101
|
Hoffmann S, Maro B, Kubiak JZ, Polanski Z. A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I. PLoS One 2011; 6:e27143. [PMID: 22125605 PMCID: PMC3220673 DOI: 10.1371/journal.pone.0027143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023] Open
Abstract
The Spindle Assembly Checkpoint (SAC) inhibits anaphase until microtubule-to-kinetochore attachments are formed, thus securing correct chromosome separation and preventing aneuploidy. Whereas in mitosis even a single unattached chromosome keeps the SAC active, the high incidence of aneuploidy related to maternal meiotic errors raises a concern about the lower efficiency of SAC in oocytes. Recently it was suggested that in mouse oocytes, contrary to somatic cells, not a single chromosome but a critical mass of chromosomes triggers efficient SAC pointing to the necessity of evaluating the robustness of SAC in oocytes. Two types of errors in chromosome segregation upon meiosis I related to SAC were envisaged: (1) SAC escape, when kinetochores emit SAC-activating signal unable to stop anaphase I; and (2) SAC deceive, when kinetochores do not emit the signal. Using micromanipulations and live imaging of the first polar body extrusion, as well as the dynamics of cyclin B1 degradation, here we show that in mouse oocytes a single bivalent keeps the SAC active. This is the first direct evaluation of SAC efficiency in mouse oocytes, which provides strong evidence that the robustness of SAC in mammalian oocytes is comparable to other cell types. Our data do not contradict the hypothesis of the critical mass of chromosomes necessary for SAC activation, but suggest that the same rule may govern SAC activity also in other cell types. We postulate that the innate susceptibility of oocytes to errors in chromosome segregation during the first meiotic division may not be caused by lower efficiency of SAC itself, but could be linked to high critical chromosome mass necessary to keep SAC active in oocyte of large size.
Collapse
Affiliation(s)
- Steffen Hoffmann
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Bernard Maro
- UMR 6061 CNRS/ University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, Rennes, France
| | - Jacek Z. Kubiak
- UMR 6061 CNRS/ University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, Rennes, France
- * E-mail: (ZP); (JZK)
| | - Zbigniew Polanski
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Freiburg, Germany
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Cracow, Poland
- * E-mail: (ZP); (JZK)
| |
Collapse
|
102
|
Westhorpe FG, Tighe A, Lara-Gonzalez P, Taylor SS. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 2011; 124:3905-16. [PMID: 22100920 PMCID: PMC3225272 DOI: 10.1242/jcs.093286] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 12/19/2022] Open
Abstract
Accurate chromosome segregation requires the spindle assembly checkpoint to be active at the onset of mitosis, before being silenced following chromosome alignment. p31(comet) is a checkpoint antagonist in that its inhibition delays mitotic exit, whereas its overexpression overrides the checkpoint. How exactly p31(comet) antagonises the checkpoint is unclear. A prevalent model is that p31(comet) acts as a 'cap' by inhibiting recruitment of the open conformation form of Mad2 (O-Mad2) to the kinetochore-bound complex of Mad1-C-Mad2 (closed conformation Mad2), an essential step that is required for checkpoint activation. Here, we show that although p31(comet) localises to kinetochores in mitosis, modulation of its activity has no effect on recruitment of O-Mad2 to kinetochores. Rather, our observations support a checkpoint-silencing role for p31(comet) downstream of kinetochores. We show that p31(comet) binds Mad2 when it is bound to the mitotic checkpoint complex (MCC) components BubR1 and Cdc20. Furthermore, RNAi-mediated inhibition of p31(comet) results in more Mad2 bound to BubR1-Cdc20, and conversely, overexpression of p31(comet) results in less Mad2 bound to BubR1-Cdc20. Addition of recombinant p31(comet) to checkpoint-arrested extracts removes Mad2 from the MCC, whereas a p31(comet) mutant that cannot bind Mad2 has no effect. Significantly, expression of a Mad2 mutant that cannot bind p31(comet) prolongs the metaphase to anaphase transition. Taken together, our data support the notion that p31(comet) negatively regulates the spindle assembly checkpoint by extracting Mad2 from the MCC.
Collapse
Affiliation(s)
- Frederick G. Westhorpe
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anthony Tighe
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Stephen S. Taylor
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
103
|
Nilsson J. Cdc20 control of cell fate during prolonged mitotic arrest: do Cdc20 protein levels affect cell fate in response to antimitotic compounds? Bioessays 2011; 33:903-9. [PMID: 22045620 DOI: 10.1002/bies.201100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations in Cdc20 protein levels, rather than mutations in checkpoint genes, could affect cell fate during prolonged mitotic arrest. This hypothesis is supported by experiments where manipulation of Cdc20 levels affects the response to antimitotic compounds. The observed differences in Cdc20 levels between cell lines likely reflects differences in the rate of synthesis or degradation of the protein; therefore, understanding these pathways at a molecular level could pave the way for modulating the activity of Cdc20, in turn presenting novel therapeutic possibilities.
Collapse
Affiliation(s)
- Jakob Nilsson
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
104
|
Tipton AR, Tipton M, Yen T, Liu ST. Closed MAD2 (C-MAD2) is selectively incorporated into the mitotic checkpoint complex (MCC). Cell Cycle 2011; 10:3740-50. [PMID: 22037211 DOI: 10.4161/cc.10.21.17919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that monitors kinetochore-microtubule attachment to achieve faithful chromosome segregation. MAD2 is an evolutionarily conserved mitotic checkpoint protein that exists in open (O) and closed (C) conformations. The increase of intracellular C-MAD2 level during mitosis, through O→C-MAD2 conversion as catalyzed by unattached kinetochores, is a critical signaling event for the mitotic checkpoint. However, it remains controversial whether MAD2 is an integral component of the effector of the mitotic checkpoint--the Mitotic Checkpoint Complex (MCC). We show here that endogenous human MCC is assembled by first forming a BUBR1:BUB3:CDC20 complex in G2 and then selectively incorporating C-MAD2 during mitosis. Nevertheless, MCC can be induced to form in G1/S cells by expressing a C-conformation locked MAD2 mutant, indicating intracellular level of C-MAD2 as a major limiting factor for MCC assembly. In addition, a recombinant MCC containing C-MAD2 exhibits effective inhibitory activity towards APC/C isolated from mitotic HeLa cells, while a recombinant BUBR1:BUB3:CDC20 ternary complex is ineffective at comparable concentrations despite association with APC/C. These results help establish a direct connection between a major signal transducer (C-MAD2) and the potent effector (MCC) of the mitotic checkpoint, and provide novel insights into protein-protein interactions during assembly of a functional MCC.
Collapse
Affiliation(s)
- Aaron R Tipton
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | | | |
Collapse
|
105
|
|
106
|
Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res 2011; 19:291-306. [PMID: 21194009 DOI: 10.1007/s10577-010-9178-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, I stress the importance of direct data and accurate terminology when formulating and communicating conclusions on how the G2/M and metaphase/anaphase transitions are regulated. I argue that entry into mitosis (i.e., the G2/M transition) is guarded by several checkpoint control pathways that lose their ability to delay or stop further cell cycle progression once the cell becomes committed to divide, which in vertebrates occurs in the late stages of chromosome condensation. After this commitment, progress through mitosis is then mediated by a single Mad/Bub-based checkpoint that delays chromatid separation, and exit from mitosis (i.e., completion of the cell cycle) in the presence of unattached kinetochores. When cells cannot satisfy the mitotic checkpoint, e.g., when in concentrations of spindle poisons that prohibit the stable attachment of all kinetochores, they are delayed in mitosis for many hours. In normal cells, the duration of this delay depends on the organism and ranges from ∼4 h in rodents to ∼22 h in humans. Recent live cell studies reveal that under this condition, many cancer cells (including HeLa and U2OS) die in mitosis by apoptosis within ∼24 h, which implies that biochemical studies on cancer cell populations harvested in mitosis after a prolonged mitotic arrest are contaminated with dead or dying cells.
