101
|
Abstract
Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.
Collapse
Affiliation(s)
- Eugen Nacu
- DFG-Center for Regenerative Therapies Dresden, Germany.
| | | |
Collapse
|
102
|
Azevedo AS, Grotek B, Jacinto A, Weidinger G, Saúde L. The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS One 2011; 6:e22820. [PMID: 21829525 PMCID: PMC3145768 DOI: 10.1371/journal.pone.0022820] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration. METHODOLOGY/PRINCIPAL FINDINGS We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation. CONCLUSIONS/SIGNIFICANCE We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.
Collapse
Affiliation(s)
- Ana Sofia Azevedo
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Bartholomäus Grotek
- Biotechnology Center and Center for Regenerative Therapies, University of Technology Dresden, Dresden, Germany
| | - António Jacinto
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gilbert Weidinger
- Biotechnology Center and Center for Regenerative Therapies, University of Technology Dresden, Dresden, Germany
- * E-mail: (LS); (GW)
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (LS); (GW)
| |
Collapse
|
103
|
|
104
|
Witman N, Murtuza B, Davis B, Arner A, Morrison JI. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 2011; 354:67-76. [PMID: 21457708 DOI: 10.1016/j.ydbio.2011.03.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 02/04/2023]
Abstract
Urodele amphibians, like the newt, are the "champions of regeneration" as they are able to regenerate many body parts and tissues. Previous experiments, however, have suggested that the newt heart has only a limited regeneration capacity, similar to the human heart. Using a novel, reproducible ventricular resection model, we show for the first time that adult newt hearts can fully regenerate without any evidence of scarring. This process is governed by increased proliferation and the up-regulation of cardiac transcription factors normally expressed during developmental cardiogenesis. Furthermore, we are able to identify cells within the newly regenerated regions of the myocardium that express the LIM-homeodomain protein Islet1 and GATA4, transcription factors found in cardiac progenitors. Information acquired from using the newt as a model organism may help to shed light on the regeneration deficits demonstrated in damaged human hearts.
Collapse
Affiliation(s)
- Nevin Witman
- Molecular Biology and Functional Genomics, Stockholm University, Svante Arrheniusväg 20C, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
105
|
Jhamb D, Rao N, Milner DJ, Song F, Cameron JA, Stocum DL, Palakal MJ. Network based transcription factor analysis of regenerating axolotl limbs. BMC Bioinformatics 2011; 12:80. [PMID: 21418574 PMCID: PMC3240668 DOI: 10.1186/1471-2105-12-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 03/18/2011] [Indexed: 01/13/2023] Open
Abstract
Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF) pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets). Network analysis showed that TGF-β1 and fibronectin (FN) lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem cell markers in regeneration.
Collapse
Affiliation(s)
- Deepali Jhamb
- School of Informatics, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
McCusker C, Gardiner DM. The axolotl model for regeneration and aging research: a mini-review. Gerontology 2011; 57:565-71. [PMID: 21372551 DOI: 10.1159/000323761] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/22/2010] [Indexed: 01/31/2023] Open
Abstract
Although regeneration of tissues occurs in all adult tetrapods, the ability to regenerate complex structures such as limbs is limited to urodeles (newts and salamanders). Given that many of the biological processes and the signaling pathways that control these processes are highly conserved among all tetrapods, it is likely that humans have the potential to regenerate structures in the same way as salamanders. Thus the remarkable regenerative abilities of salamanders demonstrate what we reasonably can expect in terms of enhancing our regenerative potential. Although most of what is understood about regenerative mechanisms pertains to the repair of acute injuries, we assume that these same mechanisms could be utilized therapeutically to slow or even reverse chronic damage associated with aging. The axolotl model provides the opportunity to understand the behavior of cells to give the desired outcome of controlled growth and pattern formation leading to regeneration rather than aging and cancer. In this paper we present an overview of several important aspects of regeneration biology with an emphasis on the Mexican axolotl (Ambystoma mexicanum) as a model organism for identifying relevant signaling pathways and factors regulating limb regeneration. We also speculate about how these mechanisms could be utilized to reverse the aging process. By understanding the mechanisms of regeneration, we eventually will be able to enhance our intrinsic regenerative abilities in order to slow and even reverse the damage of aging.
