101
|
Loeper J, Descatoire V, Maurice M, Beaune P, Feldmann G, Larrey D, Pessayre D. Presence of functional cytochrome P-450 on isolated rat hepatocyte plasma membrane. Hepatology 1990; 11:850-8. [PMID: 2112112 DOI: 10.1002/hep.1840110521] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies against cytochrome P-450 are found in some children with autoimmune hepatitis (antiliver/kidney microsome 1) and in patients with ticrynafen hepatitis (antiliver/kidney microsome 2). For an immune reaction against cytochrome P-450 to possibly destroy the hepatocytes, one must assume that cytochrome P-450 is present on the plasma membrane surface of hepatocytes. In a first series of experiments, plasma membranes were prepared with a technique based on the electrostatic attachment of isolated hepatocytes to polyethyleneimine-coated beads. After vortexing, beads were coated with a very pure plasma membrane fraction. Microsomal contamination, judged from the specific activities of glucose-6-phosphatase or NADH-cytochrome c reductase, was less than 1%. Nevertheless, the specific content (per milligram of protein) of CO-binding cytochrome P-450 was 20% of that in microsomes; the specific benzo(a)pyrene hydroxylase activity was 25%, and ethoxycoumarin deethylase 11%. Immunoblots showed the presence of cytochromes P-450 UT-A, UT-H, PB-B, ISF-G and PCN-E, the last three isoenzymes being inducible by, respectively, phenobarbital, 3-methylcholanthrene and dexamethasone. In a second series of experiments, nonpermeabilized isolated hepatocytes from untreated rats were incubated with anticytochrome P-450 antibodies. Immunofluorescence and immunoperoxidase staining confirmed the presence of cytochromes P-450 UT-A, PB-B and ISF-G on the membrane. In a last series of experiments, human antiliver-kidney microsomal 1 antibodies were found to react specifically with rat liver plasma membrane cytochrome P-450 UT-H (IID subfamily). We conclude that several cytochrome P-450 isoenzymes are present, active and inducible on the plasma membrane surface of hepatocytes. It is therefore conceivable that immunization against plasma membrane cytochrome P-450 might lead to the immunological destruction of hepatocytes in some patients.
Collapse
Affiliation(s)
- J Loeper
- Unité de Recherche de Physiopathologie Hépatique, INSERM U-24, Hôpital Beaujon, Clichy, France
| | | | | | | | | | | | | |
Collapse
|
102
|
Hassett C, Omiecinski CJ. Sequence and gene expression of rabbit cytochrome P450 IIC16: comparison to highly related family members. Nucleic Acids Res 1990; 18:1429-34. [PMID: 2326187 PMCID: PMC330507 DOI: 10.1093/nar/18.6.1429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450s are heme containing proteins which evolved from an ancestral gene(s) to form a large superfamily of enzymes. We have isolated a unique cDNA from the rabbit P450 IIC subfamily, IIC16, which is 2028 bp in length. Nucleotide sequence determination indicated an ATG start codon 66 bp from the 5' end of the molecule, and an open reading frame coding for a protein of 487 amino acids. P450 IIC16 protein is greater than or equal to 90% identical in sequence to rabbit P450 IIC4, IIC5, and to the partial sequence available for IIC15. Northern and slot blot experiments demonstrated that the P450 IIC16 gene is expressed constitutively in liver, lung, testes, and kidney, and is inducible by phenobarbital in each tissue with the exception of the kidney, where mRNA levels are repressed. Alignment analysis of eight rabbit P450 IIC proteins revealed conserved and variable regions common to all IIC enzymes, and specific areas are suggested which may be important with respect to structure and function.