Collapse
|
107
|
Hached K, Xie SZ, Buffin E, Cladière D, Rachez C, Sacras M, Sorger PK, Wassmann K. Mps1 at kinetochores is essential for female mouse meiosis I. Development 2011; 138:2261-71. [DOI: 10.1242/dev.061317] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In female meiosis, chromosome missegregations lead to the generation of aneuploid oocytes and can cause the development of trisomies or infertility. Because mammalian female meiosis I is error prone, the full functionality of control mechanisms, such as the spindle assembly checkpoint (SAC), has been put into question. The SAC monitors the correct orientation, microtubule occupancy and tension on proteinaceous structures named kinetochores. Although it has been shown previously that the SAC exists in meiosis I, where attachments are monopolar, the role of microtubule occupancy for silencing the SAC and the importance of certain essential SAC components, such as the kinase Mps1, are unknown in mammalian oocytes. Using a conditional loss-of-function approach, we address the role of Mps1 in meiotic progression and checkpoint control in meiosis I. Our data demonstrate that kinetochore localization of Mps1 is required for the proper timing of prometaphase and is essential for SAC control, chromosome alignment and aurora C localization in meiosis I. The absence of Mps1 from kinetochores severely impairs chromosome segregation in oocyte meiosis I and, therefore, fertility in mice. In addition, we settle a long-standing question in showing that kinetochore-microtubule attachments are present in prometaphase I at a time when most of the SAC protein Mad2 disappears from kinetochores.
Collapse
Affiliation(s)
- Khaled Hached
- UPMC, 9 quai St Bernard, 75005 Paris, France
- CNRS UMR7622 Biologie du Développement, Cell Division and Associated Checkpoints, 9 quai St Bernard, 75005 Paris, France
| | - Stephanie Z. Xie
- Department of Biology, Center for Cancer Research, and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eulalie Buffin
- UPMC, 9 quai St Bernard, 75005 Paris, France
- CNRS UMR7622 Biologie du Développement, Cell Division and Associated Checkpoints, 9 quai St Bernard, 75005 Paris, France
| | - Damien Cladière
- UPMC, 9 quai St Bernard, 75005 Paris, France
- CNRS UMR7622 Biologie du Développement, Cell Division and Associated Checkpoints, 9 quai St Bernard, 75005 Paris, France
| | - Christophe Rachez
- Institut Pasteur, CNRS URA2578, 75724 Paris cedex 15, France
- Unité de Régulation Epigénétique, INSERM Avenir, Institut Pasteur, 75724 Paris cedex 15, France
| | - Marina Sacras
- UPMC, 9 quai St Bernard, 75005 Paris, France
- CNRS UMR7622 Biologie du Développement, Cell Division and Associated Checkpoints, 9 quai St Bernard, 75005 Paris, France
| | - Peter K. Sorger
- Department of Biology, Center for Cancer Research, and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Wassmann
- UPMC, 9 quai St Bernard, 75005 Paris, France
- CNRS UMR7622 Biologie du Développement, Cell Division and Associated Checkpoints, 9 quai St Bernard, 75005 Paris, France
| |
Collapse
|
108
|
Rohrabaugh SL, Hangoc G, Kelley MR, Broxmeyer HE. Mad2 haploinsufficiency protects hematopoietic progenitor cells subjected to cell-cycle stress in vivo and to inhibition of redox function of Ape1/Ref-1 in vitro. Exp Hematol 2011; 39:415-23. [PMID: 21216274 PMCID: PMC3062656 DOI: 10.1016/j.exphem.2010.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Cell-cycle checkpoints guarantee movement through the cell cycle. Mitotic arrest deficiency 2 (Mad2), a mitotic checkpoint protein, appears crucial for generating the wait anaphase signal to prevent onset of anaphase. We evaluated effects of Mad2 haploinsufficiency on hematopoietic stem (HSC) and progenitor (HPC) function in response to stress. MATERIALS AND METHODS We studied effects of Mad2(+/-) on in vivo recovery of bone marrow HPC from cytotoxic effects and also effects of cytostatic agents on HPC growth in vitro using Mad2(+/-) mice. RESULTS Mad2(+/-) HPCs were protected from cytotoxic effects in vivo of a cell-cycle-specific agent, Ara-C, events consistent with Mad2(+/-) HPCs being in a slow or noncycling state, but not from recovery of functional HPC after treatment with non-cycle-specific cyclophosphamide or sublethal irradiation. There were no differences in phenotyped HSCs in Mad2(+/-) &Mad2(+/+) mice, information confirmed by no changes in short- or long-term repopulating HSC assay. To better understand Mad2(+/-) HPC function, E3330, a cytostatic agent, was used to assess redox function of Ape1/Ref-1; colony growth was examined under 5% and 20% O(2) tension. Mad2(+/-) HPCs were less responsive to E3330 than Mad2(+/+) HPCs, and E3330 was more effective under lowered O(2) tension. Mad2(+/-) HPCs were not enhanced at lowered oxygen, as were Mad2(+/+) HPCs. CONCLUSIONS Our studies have unexpectedly found that Mad2 haploinsufficiency is protective in the presence of a cycle-specific DNA synthesis agent in vivo, and Ape1/Ref-1 inhibitor in vitro.
Collapse
Affiliation(s)
- Sara L. Rohrabaugh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Giao Hangoc
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark R. Kelley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Section of Hematology/Oncology, Herman B Wells Center for Pediatric Research, Room 2600, 702 Barnhill Dr., Indianapolis, IN 46202
| | - Hal E. Broxmeyer
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
109
|
Maldonado M, Kapoor TM. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat Cell Biol 2011; 13:475-82. [PMID: 21394085 PMCID: PMC3076698 DOI: 10.1038/ncb2223] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/08/2011] [Indexed: 12/20/2022]
Abstract
Accurate chromosome segregation depends on biorientation, whereby sister chromatids attach to microtubules from opposite spindle poles. The spindle-assembly checkpoint is a surveillance mechanism in eukaryotes that inhibits anaphase until all chromosomes have bioriented. In present models, the recruitment of the spindle-assembly checkpoint protein Mad2, through Mad1, to non-bioriented kinetochores is needed to stop cell-cycle progression. However, it is unknown whether Mad1-Mad2 targeting to kinetochores is sufficient to block anaphase. Furthermore, it is unclear whether regulators of biorientation (for example, Aurora kinases) have checkpoint functions downstream of Mad1-Mad2 recruitment or whether they act upstream to quench the primary error signal. Here, we engineered a Mad1 construct that localizes to bioriented kinetochores. We show that the kinetochore localization of Mad1 is sufficient for a metaphase arrest that depends on Mad1-Mad2 binding. By uncoupling the checkpoint from its primary error signal, we show that Aurora, Mps1 and BubR1 kinases, but not Polo-like kinase, are needed to maintain checkpoint arrest when Mad1 is present on kinetochores. Together, our data suggest a model in which the biorientation errors, which recruit Mad1-Mad2 to kinetochores, may be signalled not only through Mad2 template dynamics, but also through the activity of widely conserved kinases, to ensure the fidelity of cell division.
Collapse
Affiliation(s)
- Maria Maldonado
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
110
|
Abstract
Neoplastic cells are genetically unstable. Strategies that target pathways affecting genome instability can be exploited to disrupt tumor cell growth, potentially with limited consequences to normal cells. Chromosomal instability (CIN) is one type of genome instability characterized by mitotic defects that increase the rate of chromosome mis-segregation. CIN is frequently caused by extra centrosomes that transiently disrupt normal bipolar spindle geometry needed for accurate chromosome segregation. Tumor cells survive with extra centrosomes because of biochemical pathways that cluster centrosomes and promote chromosome segregation on bipolar spindles. Recent work shows that targeted inhibition of these pathways prevents centrosome clustering and forces chromosomes to segregate to multiple daughter cells, an event triggering apoptosis that we refer to as anaphase catastrophe. Anaphase catastrophe specifically kills tumor cells with more than 2 centrosomes. This death program can occur after genetic or pharmacologic inhibition of cyclin dependent kinase 2 (Cdk2) and is augmented by combined treatment with a microtubule inhibitor. This proapoptotic effect occurs despite the presence of ras mutations in cancer cells. Anaphase catastrophe is a previously unrecognized mechanism that can be pharmacologically induced for apoptotic death of cancer cells and is, therefore, appealing to engage for cancer therapy and prevention.