Collapse
Affiliation(s)
- Catherine McCusker
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California Irvine, Irvine 92697-2305, USA
| | | |
Collapse
|
107
|
Neff AW, King MW, Mescher AL. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 2011; 240:979-89. [DOI: 10.1002/dvdy.22554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2010] [Indexed: 01/12/2023] Open
|
108
|
Abstract
Over the past decades, genetic analyses performed in vertebrate and invertebrate organisms deciphered numerous cellular and molecular mechanisms deployed during sexual development and identified genetic circuitries largely shared among bilaterians. In contrast, the functional analysis of the mechanisms that support regenerative processes in species randomly scattered among the animal kingdom, were limited by the lack of genetic tools. Consequently, unifying principles explaining how stress and injury can lead to the reactivation of a complete developmental program with restoration of original shape and function remained beyond reach of understanding. Recent data on cell plasticity suggest that beside the classical developmental approach, the analysis of homeostasis and asexual reproduction in adult organisms provides novel entry points to dissect the regenerative potential of a given species, a given organ or a given tissue. As a clue, both tissue homeostasis and regeneration dynamics rely on the availability of stem cells and/or on the plasticity of differentiated cells to replenish the missing structure. The freshwater Hydra polyp provides us with a unique model system to study the intricate relationships between the mechanisms that regulate the maintenance of homeostasis, even in extreme conditions (starvation and overfeeding) and the reactivation of developmental programs after bisection or during budding. Interestingly head regeneration in Hydra can follow several routes according to the level of amputation, suggesting that indeed the homeostatic background dramatically influences the route taken to bridge injury and regeneration.
Collapse
Affiliation(s)
- Brigitte Galliot
- Faculty of Sciences, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
109
|
Stocum DL, Cameron JA. Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 2011; 240:943-68. [DOI: 10.1002/dvdy.22553] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2010] [Indexed: 01/08/2023] Open
|
110
|
Daughters RS, Chen Y, Slack JMW. Origin of muscle satellite cells in the Xenopus embryo. Development 2011; 138:821-30. [PMID: 21270051 DOI: 10.1242/dev.056481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the origin of muscle satellite cells in embryos of Xenopus laevis. Fate mapping at the open neural plate stage was carried out using orthotopic grafts from transgenic embryos expressing GFP. This shows that most satellite cells originate from the dorsolateral plate rather than from the paraxial mesoderm. Specification studies were made by isolation of explants from the paraxial and dorsolateral regions of neurulae and these also indicated that the satellite cell progenitors arise from the dorsolateral plate. Muscle satellite cells express Pax7, but overexpression of Pax7 in blastomeres of whole embryos that populate the myogenic areas does not induce the formation of additional satellite cells. Moreover, a dominant-negative construct, Pax7EnR, does not reduce satellite cell formation. Neither Pax7 nor other myogenic transcription factor genes will induce satellite cell formation in animal caps treated with FGF. However, BMP RNA or protein will do so, both for FGF-treated animal caps and for paraxial neurula explants. Conversely, the induction of Noggin in dorsolateral explants from HGEM-Noggin transgenic neurulae will block formation of satellite cells, showing that BMP signaling is required in vivo for satellite cell formation. We conclude that satellite cell progenitors are initially specified in the dorsal part of the lateral plate mesoderm and later become incorporated into the myotomes. The initial specification occurs at the neurula stage and depends on the ventral-to-dorsal BMP gradient in the early embryo.
Collapse
Affiliation(s)
- Randall S Daughters
- Stem Cell Institute, University of Minnesota, MTRF, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
111
|
Calve S, Simon HG. High resolution three-dimensional imaging: Evidence for cell cycle reentry in regenerating skeletal muscle. Dev Dyn 2011; 240:1233-9. [PMID: 21509897 DOI: 10.1002/dvdy.22530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2010] [Indexed: 01/01/2023] Open
Abstract
Newts and other urodele amphibians can replace lost structures including limbs, providing a vertebrate model for the study of regeneration of complex tissues. The composite of different cell and tissue types in the limb, however, presents a challenge for their imaging in three-dimensions (3D) at cellular level resolution. To observe myofibers in vivo without distortion, we developed a streamlined protocol whereby 80 μm thick cryosections are mounted on slides, processed for immunohistochemistry, imaged using confocal microscopy and z-stacks rendered in 3D. This methodology enabled precise in situ rendering of regenerating muscle, demonstrating cell cycle reentry of nuclei within the myofiber syncytium. The high resolution imaging of muscle or comparable tissue types as intact 3D entities in the context of extracellular and intracellular molecules allows for the determination of signaling and cell response pathways, making this method useful for studies that attempt to characterize rare physiological events in vivo.