Collapse
Affiliation(s)
- C Hassett
- Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
103
|
Abstract
Studies with biomimetic models can yield considerable insight into mechanisms of enzymatic catalysis. The discussion above indicates how such information has been important in the cases of flavoproteins, hemoproteins, and, to a lesser extent, the copper protein dopamine beta-hydroxylase. Some of the moieties that we generally accept as intermediates (i.e., high-valent iron oxygen complex in cytochrome P-450 reactions) would be extremely hard to characterize were it not for biomimetic models and more stable analogs such as peroxidase Compound I complexes. Although biomimetic models can be useful, we do need to keep them in perspective. It is possible to alter ligands and aspects of the environment in a way that may not reflect the active site of the protein. Eventually, the model work needs to be carried back to the proteins. We have seen that diagnostic substrates can be of considerable use in understanding enzymes and examples of elucidation of mechanisms through the use of rearrangements, mechanism-based inactivation, isotope labeling, kinetic isotope effects, and free energy relationships have been given. The point should be made that a myriad of approaches need to be applied to the study of each enzyme, for there is potential for misleading information if total reliance is placed on a single approach. The point also needs to be made that in the future we need information concerning the structures of the active sites of enzymes in order to fully understand them. Of the enzymes considered here, only a bacterial form of cytochrome P-450 (P-450cam) has been crystallized. The challenge to determine the three-dimensional structures of these enzymes, particularly the intrinsic membrane proteins, is formidable, yet our further understanding of the mechanisms of enzyme catalysis will remain elusive as long as we have to speak of putative specific residues, domains, and distances in anecdotal terms. The point should be made that there is actually some commonality among many of the catalytic mechanisms of oxidation, even among proteins with different structures and prosthetic groups. Thus, we see that cytochrome P-450 has some elements of a peroxidase and vice versa; indeed, the chemistry at the prosthetic group is probably very similar and the overall chemistry seems to be induced by the protein structure. The copper protein dopamine beta-hydroxylase appears to proceed with chemistry similar to that of the hemoprotein cytochrome P-450 and, although not so thoroughly studied, the non-heme iron protein P. oleovarans omega-hydroxylase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
104
|
|
105
|
Tretiakov VE, Degtyarenko KN, Uvarov VYu, Archakov AI. Secondary structure and membrane topology of cytochrome P450s. Arch Biochem Biophys 1989; 275:429-39. [PMID: 2596849 DOI: 10.1016/0003-9861(89)90389-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The secondary structure prediction of 19 microsomal cytochrome P450s from two different families was made on the basis of their amino acid sequences. It was shown that there is structural similarity between the heme-binding sites in these enzymes and those in the bacterial P450cam. An average predicted secondary structure of cytochrome P450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-sheets, 9% beta-turns, and 33% random coils. In the region of residues 35-120 in microsomal P450s two adjacent beta alpha beta-units (the Rossmann domain), were recognized and may be available to interact with the NADPH-cytochrome P450 reductase. Using the procedure for identification of hydrophobic and membrane-associated alpha-helical segments, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site may include the surface-bound helix. A model for vertebrate microsomal P450s having an amphipathic membrane protein located on the cytoplasmic side of the endoplasmic reticulum membrane, with their active center lying outside or on the bilayer border, is proposed.
Collapse
Affiliation(s)
- V E Tretiakov
- Institute of Physical-Chemical Medicine, Moscow, USSR
| | | | | | | |
Collapse
|
106
|
Pompon D, Nicolas A. Protein engineering by cDNA recombination in yeasts: shuffling of mammalian cytochrome P-450 functions. Gene 1989; 83:15-24. [PMID: 2687113 DOI: 10.1016/0378-1119(89)90399-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have constructed, in the yeast Saccharomyces cerevisiae, a mosaic assembly of genes by in vivo recombination of partially homologous sequences. The approach was tested on cDNAs encoding functionally distinct mammalian cytochromes P-450 (P-450). The selection for recombinant cDNAs used the transformation of yeast cells, which required the recircularization of a linearized plasmid by recombination of two partially homologous cDNAs. Libraries of mosaic genes with bipartite or tripartite structures were generated by intramolecular and intermolecular recombination events. The presence of yeast promoter and terminator sequences on the flanking sides of the recombined cDNAs has allowed the synthesis of encoded mosaic proteins. A library of yeast clones producing recombinant mouse P-450 P1 and rabbit P-450 LM4 was screened using functional criteria to identify chimeras with shuffled substrate specificity. Restriction mapping of mosaic genes, biochemical analysis of the synthesized proteins, comparison of chimeric enzymes, and the alignment of sequences with bacterial P-450 camphor hydroxylase of known three-dimensional structure, all suggest that the P-450 P1 amino acid residues 203-238 play a major role in the control of cytochrome activity toward carcinogenic polycyclic aromatic hydrocarbons. Similar approaches to structure-function analysis are believed to be applicable to other protein families.