Collapse
Affiliation(s)
- Fabrizio Galimberti
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Sarah L. Thompson
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | - Saranya Ravi
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
111
|
The 'anaphase problem': how to disable the mitotic checkpoint when sisters split. Biochem Soc Trans 2011; 38:1660-6. [PMID: 21118144 DOI: 10.1042/bst0381660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two closely connected mechanisms safeguard the fidelity of chromosome segregation in eukaryotic cells. The mitotic checkpoint monitors the attachment of kinetochores to microtubules and delays anaphase onset until all sister kinetochores have become attached to opposite poles. In addition, an error correction mechanism destabilizes erroneous attachments that do not lead to tension at sister kinetochores. Aurora B kinase, the catalytic subunit of the CPC (chromosomal passenger complex), acts as a sensor and effector in both pathways. In this review we focus on a poorly understood but important aspect of mitotic control: what prevents the mitotic checkpoint from springing into action when sister centromeres are split and tension is suddenly lost at anaphase onset? Recent work has shown that disjunction of sister chromatids, in principle, engages the mitotic checkpoint, and probably also the error correction mechanism, with potentially catastrophic consequences for cell division. Eukaryotic cells have solved this 'anaphase problem' by disabling the mitotic checkpoint at the metaphase-to-anaphase transition. Checkpoint inactivation is in part due to the reversal of Cdk1 (cyclin-dependent kinase 1) phosphorylation of the CPC component INCENP (inner centromere protein; Sli15 in budding yeast), which causes the relocation of the CPC from centromeres to the spindle midzone. These findings highlight principles of mitotic checkpoint control: when bipolar chromosome attachment is reached in mitosis, the checkpoint is satisfied, but still active and responsive to loss of tension. Mitotic checkpoint inactivation at anaphase onset is required to prevent checkpoint re-engagement when sister chromatids split.
Collapse
|
112
|
Abstract
Chromosome instability (CIN) is the process that leads to aneuploidy, a known hallmark of human tumours for over a century. Nowadays, it is believed that CIN promotes tumorigenesis by shuffling the genome into a malignant order through translocations, amplifications, deletions (structural CIN), and gains and losses of whole chromosomes (numerical CIN or nCIN). The present review focuses on the causes and consequences of nCIN. Several roads can lead to nCIN, including a compromised spindle assembly checkpoint, cohesion defects, p53 deficiency and flawed microtubule-kinetochore attachments. Whereas the link between nCIN and tumorigenesis is becoming more evident, indications have emerged recently that nCIN can suppress tumour formation as well. To understand these paradoxical findings, novel reagents and more sophisticated mouse models are needed. This will provide us with a better understanding of nCIN and eventually with therapies that exploit this characteristic of human tumours.
Collapse
|
113
|
Matos I, Maiato H. Prevention and Correction Mechanisms behind Anaphase Synchrony: Implications for the Genesis of Aneuploidy. Cytogenet Genome Res 2011; 133:243-53. [DOI: 10.1159/000323803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
114
|
Goto GH, Mishra A, Abdulle R, Slaughter CA, Kitagawa K. Bub1-mediated adaptation of the spindle checkpoint. PLoS Genet 2011; 7:e1001282. [PMID: 21298086 PMCID: PMC3029250 DOI: 10.1371/journal.pgen.1001282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 12/20/2010] [Indexed: 12/27/2022] Open
Abstract
During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore–microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest. The spindle checkpoint protects cells from aneuploidy by monitoring the status of the kinetochore-microtubule attachment. Defects in this checkpoint pathway and in kinetochore-microtubule attachment can cause substantial aneuploidy in cells. The duration of the mitotic arrest induced by the spindle checkpoint is not indefinite: cells eventually exit from mitosis and re-enter interphase. Because continued activation of the spindle checkpoint is lethal, adaptation to the spindle checkpoint arrest is essential so that cells have a chance for survival as opposed to certain death. However, adaptation of the spindle checkpoint has a flip side—adapted cells could have an increased chance of aneuploidy due to premature mitotic exit. Thus, it is essential that this mechanism be regulated appropriately. Despite the importance of understanding the adaptation of the spindle checkpoint, little is known to date about this mechanism. We found that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for adaptation of the spindle checkpoint, a finding providing the molecular insight on how adaptation to prolonged mitotic arrest induced by the spindle checkpoint occurs.
Collapse
Affiliation(s)
- Greicy H. Goto
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Ashutosh Mishra
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Rashid Abdulle
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Clive A. Slaughter
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Katsumi Kitagawa
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
115
|
Mukherjee A, Dutta S, Shanmugavel M, Mondhe DM, Sharma PR, Singh SK, Saxena AK, Sanyal U. 6-Nitro-2-(3-hydroxypropyl)-1H-benz[de]isoquinoline-1,3-dione, a potent antitumor agent, induces cell cycle arrest and apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:175. [PMID: 21194464 PMCID: PMC3023684 DOI: 10.1186/1756-9966-29-175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/31/2010] [Indexed: 11/13/2022]
Abstract
Background Anticancer activities of several substituted naphthalimides (1H-benz[de]isoquinoline-1,3-diones) are well documented. Some of them have undergone Phase I-II clinical trials. Presently a series of ten N-(hydroxyalkyl) naphthalimides (compounds 1a-j) were evaluated as antitumor agents. Methods Compounds 1a-j were initially screened in MOLT-4, HL-60 and U-937 human tumor cell lines and results were compared with established clinical drugs. Cytotoxicities of compounds 1d and 1i were further evaluated in a battery of human tumor cell lines and in normal human peripheral blood mononuclear cells. Cell cycle analysis of compound 1i treated MOLT-4 cells was studied by flow cytometry. Its apoptosis inducing effect was carried out in MOLT-4 and HL-60 cells by flow cytometry using annexin V-FITC/PI double staining method. The activities of caspase-3 and caspase-6 in MOLT-4 cells following incubation with compound 1i were measured at different time intervals. Morphology of the MOLT-4 cells after treatment with 1i was examined under light microscope and transmission electron microscope. 3H-Thymidine and 3H-uridine incorporation in S-180 cells in vitro following treatment with 8 μM concentration of compounds 1d and 1i were studied. Results 6-Nitro-2-(3-hydroxypropyl)-1H-benz[de]isoquinoline-1,3-dione (compound 1i), has exhibited maximum activity as it induced significant cytotoxicity in 8 out of 13 cell lines employed. Interestingly it did not show any cytotoxicity against human PBMC (IC50 value 273 μM). Cell cycle analysis of compound 1i treated MOLT-4 cells demonstrated rise in sub-G1 fraction and concomitant accumulation of cells in S and G2/M phases, indicating up-regulation of apoptosis along with mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. Its apoptosis inducing effect was confirmed in flow cytometric study in MOLT-4 and the action was mediated by activation of both caspase 3 and 6. Light and transmission electron microscopic studies corroborated its apoptosis inducing efficacy at a concentration of 10 μM in MOLT-4 cells. Its apoptosis induction was also observed in HL-60 cells to an extent much greater than well known apoptosis inducing agents as camptothecin and cis-platin at 10 μM concentration each. It significantly inhibited DNA and RNA synthesis in S-180. Conclusions In essence, compound 1i showed potential as an antitumor agent.
Collapse
Affiliation(s)
- Asama Mukherjee
- Department of Anticancer Drug Development, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
AbstractThe complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.