Collapse
Affiliation(s)
- Sarah Calve
- Department of Pediatrics, Northwestern University, The Feinberg School of Medicine, Children's Memorial Research Center, Chicago, Illinois, USA
| | | |
Collapse
|
112
|
Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 2010; 240:1127-41. [DOI: 10.1002/dvdy.22503] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/06/2022] Open
|
113
|
Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 2010; 11:710-22. [PMID: 20838411 DOI: 10.1038/nrg2879] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Questions about how and why tissue regeneration occurs have captured the attention of countless biologists, biomedical engineers and clinicians. Regenerative capacity differs greatly across organs and organisms, and a range of model systems that use different regenerative strategies and that offer different technical advantages have been studied to understand regeneration. Making use of this range of systems and approaches, recent advances have allowed progress to be made in understanding several key issues that are common to natural regenerative events. These issues include: the determination of regenerative capacity; the importance of stem cells, dedifferentiation and transdifferentiation; how regenerative signals are initiated and targeted; and the mechanisms that control regenerative proliferation and patterning.
Collapse
|
114
|
Song F, Li B, Stocum DL. Amphibians as research models for regenerative medicine. Organogenesis 2010; 6:141-50. [PMID: 21197215 PMCID: PMC2946045 DOI: 10.4161/org.6.3.12039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/12/2010] [Indexed: 01/23/2023] Open
Abstract
The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible.
Collapse
Affiliation(s)
- Fengyu Song
- Department of Oral Pathology, Indiana University School of Dentistry, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | | |
Collapse
|
115
|
Wenemoser D, Reddien PW. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 2010; 344:979-91. [PMID: 20599901 DOI: 10.1016/j.ydbio.2010.06.017] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Regeneration requires signaling from a wound site for detection of the wound and a mechanism that determines the nature of the injury to specify the appropriate regenerative response. Wound signals and tissue responses to wounds that elicit regeneration remain poorly understood. Planarians are able to regenerate from essentially any type of injury and present a novel system for the study of wound responses in regeneration initiation. Newly developed molecular and cellular tools now enable study of regeneration initiation using the planarian Schmidtea mediterranea. Planarian regeneration requires adult stem cells called neoblasts and amputation triggers two peaks in neoblast mitoses early in regeneration. We demonstrate that the first mitotic peak is a body-wide response to any injury and that a second, local, neoblast response is induced only when injury results in missing tissue. This second response was characterized by recruitment of neoblasts to wounds, even in areas that lack neoblasts in the intact animal. Subsequently, these neoblasts were induced to divide and differentiate near the wound, leading to formation of new tissue. We conclude that there exist two functionally distinct signaling phases of the stem cell wound response that distinguish between simple injury and situations that require the regeneration of missing tissue.
Collapse
Affiliation(s)
- Danielle Wenemoser
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, USA
| | | |
Collapse
|
116
|
Jakab K, Marga F, Norotte C, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010; 2:022001. [PMID: 20811127 PMCID: PMC3635954 DOI: 10.1088/1758-5082/2/2/022001] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biofabrication of living structures with desired topology and functionality requires the interdisciplinary effort of practitioners of the physical, life and engineering sciences. Such efforts are being undertaken in many laboratories around the world. Numerous approaches are pursued, such as those based on the use of natural or artificial scaffolds, decellularized cadaveric extracellular matrices and, most lately, bioprinting. To be successful in this endeavor, it is crucial to provide in vitro micro-environmental clues for the cells resembling those in the organism. Therefore, scaffolds, populated with differentiated cells or stem cells, of increasing complexity and sophistication are being fabricated. However, no matter how sophisticated scaffolds are, they can cause problems stemming from their degradation, eliciting immunogenic reactions and other a priori unforeseen complications. It is also being realized that ultimately the best approach might be to rely on the self-assembly and self-organizing properties of cells and tissues and the innate regenerative capability of the organism itself, not just simply prepare tissue and organ structures in vitro followed by their implantation. Here we briefly review the different strategies for the fabrication of three-dimensional biological structures, in particular bioprinting. We detail a fully biological, scaffoldless, print-based engineering approach that uses self-assembling multicellular units as bio-ink particles and employs early developmental morphogenetic principles, such as cell sorting and tissue fusion.