Collapse
Affiliation(s)
- D Pompon
- Centre de Génétique Moléculaire, C.N.R.S. Laboratoire propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
107
|
Hassett C, Turnblom SM, DeAngeles A, Omiecinski CJ. Rabbit microsomal epoxide hydrolase: isolation and characterization of the xenobiotic metabolizing enzyme cDNA. Arch Biochem Biophys 1989; 271:380-9. [PMID: 2729997 DOI: 10.1016/0003-9861(89)90287-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many endogenous and xenobiotic chemicals are metabolized to epoxides which may be enzymatically hydrated, via microsomal epoxide hydrolase (mEH), to less reactive dihydrodiol derivatives. On the basis of the reported rabbit mEH amino acid sequence [F. S. Heinemann and J. Ozols (1984) J. Biol. Chem. 259, 797-804], we constructed a 35 base oligonucleotide which was used to screen rabbit liver cDNA libraries. Overlapping rabbit mEH clones were isolated and the full-length cDNA sequence of 1653 bp was determined. The rabbit nucleotide sequence has a high degree of similarity (greater than 75%) with cDNA sequences reported for rat and human mEH. Northern blot analyses with fragments of the rabbit cDNA demonstrate that mEH messenger RNA (mRNA) is expressed constitutively in the liver and induced following exposure to phenobarbital or polychlorinated biphenyls. Constitutive expression of mEH mRNA is also observed in rabbit kidney, testes, and lung. Using benzo[alpha]pyrene-4,5-oxide as substrate, mEH enzymatic activity is shown to correlate closely with tissue levels of mEH mRNA. Southern blot analyses of rabbit DNA suggest that the mEH gene exists as a single copy per haploid genome. The mEH amino acid sequences of the human and rat were compared to that of the deduced rabbit protein in order to analyze the degree of conservation and hydropathy profiles in these species. This comparison permitted the formulation of a computer-assisted model of mammalian mEH as it may relate to the microsomal membrane.
Collapse
Affiliation(s)
- C Hassett
- Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
108
|
Uvarov VYu, Tretiakov VE, Leshchenko AV, Rukavishnikov IG, Dzhuzenova CS, Tretiakova LZ, Archakov AI. Effect of the microenvironment on the tertiary structure of cytochrome P-450 LM2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:391-6. [PMID: 2714291 DOI: 10.1111/j.1432-1033.1989.tb14737.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The relation between microenvironment and the tertiary structure of cytochrome P-450 LM2 has been investigated. No complete relaxation to the most active state of the native enzyme took place in the case of membrane-incorporated hemoprotein with three or four intramolecular cross-links. The spatial organization of the enzyme was predicted to determine the cross-link location on the hemoprotein surface and membrane-incorporated parts of the polypeptide chain. It was concluded on the basis of the predicted structure that hemoprotein has an amphipathic structure and, thus, the greater part of molecule is exposed to the water phase. Not more than one NH2-terminal alpha helix is able to incorporate into the membrane. The location of this region is believed to control the formation of the catalytically-active-conformational state of cytochrome P-450 LM2.
Collapse
Affiliation(s)
- Uvarov VYu
- Department of Biochemistry, Medico-Biological Faculty, 2nd Moscow Medical Institute, USSR
| | | | | | | | | | | | | |
Collapse
|
109
|
Nef P, Heldman J, Lazard D, Margalit T, Jaye M, Hanukoglu I, Lancet D. Olfactory-specific cytochrome P-450. cDNA cloning of a novel neuroepithelial enzyme possibly involved in chemoreception. J Biol Chem 1989; 264:6780-5. [PMID: 2708343 DOI: 10.1016/s0021-9258(18)83497-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We isolated cDNA clones for cytochrome P-450 genes expressed in the olfactory neuroepithelium by screening a corresponding rat cDNA library. Sequence analysis and RNA blot hybridization revealed a new cytochrome P-450, designated cytochrome P-450olf1, which is the first reported cytochrome P-450 mRNA uniquely expressed in the chemosensory organ. Cytochrome P-450olf1 shows intermediate level of sequence similarity (38-53% identity) to several liver cytochrome P-450 enzymes, suggesting that it belongs to the cytochrome P-450II family, but defines a new subfamily (cytochrome P-450IIG) within it. Cytochrome P-450II enzymes are known to process diverse organic compounds, including odorants. This, together with the specificity of cytochrome P-450olf1 to the sensory neuroepithelium, may indicate a role for this protein in olfactory reception.