Collapse
|
117
|
Mutual antagonism between the anaphase promoting complex and the spindle assembly checkpoint contributes to mitotic timing in Caenorhabditis elegans. Genetics 2010; 186:1271-83. [PMID: 20944014 DOI: 10.1534/genetics.110.123133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) triggers the separation of sister chromatids and exit from mitosis across eukaryotic evolution. The APC/C is inhibited by the spindle assembly checkpoint (SAC) until all chromosomes have achieved bipolar attachment, but whether the APC/C reciprocally regulates the SAC is less understood. Here, we report the characterization of a novel allele of the APC5 component SUCH-1 in Caenorhabditis elegans. We find that some such-1(t1668) embryos lack paternally contributed DNA and centrioles and assemble a monopolar spindle in the one-cell stage. Importantly, we show that mitosis is drastically prolonged in these embryos, as well as in embryos that are otherwise compromised for APC/C function and assemble a monopolar spindle. This increased duration of mitosis is dependent on the SAC, since inactivation of the SAC components MDF-1/MAD1 or MDF-2/MAD2 rescues proper timing in these embryos. Moreover, partial depletion of the E1 enzyme uba-1 significantly increases mitosis duration upon monopolar spindle assembly. Taken together, our findings raise the possibility that the APC/C negatively regulates the SAC and, therefore, that the SAC and the APC/C have a mutual antagonistic relationship in C. elegans embryos.
Collapse
|
118
|
Castagnetti S, Oliferenko S, Nurse P. Fission yeast cells undergo nuclear division in the absence of spindle microtubules. PLoS Biol 2010; 8:e1000512. [PMID: 20967237 PMCID: PMC2953530 DOI: 10.1371/journal.pbio.1000512] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/26/2010] [Indexed: 12/03/2022] Open
Abstract
Through a previously undescribed mechanism, fission yeast cells can undergo nuclear division and enter the next cell cycle, even in the absence of spindle microtubules. Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis. The process of cell division, mitosis, ensures that chromosomes are accurately segregated to generate two daughter cells, each with a complete genome. Eukaryotic cells use a microtubule-based mitotic spindle to ensure proper chromosome segregation. In the fission yeast Schizosaccharomyces pombe, mitosis is “closed”: that is, the nuclear envelope does not break down, and the mitotic spindle forms within the nucleus. Unexpectedly we have found that in certain circumstances division of the fission yeast nucleus and progression into the next cell cycle can take place without the mitotic spindle. We call this nuclear division process “nuclear fission” because the nucleus separates into two bodies. We show that nuclear fission requires filamentous actin and functional spindle pole bodies, which are the fission yeast equivalent of the centrosome in other organisms. We also show that nuclear fission requires sister chromatid separation and is accompanied by some level of chromosome segregation. We propose that nuclear fission is a vestige of a primitive nuclear division process and might reflect an evolutionary intermediate between the mechanism of chromosome segregation that takes place in bacteria and the microtubule-based mitosis of modern eukaryotes.
Collapse
|
119
|
Abstract
It has been proposed that the spindle assembly checkpoint detects both unattached kinetochores and lack of tension between sister kinetochores when sister chromatids are not attached to opposite spindle poles. However, here we argue that there is only one signal — whether kinetochores are attached to microtubules or not — and this has implications for our understanding of both chromosome segregation and the control of genomic stability.
Collapse
|
120
|
Mena AL, Lam EWF, Chatterjee S. Sustained spindle-assembly checkpoint response requires de novo transcription and translation of cyclin B1. PLoS One 2010; 5. [PMID: 20927403 PMCID: PMC2946930 DOI: 10.1371/journal.pone.0013037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 08/31/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Microtubule-targeting drugs induce mitotic delay at pro-metaphase by preventing the spindle assembly checkpoint to be satisfied. However, especially after prolonged treatments, cells can escape this arrest in a process called mitotic slippage. The mechanisms underlying the spindle assembly checkpoint and slippage are not fully understood. It has been generally accepted that during mitosis there is a temporary shutdown of high-energy-consuming processes, such as transcription and translation. However, the synthesis of specific proteins is maintained or up-regulated since protein synthesis is necessary for entry into and progression through mitosis. METHODOLOGY/PRINCIPAL FINDINGS In this work we investigated whether the mitotic arrest caused by the mitotic checkpoint is independent of transcription and translation. By using immunofluorescent microscopy and western blotting, we demonstrate that inhibition of either of these processes induces a shortening of the mitotic arrest caused by the nocodazole treatment, and ultimately leads to mitotic slippage. Our western blotting and RTQ-PCR results show that inhibition of transcription during mitotic arrest does not affect the expression of the spindle checkpoint proteins, whereas it induces a significant decrease in the mRNA and protein levels of Cyclin B1. The exogenous expression of Cyclin B1 substantially rescued the mitotic phenotype in nocodazole cells treated with the inhibitors of transcription and translation. CONCLUSIONS/SIGNIFICANCE This work emphasizes the importance of transcription and translation for the maintenance of the spindle assembly checkpoint, suggesting the existence of a mechanism dependent on cyclin B1 gene regulation during mitosis. We propose that continuous transcription of mitotic regulators is required to sustain the activation of the spindle assembly checkpoint.
Collapse
Affiliation(s)
| | - Eric W.-F. Lam
- Department of Cancer and Surgery, Imperial College London, London, United Kingdom
| | | |
Collapse
|
121
|
Baker NM, Zeitlin SG, Shi LZ, Shah J, Berns MW. Chromosome tips damaged in anaphase inhibit cytokinesis. PLoS One 2010; 5:e12398. [PMID: 20811641 PMCID: PMC2928297 DOI: 10.1371/journal.pone.0012398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/27/2010] [Indexed: 12/21/2022] Open
Abstract
Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit.
Collapse
Affiliation(s)
- Norman M. Baker
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Samantha G. Zeitlin
- Laboratory for Cell Biology, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
| | - Linda Z. Shi
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jagesh Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MWB); (JS)
| | - Michael W. Berns
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Beckman Laser Institute, University of California Irvine, Irvine, California, United States of America
- * E-mail: (MWB); (JS)
| |
Collapse
|
122
|
Maciejowski J, George KA, Terret ME, Zhang C, Shokat KM, Jallepalli PV. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. ACTA ACUST UNITED AC 2010; 190:89-100. [PMID: 20624902 PMCID: PMC2911671 DOI: 10.1083/jcb.201001050] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cdc20 and Mad2 or Bub1 don’t come together in Mps1-null cells, resulting in a dramatic acceleration of anaphase onset (see also related papers by Hewitt et al. and Santaguida et al. in this issue). The spindle assembly checkpoint (SAC) in mammals uses cytosolic and kinetochore-based signaling pathways to inhibit anaphase. In this study, we use chemical genetics to show that the protein kinase Mps1 regulates both aspects of the SAC. Human MPS1-null cells were generated via gene targeting and reconstituted with either the wild-type kinase (Mps1wt) or a mutant version (Mps1as) sensitized to bulky purine analogues. Mps1 inhibition sharply accelerated anaphase onset, such that cells completed mitosis in 12 min, and prevented Cdc20’s association with either Mad2 or BubR1 during interphase, i.e., before the appearance of functional kinetochores. Furthermore, intramitotic Mps1 inhibition evicted Bub1 and all other known SAC transducers from the outer kinetochore, but contrary to a recent study, did not perturb aurora B–dependent phosphorylation. We conclude that Mps1 has two complementary roles in SAC regulation: (1) initial cytoplasmic activation of Cdc20 inhibitors and (2) recruitment of factors that promote sustained anaphase inhibition and chromosome biorientation to unattached kinetochores.
Collapse
|
123
|
Sli15(INCENP) dephosphorylation prevents mitotic checkpoint reengagement due to loss of tension at anaphase onset. Curr Biol 2010; 20:1396-401. [PMID: 20619650 PMCID: PMC2964898 DOI: 10.1016/j.cub.2010.06.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 12/24/2022]
Abstract
The mitotic checkpoint, also known as the spindle assembly checkpoint, delays anaphase onset until all chromosomes have reached bipolar tension on the mitotic spindle [1–3]. Once this is achieved, the protease separase is activated to cleave the chromosomal cohesin complex, thereby triggering anaphase. Cohesin cleavage releases tension between sister chromatids, but why the mitotic checkpoint now remains silent is poorly understood. Here, using budding yeast as a model, we show that loss of sister chromatid cohesion at anaphase onset would engage the mitotic checkpoint if this was not prevented by concomitant separase-dependent activation of the Cdc14 phosphatase. Cdc14, in turn, inactivates the mitotic checkpoint by dephosphorylating Sli15INCENP, a subunit of the conserved Aurora B kinase complex that forms part of the proposed chromosomal tension sensor. Dephosphorylation-dependent relocation of Sli15INCENP from centromeres to the central spindle during anaphase is seen in organisms from yeast to human [4–8]. Our results suggest that Sli15INCENP dephosphorylation is part of an evolutionarily conserved mechanism that prevents the mitotic checkpoint from reengaging when tension between sister chromatids is lost at anaphase onset.
