tumor proliferation and increased median survival with reduced drug resistance. In-depth RNA-sequencing analysis showed that TRI-Gel therapy induced transcriptome-wide alternative splicing of many genes responsible for oncogenic transformation including sphingolipid genes. We demonstrate that TRI-Gel therapy targets the reversal of a unique intron retention event in β-glucocerebrosidase 1 (Gba1), thereby increasing the availability of functional Gba1 protein. An enhanced Gba1 activity elevates ceramide levels responsible for apoptosis and decreases glucosylceramides to overcome drug resistance. Therefore, TRI-Gel therapy provides a unique system that affects the TME via post-transcriptional modulations of sphingolipid metabolic genes, thereby opening a new and rational approach to cancer therapy.
Collapse
Affiliation(s)
- Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Kalinga
Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Varsha Komalla
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Prabhu Srinivas Yavvari
- Department
of Chemistry, Indian Institute of Science
Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Deepakkumar Mishra
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Translational
Health Science and Technology
Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Shiv Nandan
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Dipankar Malakar
- SCIEX, 121 Udyog Vihar,
Phase IV, Gurgaon 122015, Haryana, India
| | - Manoj Pillai
- SCIEX, 121 Udyog Vihar,
Phase IV, Gurgaon 122015, Haryana, India
| | - Amit Awasthi
- Translational
Health Science and Technology
Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Prasenjit Das
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ravi Datta Sharma
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Aasheesh Srivastava
- Department
of Chemistry, Indian Institute of Science
Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Sagar Sengupta
- National
Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ujjaini Dasgupta
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
- E-mail: . (U.D.)
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- E-mail: . (A.B.)
| |
Collapse
|
111
|
Avugadda SK, Materia ME, Nigmatullin R, Cabrera D, Marotta R, Cabada TF, Marcello E, Nitti S, Artés-Ibañez EJ, Basnett P, Wilhelm C, Teran FJ, Roy I, Pellegrino T. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5450-5463. [PMID: 31631940 PMCID: PMC6795213 DOI: 10.1021/acs.chemmater.9b00728] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/25/2019] [Indexed: 05/24/2023]
Abstract
Here, we report a nanoplatform based on iron oxide nanocubes (IONCs) coated with a bioresorbable polymer that, upon exposure to lytic enzymes, can be disassembled increasing the heat performances in comparison with the initial clusters. We have developed two-dimensional (2D) clusters by exploiting benchmark IONCs as heat mediators for magnetic hyperthermia and a polyhydroxyalkanoate (PHA) copolymer, a biodegradable polymer produced by bacteria that can be digested by intracellular esterase enzymes. The comparison of magnetic heat performance of the 2D assemblies with 3D centrosymmetrical assemblies or single IONCs emphasizes the benefit of the 2D assembly. Moreover, the heat losses of 2D assemblies dispersed in water are better than the 3D assemblies but worse than for single nanocubes. On the other hand, when the 2D magnetic beads (2D-MNBs) are incubated with the esterase enzyme at a physiological temperature, their magnetic heat performances began to progressively increase. After 2 h of incubation, specific absorption rate values of the 2D assembly double the ones of individually coated nanocubes. Such an increase can be mainly correlated to the splitting of the 2D-MNBs into smaller size clusters with a chain-like configuration containing few nanocubes. Moreover, 2D-MNBs exhibited nonvariable heat performances even after intentionally inducing their aggregation. Magnetophoresis measurements indicate a comparable response of 3D and 2D clusters to external magnets (0.3 T) that is by far faster than that of single nanocubes. This feature is crucial for a physical accumulation of magnetic materials in the presence of magnetic field gradients. This system is the first example of a nanoplatform that, upon exposure to lytic enzymes, such as those present in a tumor environment, can be disassembled from the initial 2D-MNB organization to chain-like assemblies with clear improvement of the heat magnetic losses resulting in better heat dissipation performances. The potential application of 2D nanoassemblies based on the cleavable PHAs for preserving their magnetic losses inside cells will benefit hyperthermia therapies mediated by magnetic nanoparticles under alternating magnetic fields.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica
e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | | | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - David Cabrera
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Roberto Marotta
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | - Elena Marcello
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Simone Nitti
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Emilio J. Artés-Ibañez
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes
(MSC) UMR 7057 CNRS and Université Paris Diderot, 75205 Paris Cedex
05, France
| | - Francisco J. Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología
(CSIC), Nanobiotecnología (iMdea
Nanociencia), 28049 Madrid, Spain
| | - Ipsita Roy
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | | |
Collapse
|
112
|
Zheng Y, Lan T, Wei D, Zhang G, Hou G, Yuan J, Yan F, Wang F, Meng P, Yang X, Chen G, Zhu Z, Lu Z, He W, Yuan J. Coupling the near-infrared fluorescent dye IR-780 with cabazitaxel makes renal cell carcinoma chemotherapy possible. Biomed Pharmacother 2019; 116:109001. [DOI: 10.1016/j.biopha.2019.109001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
|
113
|
Wang J, Pan M, Yuan J, Wang Y, Liu G, Zhu L. Revisiting the Classical Emulsion Polymerization: An Intriguing Occurrence of Monodispersed Bowl-Shaped Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yajiao Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|