Collapse
Affiliation(s)
- P Nef
- Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
110
|
Oesch F, Waxman DJ, Morrissey JJ, Honscha W, Kissel W, Friedberg T. Antibodies targeted against hypervariable and constant regions of cytochromes P450IIB1 and P450IIB2. Arch Biochem Biophys 1989; 270:23-32. [PMID: 2539047 DOI: 10.1016/0003-9861(89)90003-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fusion proteins constructed between beta-galactosidase and six different segments of either cytochrome P450IIB1 or cytochrome P450IIB2 (ranging from 18 to 33 amino acids in length) were expressed in Escherichia coli. Rabbit antibodies raised against these fusion proteins were first adsorbed through a beta-galactosidase column and then immunopurified on a second column containing the corresponding fusion protein. With the exception of the antibodies directed against the hydrophobic amino-terminal segment of cytochrome P450IIB1, all the antipeptide antibodies recognized the major phenobarbital-inducible cytochromes P450IIB1 and -IIB2 on immunoblots of liver microsomal proteins. Two of the antibodies were raised against regions where cytochromes P450IIB1 and -IIB2 differ in primary structure, and were differentially reactive toward these two highly homologous cytochromes. Several of the antipeptide antibodies were also reactive with a third phenobarbital-inducible microsomal protein expressed in livers of some individual Sprague-Dawley rats which was shown to be more highly related to P450IIB1 than P450IIB2. This P450IIB1-related P450, designated P450IIB1*, was purified to apparent homogeneity and shown to hydroxylate the steroid hormones testosterone and androstenedione with the well-defined regiospecificity and high catalytic activity characteristic of P450IIB1. A fourth microsomal protein detected using the antipeptide antibodies appeared to be more highly related to P450IIB2. Because the segments on the P450 molecules recognized by these antipeptide antibodies are known, it is possible to predict where P450IIB1* and the P450IIB2-related protein differ from cytochromes P450IIB2 and -IIB1, respectively. These studies demonstrate the utility of site-specific anti-P450 antibodies raised to fusion peptides for studies on the expression of structurally related P450s and polymorphic variants within the cytochrome P450 gene superfamily.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, West Germany
| | | | | | | | | | | |
Collapse
|
111
|
Szczesna-Skorupa E, Kemper B. NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2. J Cell Biol 1989; 108:1237-43. [PMID: 2494191 PMCID: PMC2115505 DOI: 10.1083/jcb.108.4.1237] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insertion of rabbit cytochrome P450IIC2 and its modified form, [2-lys,3-arg]P450IIC2, into microsomal membranes was studied in an in vitro transcription/translation/translocation system. Cytochrome P450IIC2, synthesized in the presence of chicken oviduct microsomal membranes, was resistant to extraction by alkaline solutions, but was sensitive to proteolytic digestion. In contrast, when [2-lys,3-arg]-P450IIC2 was synthesized in the presence of membranes, two new species migrating more slowly during gel electrophoresis were observed. After treatment with endoglycosidase H, the more slowly migrating species comigrated with [2-lys,3-arg]P450IIC2 synthesized in the absence of membranes, indicating that the proteins had been glycosylated. Both the glycosylated and nonglycosylated forms of [2-lys,3-arg]P450IIC2 were resistant to proteolytic digestion and to extraction from the membranes by alkaline solutions. Similar results were obtained for a truncated species, [2-lys,3-arg]P450IIC2(1-55), except that only a single glycosylated species was observed, consistent with the single remaining glycosylation site. In contrast to the proteolytic processing observed previously in a hybrid [2-lys,3-arg]P450IIC2/parathyroid hormone protein, little or no cleavage of the NH2-terminal peptide of [2-lys,3-arg]P450IIC2 was observed in the presence of membranes. Since cleavage in the hybrid protein occurred after glycine 25, which is derived from [2-lys,3-arg]P450IIC2, cytochrome P450 sequences COOH terminal to the cleavage site must decrease cleavage efficiency. These results demonstrate that cytochrome P450, which is normally localized on the cytoplasmic side of the membrane, can be entirely translocated to the luminal side when two basic amino acids precede the hydrophobic core of its NH2-terminal insertion/stop-transfer signal. None of the several internal hydrophobic regions of cytochrome P450, previously proposed as membrane spanning, function as a stop-transfer signal.