Collapse
|
124
|
Vázquez-Novelle MD, Petronczki M. Relocation of the chromosomal passenger complex prevents mitotic checkpoint engagement at anaphase. Curr Biol 2010; 20:1402-7. [PMID: 20619651 DOI: 10.1016/j.cub.2010.06.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/01/2010] [Accepted: 06/10/2010] [Indexed: 11/28/2022]
Abstract
The mitotic checkpoint monitors the attachment of kinetochores to microtubules and delays anaphase onset until all sister kinetochores have become attached to opposite poles [1, 2]. Correct bipolar attachment leads to kinetochore deformation and tension and satisfies the checkpoint [3-6]. What prevents mitotic checkpoint reactivation when sister centromeres are split and tension is lost at anaphase onset? Aurora B kinase, the catalytic subunit of the chromosomal passenger protein complex (CPC) [7], acts as a sensor at inner centromeres for the status of attachment [5, 8]. Phosphorylation of Aurora B targets at erroneously attached kinetochores elicits the correction of these attachments and the activation of the mitotic checkpoint. At anaphase, the CPC leaves the centromeres and relocates to the spindle midzone [7]. This iconic translocation might prevent the checkpoint from reengaging after anaphase onset. To test this hypothesis, we experimentally retained Aurora B and the CPC at the centromere throughout anaphase in human cells. Preventing CPC translocation caused the untimely recruitment of mitotic checkpoint proteins to kinetochores at anaphase in an Aurora B kinase activity-dependent manner. Our results suggest that the relocalization of the CPC, an evolutionarily conserved event in eukaryotes, is a key mechanism that incapacitates the mitotic checkpoint at anaphase.
Collapse
Affiliation(s)
- María Dolores Vázquez-Novelle
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire, UK
| | | |
Collapse
|
125
|
Abstract
Most solid tumors are aneuploid, having a chromosome number that is not a multiple of the haploid number, and many frequently mis-segregate whole chromosomes in a phenomenon called chromosomal instability (CIN). CIN positively correlates with poor patient prognosis, indicating that reduced mitotic fidelity contributes to cancer progression by increasing genetic diversity among tumor cells. Here, we review the mechanisms underlying CIN, which include defects in chromosome cohesion, mitotic checkpoint function, centrosome copy number, kinetochore-microtubule attachment dynamics, and cell-cycle regulation. Understanding these mechanisms provides insight into the cellular consequences of CIN and reveals the possibility of exploiting CIN in cancer therapy.
Collapse
|
126
|
Maresca TJ, Salmon ED. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 2010; 123:825-35. [PMID: 20200228 DOI: 10.1242/jcs.064790] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent high-resolution studies of kinetochore structure have transformed the way researchers think about this crucial macro-molecular complex, which is essential for ensuring chromosome segregation occurs faithfully during cell division. Kinetochores mediate the interaction between chromosomes and the plus-ends of dynamic spindle microtubules and control the timing of anaphase onset by regulating the spindle assembly checkpoint (SAC). There is much debate in the SAC research community as to whether mitotic cells sense only microtubule attachment at the kinetochore, or both attachment and tension, before committing to anaphase. In this Commentary, we present a brief history of the tension-versus-attachment debate, summarize recent advances in our understanding of kinetochore structure and focus on the implications of a phenomenon known as intrakinetochore stretch for SAC regulation. We also hypothesize how intrakinetochore stretch might impact SAC function by regulating both microtubule attachment stability and the localization and activity of checkpoint components at the kinetochore.
Collapse
Affiliation(s)
- Thomas J Maresca
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
127
|
Oakley GG, Patrick SM. Replication protein A: directing traffic at the intersection of replication and repair. FRONT BIOSCI-LANDMRK 2010; 15:883-900. [PMID: 20515732 DOI: 10.2741/3652] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
Collapse
Affiliation(s)
- Greg G Oakley
- College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583, USA
| | | |
Collapse
|
128
|
Albrecht DR, Underhill GH, Resnikoff J, Mendelson A, Bhatia SN, Shah JV. Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics. Integr Biol (Camb) 2010; 2:278-87. [PMID: 20532320 PMCID: PMC4040291 DOI: 10.1039/b923699f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An understanding of the mechanisms regulating cellular responses has recently been augmented by innovations enabling the observation of phenotypes at high spatio-temporal resolution. Technologies such as microfluidics have sought to expand the throughput of these methods, although assimilation with advanced imaging strategies has been limited. Here, we describe the pairing of high resolution time-lapse imaging with microfluidic multiplexing for the analysis of cellular dynamics, utilizing a design selected for facile fabrication and operation, and integration with microscopy instrumentation. This modular, medium-throughput platform enables the long-term imaging of living cells at high numerical aperture (via oil immersion) by using a conserved 96-well, approximately 6 x 5 mm(2) imaging area with a variable input/output channel design chosen for the number of cell types and microenvironments under investigation. In the validation of this system, we examined fundamental features of cell cycle progression, including mitotic kinetics and spindle orientation dynamics, through the high-resolution parallel analysis of model cell lines subjected to anti-mitotic agents. We additionally explored the self-renewal kinetics of mouse embryonic stem cells, and demonstrate the ability to dynamically assess and manipulate stem cell proliferation, detect rare cell events, and measure extended time-scale correlations. We achieved an experimental throughput of >900 cells/experiment, each observed at >40x magnification for up to 120 h. Overall, these studies illustrate the capacity to probe cellular functions and yield dynamic information in time and space through the integration of a simple, modular, microfluidics-based imaging platform.
Collapse
Affiliation(s)
- Dirk R. Albrecht
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | | | | | - Avital Mendelson
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Sangeeta N. Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Division of Medicine, Brigham and Women’s Hospital, Boston, MA
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA
| | - Jagesh V. Shah
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
- Renal Division, Brigham and Women’s Hospital, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
129
|
Jeffery JM, Urquhart AJ, Subramaniam VN, Parton RG, Khanna KK. Centrobin regulates the assembly of functional mitotic spindles. Oncogene 2010; 29:2649-58. [PMID: 20190801 DOI: 10.1038/onc.2010.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/19/2009] [Accepted: 01/07/2010] [Indexed: 12/21/2022]
Abstract
The proper function of the spindle is crucial to the high fidelity of chromosome segregation and is indispensable for tumor suppression in humans. Centrobin is a recently identified centrosomal protein that has a role in stabilizing the microtubule structure. Here we functionally characterize the defects in centrosome integrity and spindle assembly in Centrobin-depleted cells. Centrobin-depleted cells show a range of spindle abnormalities including unfocused poles that are not associated with centrosomes, S-shaped spindles and mini spindles. These cells undergo mitotic arrest and subsequently often die by apoptosis, as determined by live cell imaging. Co-depletion of Mad2 relieves the mitotic arrest, indicating that cells arrest due to a failure to silence the spindle checkpoint in metaphase. Consistent with this, Centrobin-depleted metaphase cells stained positive for BubR1 and BubR1 S676. Staining with a panel of centrosome markers showed a loss of centrosome anchoring to the mitotic spindle. Furthermore, these cells show less cold-stable microtubules and a shorter distance between kinetochore pairs. These results show a requirement of Centrobin in maintaining centrosome integrity, which in turn promotes anchoring of mitotic spindle to the centrosomes. Furthermore, this anchoring is required for the stability of microtubule-kinetochore attachments and biogenesis of tension-ridden and properly functioning mitotic spindle.