Collapse
Affiliation(s)
- Karoly Jakab
- Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Francoise Marga
- Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Cyrille Norotte
- Department of Biology, University of Missouri, Columbia, MO 65211, USA
| | - Keith Murphy
- Organovo, Inc., 5871 Oberlin Drive, San Diego, CA 92121, USA
| | | | - Gabor Forgacs
- Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biology, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
117
|
Calve S, Odelberg SJ, Simon HG. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol 2010; 344:259-71. [PMID: 20478295 DOI: 10.1016/j.ydbio.2010.05.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/28/2022]
Abstract
Urodele amphibians regenerate appendages through the recruitment of progenitor cells into a blastema that rebuilds the lost tissue. Blastemal formation is accompanied by extensive remodeling of the extracellular matrix. Although this remodeling process is important for appendage regeneration, it is not known whether the remodeled matrix directly influences the generation and behavior of blastemal progenitor cells. By integrating in vivo 3-dimensional spatiotemporal matrix maps with in vitro functional time-lapse imaging, we show that key components of this dynamic matrix, hyaluronic acid, tenascin-C and fibronectin, differentially direct cellular behaviors including DNA synthesis, migration, myotube fragmentation and myoblast fusion. These data indicate that both satellite cells and fragmenting myofibers contribute to the regeneration blastema and that the local extracellular environment provides instructive cues for the regenerative process. The fact that amphibian and mammalian myoblasts exhibit similar responses to various matrices suggests that the ability to sense and respond to regenerative signals is evolutionarily conserved.
Collapse
Affiliation(s)
- Sarah Calve
- Department of Pediatrics, Northwestern University, The Feinberg School of Medicine, Children's Memorial Research Center, 2300 Children's Plaza, Chicago, IL 60614, USA.
| | | | | |
Collapse
|
118
|
Bergantiños C, Vilana X, Corominas M, Serras F. Imaginal discs: Renaissance of a model for regenerative biology. Bioessays 2010; 32:207-217. [PMID: 20127699 DOI: 10.1002/bies.200900105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many animals display a capacity to regenerate tissues or even a complete body. One of the main goals of regenerative biology is to identify the genes and genetic networks necessary for this process. Drosophila offers an ideal model system for such studies. The wide range of genetic and genomic approaches available for use in flies has helped in initiating the deciphering of the mechanisms underlying regeneration, and the results may be applicable to other organisms, including mammals. Moreover, most models of regeneration require experimental manipulation, whereas in Drosophila discrete domains can be ablated by genetically induced methods. Here, we present a summary of current research into imaginal disc regeneration and discuss the power of this tissue as a tool for understanding the genetics of regeneration.