Collapse
Affiliation(s)
- E Szczesna-Skorupa
- Department of Physiology and Biophysics, University of Illinois, Urbana 61801
| | | |
Collapse
|
112
|
Gueguen M, Yamamoto AM, Bernard O, Alvarez F. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1. Biochem Biophys Res Commun 1989; 159:542-7. [PMID: 2930529 DOI: 10.1016/0006-291x(89)90027-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.
Collapse
Affiliation(s)
- M Gueguen
- INSERM U 56, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
113
|
|
114
|
|
115
|
|
116
|
Affiliation(s)
- J Ozols
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| |
Collapse
|
117
|
Affiliation(s)
- B Kemper
- Department of Physiology and Biophysics, University of Illinois, Urbana-Champaign 61801
| | | |
Collapse
|
118
|
Beta-galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37681-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
119
|
Hudecek J, Anzenbacher P. Secondary structure prediction of liver microsomal cytochrome P-450; proposed model of spatial arrangement in a membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 955:361-70. [PMID: 3401494 DOI: 10.1016/0167-4838(88)90216-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The secondary structure of rabbit liver microsomal cytochrome P-450 LM2, rat liver microsomal cytochromes P-450b and P-450e (phenobarbital-inducible), and rat liver microsomal cytochromes P-450c, P-450d (3-methylcholanthrene-inducible) was predicted by a combination of methods (i) identifying the transmembrane parts of integral membrane proteins, and (ii) statistically predicting the secondary structure of globular proteins. The results are similar for all phenobarbital-inducible enzymes and make it possible to construct two structural models with seven or four transmembrane alpha-helices. The cytochromes of the second group obviously form a second structural family with four membrane-spanning alpha-helices. In both cases, a large ectodomain with several consecutive alpha-helices, which may provide the heme-binding pocket, is exposed out of the membrane.
Collapse
Affiliation(s)
- J Hudecek
- Department of Biochemistry, Charles University, Prague, Czechoslovakia
| | | |
Collapse
|
120
|
Monier S, Van Luc P, Kreibich G, Sabatini DD, Adesnik M. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol 1988; 107:457-70. [PMID: 3047140 PMCID: PMC2115216 DOI: 10.1083/jcb.107.2.457] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.
Collapse
Affiliation(s)
- S Monier
- Department of Cell Biology, New York University School of Medicine, New York 10016
| | | | | | | | | |
Collapse
|
121
|
Abstract
Integral membrane proteins are characterized by long apolar segments that cross the lipid bilayer. Polar domains flanking these apolar segments have a more balanced amino acid composition, typical for soluble proteins. We show that the apolar segments from three different kinds of membrane-assembly signals do not differ significantly in amino acid content, but that the inside/outside location of the polar domains correlates strongly with their content of arginyl and lysyl residues, not only for bacterial inner-membrane proteins, but also for eukaryotic.proteins from the endoplasmic reticulum, the plasma membrane, the inner mitochondrial membrane, and the chloroplast thylakoid membrane. A positive-inside rule thus seems to apply universally to all integral membrane proteins, with apolar regions targeting for membrane integration and charged residues providing the topological information.
Collapse
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
122
|
von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 947:307-33. [PMID: 3285892 DOI: 10.1016/0304-4157(88)90013-5] [Citation(s) in RCA: 326] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the living cell, proteins are efficiently sorted to a whole range of subcellular compartments. In many cases, sorting specificity is mediated by short 'sorting signals' attached either permanently or transiently to the protein. At long last, a fairly coherent picture of the design and function of many such sorting signals is beginning to emerge.
Collapse
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institutet, Huddinge University Hospital, Sweden
| |
Collapse
|
123
|
|
124
|
Szczesna-Skorupa E, Browne N, Mead D, Kemper B. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Proc Natl Acad Sci U S A 1988; 85:738-42. [PMID: 3422456 PMCID: PMC279630 DOI: 10.1073/pnas.85.3.738] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The NH2-terminal sequences of cytochromes P-450 resemble signal peptides, but these sequences are not cleaved during the insertion of these integral membrane proteins into the microsomes. To examine whether these putative signal peptides are functionally equivalent to signal peptides of secretory proteins, cDNA coding for a fusion protein was produced, in which the signal peptide for preproparathyroid hormone was replaced with the putative signal peptide of cytochrome P450IIC2. The translational product of RNA synthesized in vitro from the cDNA was neither processed nor translocated by chicken oviduct microsomal membranes in a reticulocyte cell-free system but was resistant to extraction from the membranes by alkaline solutions. In addition, the translation of the hybrid RNA was arrested by signal recognition particle. Unlike most signal peptides, the cytochrome P450IIC2 NH2-terminal sequence does not contain basic amino acids preceding the hydrophobic core. Introduction by oligonucleotide-directed mutagenesis of lysine and arginine at the NH2 terminus resulted in a fusion protein that was partially processed by the microsomal membranes, with translocation across the membrane of both the processed and unprocessed proteins. The positive charges convert the cytochrome P450IIC2 NH2 terminus from a combination membrane insertion-halt transfer signal to a more classical secretory membrane-insertion signal, possibly by altering the orientation of the signal peptide in the membrane.