Collapse
Affiliation(s)
- J M Jeffery
- Signal Transduction Laboratory, Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
130
|
Snyder JA, Ha Y, Olsofka C, Wahdan R. Both actin and myosin inhibitors affect spindle architecture in PtK1 cells: does an actomyosin system contribute to mitotic spindle forces by regulating attachment and movements of chromosomes in mammalian cells? PROTOPLASMA 2010; 240:57-68. [PMID: 20091066 DOI: 10.1007/s00709-009-0089-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Immunocytochemical techniques are used to analyze the effects of both an actin and myosin inhibitor on spindle architecture in PtK(1) cells to understand why both these inhibitors slow or block chromosome motion and detach chromosomes. Cytochalasin J, an actin inhibitor and a myosin inhibitor, 2, 3 butanedione 2-monoxime, have similar effects on changes in spindle organization. Using primary antibodies and stains, changes are studied in microtubule (MT), actin, myosin, and chromatin localization. Treatment of mitotic cells with both inhibitors results in detachment or misalignment of chromosomes from the spindle and a prominent buckling of MTs within the spindle, particularly evident in kinetochore fibers. Evidence is presented to suggest that an actomyosin system may help to regulate the initial and continued attachment of chromosomes to the mammalian spindle and could also influence spindle checkpoint(s).
Collapse
Affiliation(s)
- Judith A Snyder
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | | | | | | |
Collapse
|
131
|
Getting down to the phosphorylated ‘nuts and bolts’ of spindle checkpoint signalling. Trends Biochem Sci 2010; 35:18-27. [DOI: 10.1016/j.tibs.2009.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/26/2022]
|
132
|
Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans 2009; 37:971-5. [PMID: 19754434 DOI: 10.1042/bst0370971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Error-free chromosome segregation during cell division relies on chromosome biorientation and mitotic checkpoint activity. A group of unrelated kinases controls various aspects of both processes. The present short review outlines our current understanding of the roles of these kinases in maintaining chromosomal stability.
Collapse
|
133
|
Prystowsky MB, Adomako A, Smith RV, Kawachi N, McKimpson W, Atadja P, Chen Q, Schlecht NF, Parish JL, Childs G, Belbin TJ. The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. J Pathol 2009; 218:467-77. [PMID: 19402126 DOI: 10.1002/path.2554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Head and neck squamous cell carcinoma represents a complex set of neoplasms arising in diverse anatomical locations. The site and stage of the cancer determine whether patients will be treated with single or multi-modality therapy. The HDAC inhibitor LBH589 is effective in treating some haematological neoplasms and shows promise for certain epithelial neoplasms. As with other human cancer cell lines, LBH589 causes up-regulation of p21, G2/M cell cycle arrest, and cell death of human HNSCC cell lines, as measured using flow cytometry and cDNA microarrays. Global RNA expression studies following treatment of the HNSCC cell line FaDu with LBH589 reveal down-regulation of genes required for chromosome congression and segregation (SMC2L1), sister chromatid cohesion (DDX11), and kinetochore structure (CENP-A, CENP-F, and CENP-M); these LBH589-induced changes in gene expression coupled with the down-regulation of MYC and BIRC5 (survivin) provide a plausible explanation for the early mitotic arrest and cell death observed. When LBH589-induced changes in gene expression were compared with gene expression profiles of 41 primary HNSCC samples, many of the genes that were down-regulated by LBH589 showed increased expression in primary HNSCC, suggesting that some patients with HNSCC may respond to treatment with LBH589.
Collapse
Affiliation(s)
- Michael B Prystowsky
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Brito DA, Rieder CL. The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:437-47. [PMID: 18792104 PMCID: PMC2711993 DOI: 10.1002/cm.20316] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We used live cell imaging to compare the fate of human nontransformed (RPE-1) and cancer (HeLa, U2OS) cells as they entered mitosis in nocodazole or taxol. In the same field, and in either drug, a cell in all lines could die in mitosis, exit mitosis and die within 10 h, or exit mitosis and survive > or =10 h. Relative to RPE-1 cells, significantly fewer HeLa or U2OS cells survived mitosis or remained viable after mitosis: in nocodazole concentrations that inhibit spindle microtubule assembly, or in 500 nM taxol, 30% and 27% of RPE-1 cells, respectively, died in or within 10 h of exiting mitosis while 90% and 49% of U2OS and 78% and 81% of HeLa died. This was even true for clinically relevant taxol concentrations (5 nM) which killed 93% and 46%, respectively, of HeLa and U2OS cells in mitosis or within 10 h of escaping mitosis, compared to 1% of RPE-1 cells. Together these data imply that studies using HeLa or U2OS cells, harvested after a prolonged block in mitosis with nocodazole or taxol, are significantly contaminated with dead or dying cells. We also found that the relationship between the duration of mitosis and survival is drug and cell type specific and that lethality is related to the cell type and drug used to prevent satisfaction of the kinetochore attachment checkpoint. Finally, work with a pan-caspase inhibitor suggests that the primary apoptotic pathway triggered by nocodazole during mitosis in RPE-1 cells is not active in U2OS cells. Cell Motil. Cytoskeleton 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniela A. Brito
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Conly L. Rieder
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
- Laboratory of Cell Regulation, Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York
- Marine Biology Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
135
|
Pinsky BA, Nelson CR, Biggins S. Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol 2009; 19:1182-7. [PMID: 19592248 PMCID: PMC2731492 DOI: 10.1016/j.cub.2009.06.043] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Accurate chromosome segregation depends on sister kinetochores coming under tension when they make bioriented attachments to microtubules from opposite poles. The spindle checkpoint halts the cell cycle in response to defects in generating proper attachments or tension on kinetochores, although the precise signal that triggers the checkpoint is unclear because tension and attachment are coupled. The target of the checkpoint is the Cdc20 protein, which initiates the anaphase-promoting complex (APC)-dependent degradation of the anaphase inhibitor Pds1/securin. Although the molecular details of spindle checkpoint activation are still being elucidated, phosphorylation by at least four kinases is a crucial requirement. However, less is known about the mechanisms that silence the checkpoint after kinetochores biorient. Here, we show that the catalytic subunit of the budding yeast protein phosphatase 1 (PP1) homolog, Glc7, regulates exit from the checkpoint. Glc7 overexpression prevents spindle checkpoint activation in response to both tension and attachment defects. Although glc7 mutant cells are able to efficiently release from a non-checkpoint-mediated metaphase arrest, they are uniquely sensitive to transient spindle checkpoint activation as a result of a failure in spindle checkpoint exit. We therefore propose that PP1 activity silences the checkpoint by reversing key phosphorylation events.
Collapse
Affiliation(s)
- Benjamin A Pinsky
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, WA 98109, USA
| | | | | |
Collapse
|
136
|
Cheung CHA, Coumar MS, Hsieh HP, Chang JY. Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs 2009; 18:379-98. [PMID: 19335272 DOI: 10.1517/13543780902806392] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mitosis is a key step in the cell cycle governing the distribution of genetic material to the daughter cells. Any aberration in this process could lead to genomic instability. Aurora A, B and C, are members of the serine/threonine kinase family. Aurora kinases are essential for spindle assembly, centrosome maturation, chromosomal segregation and cytokinesis during mitosis. Abnormalities in the mitotic process through overexpression/amplification of aurora kinase have been linked to genomic instability leading to tumorigenesis. Hence, use of aurora kinase small molecule inhibitors as potential molecular-targeted therapeutic intervention for cancer is being pursued by various researchers. OBJECTIVE To review the literature of aurora kinase inhibitors in clinical and preclinical testing. METHOD Pubmed, Scifinder and (www.clinicaltrials.gov) databases were used to search the literature for aurora kinase. CONCLUSION/RESULTS: Approximately 13 aurora kinase inhibitors are under Phase I/II evaluation at present for various cancers of different origins; and several others are in preclinical testing. Details of their preclinical/clinical results and important considerations for future aurora kinase inhibitor development are discussed. Considering the fact that aurora kinase plays an important role in the mitosis process and is involved in tumorigenesis, development of aurora kinase inhibitors for the treatment of cancer, either as a single agent or in combination with existing cancer treatment is warranted.
Collapse
|
137
|
Matos I, Pereira AJ, Lince-Faria M, Cameron LA, Salmon ED, Maiato H. Synchronizing chromosome segregation by flux-dependent force equalization at kinetochores. ACTA ACUST UNITED AC 2009; 186:11-26. [PMID: 19581410 PMCID: PMC2712998 DOI: 10.1083/jcb.200904153] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The synchronous movement of chromosomes during anaphase ensures their correct inheritance in every cell division. This reflects the uniformity of spindle forces acting on chromosomes and their simultaneous entry into anaphase. Although anaphase onset is controlled by the spindle assembly checkpoint, it remains unknown how spindle forces are uniformly distributed among different chromosomes. In this paper, we show that tension uniformity at metaphase kinetochores and subsequent anaphase synchrony in Drosophila S2 cells are promoted by spindle microtubule flux. These results can be explained by a mechanical model of the spindle where microtubule poleward translocation events associated with flux reflect relaxation of the kinetochore–microtubule interface, which accounts for the redistribution and convergence of kinetochore tensions in a timescale comparable to typical metaphase duration. As predicted by the model, experimental acceleration of mitosis precludes tension equalization and anaphase synchrony. We propose that flux-dependent equalization of kinetochore tensions ensures a timely and uniform maturation of kinetochore–microtubule interfaces necessary for error-free and coordinated segregation of chromosomes in anaphase.
Collapse
Affiliation(s)
- Irina Matos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
138
|
Maciejewska Z, Polanski Z, Kisiel K, Kubiak JZ, Ciemerych MA. Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction 2009; 137:931-42. [PMID: 19279200 DOI: 10.1530/rep-09-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phenotype of the LT/Sv strain of mice is manifested by abnormalities in oocyte meiotic cell-cycle, spontaneous parthenogenetic activation, teratomas formation, and frequent occurrence of embryonic triploidy. These abnormalities lead to the low rate of reproductive success. Recently, metaphase I arrest of LT/Sv oocytes has been attributed to the inability to timely inactivate the spindle assembly checkpoint (SAC). As differences in meiotic and mitotic SAC functioning were described, it remains obscure whether this abnormality is limited to the meiosis or also impinges on the mitotic divisions of LT/Sv embryos. Here, we show that a failure to inactivate SAC affects mitoses during preimplantation development of LT/Sv embryos. This is manifested by the prolonged localization of MAD2L1 on kinetochores of mitotic chromosomes and abnormally lengthened early embryonic M-phases. Moreover, LT/Sv embryos exhibit elevated frequency of abnormal chromosome separation during the first mitotic division. These abnormalities participate in severe impairment of preimplantation development and significantly decrease the reproductive success of this strain of mice. Thus, the common meiosis and mitosis SAC-related failure participates in a complex LT/Sv phenotype.
Collapse
Affiliation(s)
- Zuzanna Maciejewska
- Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
139
|
McGuinness BE, Anger M, Kouznetsova A, Gil-Bernabé AM, Helmhart W, Kudo NR, Wuensche A, Taylor S, Hoog C, Novak B, Nasmyth K. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr Biol 2009; 19:369-80. [PMID: 19249208 DOI: 10.1016/j.cub.2009.01.064] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Missegregation of chromosomes during meiosis in human females causes aneuploidy, including trisomy 21, and is thought also to be the major cause of age-related infertility. Most errors are thought to occur at the first meiotic division. The high frequency of errors raises questions as to whether the surveillance mechanism known as the spindle assembly checkpoint (SAC) that controls the anaphase-promoting complex or cyclosome (APC/C) operates effectively in oocytes. Experimental approaches hitherto used to inactivate the SAC in oocytes suffer from a number of drawbacks. RESULTS Bub1 protein was depleted specifically in oocytes with a Zp3-Cre transgene to delete exons 7 and 8 from a floxed BUB1(F) allele. Loss of Bub1 greatly accelerates resolution of chiasmata and extrusion of polar bodies. It also causes defective biorientation of bivalents, massive chromosome missegregation at meiosis I, and precocious loss of cohesion between sister centromeres. By using a quantitative assay for APC/C-mediated securin destruction, we show that the APC/C is activated in an exponential fashion, with activity peaking 12-13 hr after GVBD, and that this process is advanced by 5 hr in oocytes lacking Bub1. Importantly, premature chiasmata resolution does not occur in Bub1-deficient oocytes also lacking either the APC/C's Apc2 subunit or separase. Finally, we show that Bub1's kinase domain is not required to delay APC/C activation. CONCLUSIONS We conclude that far from being absent or ineffective, the SAC largely determines the timing of APC/C and hence separase activation in oocytes, delaying it for about 5 hr.
Collapse
Affiliation(s)
- Barry E McGuinness
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Silk AD, Holland AJ, Cleveland DW. Requirements for NuMA in maintenance and establishment of mammalian spindle poles. ACTA ACUST UNITED AC 2009; 184:677-90. [PMID: 19255246 PMCID: PMC2686415 DOI: 10.1083/jcb.200810091] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we demonstrate that NuMA is an essential mitotic component with distinct contributions to the establishment and maintenance of focused spindle poles. When mitotic NuMA function is disrupted, centrosomes provide initial focusing activity, but continued centrosome attachment to spindle fibers under tension is defective, and the maintenance of focused kinetochore fibers at spindle poles throughout mitosis is prevented. Without centrosomes and NuMA, initial establishment of spindle microtubule focusing completely fails. Thus, NuMA is a defining feature of the mammalian spindle pole and functions as an essential tether linking bulk microtubules of the spindle to centrosomes.
Collapse
Affiliation(s)
- Alain D Silk
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
141
|
Sivaram MVS, Wadzinski TL, Redick SD, Manna T, Doxsey SJ. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J 2009; 28:902-14. [PMID: 19229290 DOI: 10.1038/emboj.2009.38] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 01/26/2009] [Indexed: 12/23/2022] Open
Abstract
The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells depleted of dynein light intermediate chain 1 (LIC1) delay in metaphase with increased interkinetochore distances; dynein remains intact, localised and functional. The checkpoint proteins Mad1/2 and Zw10 localise to kinetochores under full tension, whereas BubR1 is diminished at kinetochores. Metaphase delay and increased interkinetochore distances are suppressed by depletion of Mad1, Mad2 or BubR1 or by re-expression of wtLIC1 or a Cdk1 site phosphomimetic LIC1 mutant, but not Cdk1-phosphorylation-deficient LIC1. When the checkpoint is activated by microtubule depolymerisation, Mad1/2 and BubR1 localise to kinetochores. We conclude that a Cdk1 phosphorylated form of LIC1 is required to remove Mad1/2 and Zw10 but not BubR1 from kinetochores during spindle assembly checkpoint silencing.
Collapse
Affiliation(s)
- Mylavarapu V S Sivaram
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
142
|
Abstract
The mitotic checkpoint delays chromosome segregation until the last chromosome has correctly attached to the spindle. Exactly how this unattached chromosome can generate a checkpoint signal and inhibit the anaphase promoting complex/cyclosome (APC/C) is unknown. Two Developmental Cell papers in this issue by Kulukian et al. and Malureanu et al. now provide insight into how checkpoint components Mad2 and BubR1 relay the checkpoint signal from kinetochores to APC/C.
Collapse
Affiliation(s)
- René H Medema
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
143
|
Schliekelman M, Cowley DO, O'Quinn R, Oliver TG, Lu L, Salmon E, Van Dyke T. Impaired Bub1 function in vivo compromises tension-dependent checkpoint function leading to aneuploidy and tumorigenesis. Cancer Res 2009; 69:45-54. [PMID: 19117986 PMCID: PMC4770788 DOI: 10.1158/0008-5472.can-07-6330] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bub1 is a serine/threonine kinase originally described as a core component of the spindle assembly checkpoint (SAC) mechanism in yeast. Bub1 binding at kinetochores has been reported to be required for SAC function and localization of other SAC components. A proper SAC is believed to be essential for murine embryonic development, as all previously described null mutations in SAC components in mice cause embryonic lethality. We produced mice harboring a Bub1 mutant allele lacking exons 2 and 3, resulting in a hypomorphic mutant expressed at <5% of wild-type levels. Despite this significant reduction, homozygous mutant animals are viable on a mixed 129P2/B6 or FVB background but display increased tumorigenesis with aging, whereas mice with a C57Bl/6J background die perinatally. Bub1 mutant murine embryonic fibroblasts (MEFs) display defects in chromosome congression to the metaphase plate, severe chromosome missegregation, and aneuploidy accompanied by high levels of premature senescence. Mutant MEFs have a robust SAC in response to nocodazole treatment but an impaired response to Taxol. Mutant MEFs also show reduced kinetochore localization of BubR1, but not of Mad2. The significant reduction in SAC response to Taxol, but not nocodazole, coupled with the reduced binding of BubR1, but not Mad2, indicates that Bub1 is particularly critical for the SAC response to a lack of tension on kinetochores. Thus, Bub1 is essential for proper chromosome segregation, a defect that can lead to severe phenotypes, including perinatal lethality and a predisposition to cancer.