Collapse
|
125
|
Richter C, Gut J, Kunz BC. Structure and dynamics of the liver microsomal monoxygenase system. Subcell Biochem 1988; 13:259-79. [PMID: 2577857 DOI: 10.1007/978-1-4613-9359-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
126
|
Cornacchia L, Black V. Development of stereological analysis software for the calculation of volume, number and surface density. Comput Biol Med 1988; 18:75-88. [PMID: 3281793 DOI: 10.1016/0010-4825(88)90034-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
COSAS, an acronym for COmputerized Stereological Analysis System, is software designed to facilitate the process of quantitative morphological analysis. It is a flexible, reliable, and easy to use software system which provides the biologist with a simple means for performing stereological analysis. It provides for estimation of volume and surface density and allows for direct calculation of diameter information from planimetric data. The latter capability is unique to COSAS and provides the ability to calculate longest and shortest diameters for convex profiles, enabling calculation of number density. Access to all intermediate calculations is possible, so the process of transformation of raw data into the stereological descriptors can be completely exposed. This serves two purposes: (1) it provides a means for tracing results; (2) the intermediate values can be utilized independently. This system was used to analyze peroxisomes in tissues from patients with Zellweger's disease and neonatal-onset adrenoleukodystrophy. The system was also used to facilitate an immunocytochemical analysis of cytochrome P450 topology in the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- L Cornacchia
- Department of Cell Biology, New York University School of Medicine, NY 10016
| | | |
Collapse
|
127
|
Finidori J, Rizzolo L, Gonzalez A, Kreibich G, Adesnik M, Sabatini DD. The influenza hemagglutinin insertion signal is not cleaved and does not halt translocation when presented to the endoplasmic reticulum membrane as part of a translocating polypeptide. J Cell Biol 1987; 104:1705-14. [PMID: 3294860 PMCID: PMC2114505 DOI: 10.1083/jcb.104.6.1705] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The co-translational insertion of polypeptides into endoplasmic reticulum membranes may be initiated by cleavable amino-terminal insertion signals, as well as by permanent insertion signals located at the amino-terminus or in the interior of a polypeptide. To determine whether the location of an insertion signal within a polypeptide affects its function, possibly by affecting its capacity to achieve a loop disposition during its insertion into the membrane, we have investigated the functional properties of relocated insertion signals within chimeric polypeptides. An artificial gene encoding a polypeptide (THA-HA), consisting of the luminal domain of the influenza hemagglutinin preceded by its amino-terminal signal sequence and linked at its carboxy-terminus to an intact prehemagglutinin polypeptide, was constructed and expressed in in vitro translation systems containing microsomal membranes. As expected, the amino-terminal signal initiated co-translational insertion of the hybrid polypeptide into the membranes. The second, identical, interiorized signal, however, was not recognized by the signal peptidase and was translocated across the membrane. The failure of the interiorized signal to be cleaved may be attributed to the fact that it enters the membrane as part of a translocating polypeptide and therefore cannot achieve the loop configuration that is thought to be adopted by signals that initiate insertion. The finding that the interiorized signal did not halt translocation of downstream sequences, even though it contains a hydrophobic region and must enter the membrane in the same configuration as natural stop-transfer signals, indicates that the HA insertion signal lacks essential elements of halt transfer signals that makes the latter effective membrane-anchoring domains. When the amino-terminal insertion signal of the THA-HA chimera was deleted, the interior signal was incapable of mediating insertion, probably because of steric hindrance by the folded preceding portions of the chimera. Several chimeras were constructed in which the interiorized signal was preceded by polypeptide segments of various lengths. A signal preceded by a segment of 111 amino acids was also incapable of initiating insertion, but insertion took place normally when the segment preceding the signal was only 11-amino acids long.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|