Collapse
Affiliation(s)
- Mark Schliekelman
- Curriculum in Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dale O. Cowley
- Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan O'Quinn
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Trudy G. Oliver
- Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lucy Lu
- Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - E.D. Salmon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry Van Dyke
- Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
144
|
Kulukian A, Han JS, Cleveland DW. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 2009; 16:105-17. [PMID: 19154722 PMCID: PMC2655205 DOI: 10.1016/j.devcel.2008.11.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/10/2008] [Accepted: 11/10/2008] [Indexed: 11/16/2022]
Abstract
Premature anaphase onset is prevented by the mitotic checkpoint through production of a "wait anaphase" inhibitor(s) that blocks recognition of cyclin B and securin by Cdc20-activated APC/C, an E3 ubiquitin ligase that targets them for destruction. Using physiologically relevant levels of Mad2, Bub3, BubR1, and Cdc20, we demonstrate that unattached kinetochores on purified chromosomes catalytically generate a diffusible Cdc20 inhibitor or inhibit Cdc20 already bound to APC/C. Furthermore, the chromosome-produced inhibitor requires both recruitment of Mad2 by Mad1 that is stably bound at unattached kinetochores and dimerization-competent Mad2. We show that purified chromosomes promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2, but not BubR1. Our results support a model in which immobilized Mad1/Mad2 at kinetochores provides a template for initial assembly of Mad2 bound to Cdc20 that is then converted to a final mitotic checkpoint inhibitor with Cdc20 bound to BubR1.
Collapse
Affiliation(s)
- Anita Kulukian
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
145
|
Xu Q, Zhu S, Wang W, Zhang X, Old W, Ahn N, Liu X. Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation. Mol Biol Cell 2009; 20:10-20. [PMID: 18923149 PMCID: PMC2613107 DOI: 10.1091/mbc.e08-03-0324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/26/2008] [Accepted: 10/03/2008] [Indexed: 02/06/2023] Open
Abstract
Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.
Collapse
Affiliation(s)
- Quanbin Xu
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Songcheng Zhu
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Wang
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Xiaojuan Zhang
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - William Old
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Natalie Ahn
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309; and
| | - Xuedong Liu
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| |
Collapse
|
146
|
Henderson MC, Shaw YJY, Wang H, Han H, Hurley LH, Flynn G, Dorr RT, Von Hoff DD. UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Mol Cancer Ther 2009; 8:36-44. [PMID: 19139111 PMCID: PMC2634858 DOI: 10.1158/1535-7163.mct-08-0789] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic carcinoma is the fourth leading cause of death from cancer. Novel targets and therapeutic options are needed to aid in the treatment of pancreatic cancer. The compound UA62784 is a novel fluorenone with inhibitory activity against the centromere protein E (CENP-E) kinesin-like protein. UA62784 was isolated due to its selectivity in isogenic pancreatic carcinoma cell lines with a deletion of the DPC4 gene. UA62784 causes mitotic arrest by inhibiting chromosome congression at the metaphase plate likely through inhibition of the microtubule-associated ATPase activity of CENP-E. Furthermore, CENP-E binding to kinetochores during mitosis is not affected by UA62784, suggesting that the target lies within the motor domain of CENP-E. UA62784 is a novel specific inhibitor of CENP-E and its activity suggests a potential role for antimitotic drugs in treating pancreatic carcinomas.
Collapse
Affiliation(s)
- Meredith C Henderson
- Arizona Cancer Center, BIO5 Institute, College of Pharmacy, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Osmundson EC, Ray D, Moore FE, Gao Q, Thomsen GH, Kiyokawa H. The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J Cell Biol 2008; 183:267-77. [PMID: 18852296 PMCID: PMC2568023 DOI: 10.1083/jcb.200801049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 09/10/2008] [Indexed: 01/17/2023] Open
Abstract
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase-anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.
Collapse
Affiliation(s)
- Evan C Osmundson
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
148
|
Mailhes JB. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:642-58. [PMID: 18626998 DOI: 10.1002/em.20412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aneuploidy accounts for a major proportion of human reproductive failures, mental and physical anomalies, and neoplasms. To heighten our understanding of normal and abnormal chromosome segregation, additional information is needed about the underlying molecular mechanisms of chromosome segregation. Although many hypotheses have been proposed for the etiology of human aneuploidy, there has not been general acceptance of any specific hypothesis. Moreover, it is important to recognize that many potential mechanisms exist whereby chromosome missegregation may occur. One area for investigating aneuploidy centers on the biochemical changes that take place during oocyte maturation. In this regard, recent results have shown that faulty mRNA of spindle-assembly checkpoint proteins and chromosome cohesion proteins may lead to aneuploidy. Also, postovulatory and in vitro aging of mouse oocytes has been shown to lead to decreased levels of Mad2 transcripts and elevated frequencies of premature centromere separation. The intent of this review is to highlight the major events surrounding chromosome segregation and to present the published results that support the premise that faulty chromosome cohesion proteins and spindle checkpoint proteins compromise accurate chromosome segregation.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA.
| |
Collapse
|
149
|
Foijer F, Draviam VM, Sorger PK. Studying chromosome instability in the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1786:73-82. [PMID: 18706976 PMCID: PMC2923435 DOI: 10.1016/j.bbcan.2008.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/22/2008] [Accepted: 07/16/2008] [Indexed: 12/21/2022]
Abstract
Aneuploidy has long been recognized as one of the hallmarks of cancer. It nonetheless remains uncertain whether aneuploidy occurring early in the development of a cancer is a primary cause of oncogenic transformation, or whether it is an epiphenomenon that arises from a general breakdown in cell cycle control late in tumorigenesis. The accuracy of chromosome segregation is ensured both by the intrinsic mechanics of mitosis and by an error-checking spindle assembly checkpoint. Many cancers show altered expression of proteins involved in the spindle checkpoint or in proteins implicated in other mitotic processes. To understand the role of aneuploidy in the initiation and progression of cancer, a number of spindle checkpoint genes have been disrupted in mice, most through conventional gene targeting (to create germ-line knockouts). We describe the consequence of these mutations with respect to embryonic development, tumor progression and an unexpected link to premature aging; readers are referred elsewhere [1] for a discussion of other cell cycle regulators.
Collapse
Affiliation(s)
- Floris Foijer
- Harvard Medical School, Department of Systems Biology, 200 Longwood Avenue, Boston, MA, 02115
| | - Viji M. Draviam
- Harvard Medical School, Department of Systems Biology, 200 Longwood Avenue, Boston, MA, 02115
| | - Peter K. Sorger
- Harvard Medical School, Department of Systems Biology, 200 Longwood Avenue, Boston, MA, 02115
| |
Collapse
|
150
|
Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:60-72. [PMID: 18662747 DOI: 10.1016/j.bbcan.2008.07.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022]
Abstract
The Aurora protein kinase family (consisting of Aurora-A, -B and -C) is an important group of enzymes that controls several aspects of cell division in mammalian cells. Dysfunction of these kinases has been associated with a failure to maintain a stable chromosome content, a state that can contribute to tumourigenesis. Additionally, Aurora-A is frequently found amplified in a variety of tumour types and displays oncogenic activity. On the other hand, therapeutic inhibition of these kinases has shown great promise as potential anti-cancer treatment, most likely because of their essential roles during cell division. This review will focus on our present understanding of the different roles played by these kinases, their regulation throughout cell division, their deregulation in human cancers and on the progress that is made in targeting these important regulators in the treatment of cancer.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, Stratenum 2.125, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|