Collapse
Affiliation(s)
- Cora Bergantiños
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Vilana
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Florenci Serras
- Facultat de Biologia, Departament de Genètica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
119
|
Christen B, Robles V, Raya M, Paramonov I, Izpisúa Belmonte JC. Regeneration and reprogramming compared. BMC Biol 2010; 8:5. [PMID: 20089153 PMCID: PMC2826312 DOI: 10.1186/1741-7007-8-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/20/2010] [Indexed: 01/09/2023] Open
Abstract
Background Dedifferentiation occurs naturally in mature cell types during epimorphic regeneration in fish and some amphibians. Dedifferentiation also occurs in the induction of pluripotent stem cells when a set of transcription factors (Oct4, Sox2, Klf4 and c-Myc) is over expressed in mature cell types. Results We hypothesised that there are parallels between dedifferentiation or reprogramming of somatic cells to induced pluripotent stem cells and the natural process of dedifferentiation during epimorphic regeneration. We analysed expression levels of the most commonly used pluripotency associated factors in regenerating and non-regenerating tissue and compared them with levels in a pluripotent reference cell. We found that some of the pluripotency associated factors (oct4/pou5f1, sox2, c-myc, klf4, tert, sall4, zic3, dppa2/4 and fut1, a homologue of ssea1) were expressed before and during regeneration and that at least two of these factors (oct4, sox2) were also required for normal fin regeneration in the zebrafish. However these factors were not upregulated during regeneration as would be expected if blastema cells acquired pluripotency. Conclusions By comparing cells from the regeneration blastema with embryonic pluripotent reference cells we found that induced pluripotent stem and blastema cells do not share pluripotency. However, during blastema formation some of the key reprogramming factors are both expressed and are also required for regeneration to take place. We therefore propose a link between partially reprogrammed induced pluripotent stem cells and the half way state of blastema cells and suggest that a common mechanism might be regulating these two processes.
Collapse
Affiliation(s)
- Bea Christen
- Center for Regenerative Medicine of Barcelona, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
120
|
Yi BA, Wernet O, Chien KR. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J Clin Invest 2010; 120:20-8. [PMID: 20051633 DOI: 10.1172/jci40820] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability to create new functional cardiomyocytes is the holy grail of cardiac regenerative medicine. From studies using model organisms, new insights into the fundamental pathways that drive heart muscle regeneration have begun to arise as well as a growing knowledge of the distinct families of multipotent cardiovascular progenitors that generate diverse lineages during heart development. In this Review, we highlight this intersection of the "pregenerative" biology of heart progenitor cells and heart regeneration and discuss the longer term challenges and opportunities in moving toward a therapeutic goal of regenerative cardiovascular medicine.
Collapse
Affiliation(s)
- B Alexander Yi
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | |
Collapse
|
121
|
Satoh A, Cummings GM, Bryant SV, Gardiner DM. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 2010; 337:444-57. [DOI: 10.1016/j.ydbio.2009.11.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/24/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
|
122
|
Antos CL, Tanaka EM. Vertebrates that regenerate as models for guiding stem cels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:184-214. [PMID: 21222207 DOI: 10.1007/978-1-4419-7037-4_13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There are several animal model organisms that have the ability to regenerate severe injuries by stimulating local cells to restore damaged and lost organs and appendages. In this chapter, we will describe how various vertebrate animals regenerate different structures (central nervous system, heart and appendages) as well as detail specific cellular and molecular features concerning the regeneration of these structures.
Collapse
Affiliation(s)
- Christopher L Antos
- DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany,
| | | |
Collapse
|
123
|
Tavi P, Korhonen T, Hänninen SL, Bruton JD, Lööf S, Simon A, Westerblad H. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes. J Cell Physiol 2010; 223:376-83. [DOI: 10.1002/jcp.22044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
124
|
Shao J, Qian X, Zhang C, Xu Z. Fin regeneration from tail segment with musculature, endoskeleton, and scales. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:762-9. [PMID: 19402133 DOI: 10.1002/jez.b.21295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well known that fish caudal fins can be completely regenerated after fin amputation. Although much research on fin regeneration has been carried out, there have been very few reports regarding fin regeneration after tail amputation. In this study, we used grass carp, common carp, koi carp, and zebrafish as experimental organisms. Some caudal fins could be distinctly regenerated in 2 weeks after tail amputation. After all-trans-retinoic acid treatment and tail amputation, zebrafish were unable to regenerate caudal fins that could be seen with the naked eye. However, after tail amputation, more than half of the zebrafish tested were able to regenerate caudal fins. Caudal fin regeneration depended on the presence of musculature and endoskeleton at the site of amputation. These caudal fins arose from segments of the endoskeleton, which contrast with currently accepted knowledge.
Collapse
Affiliation(s)
- Jinhui Shao
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| | | | | | | |
Collapse
|
125
|
Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HLD, Cameron JA, Stocum DL. Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 2009; 7:83. [PMID: 19948009 PMCID: PMC2794268 DOI: 10.1186/1741-7007-7-83] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/30/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. RESULTS We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. CONCLUSION Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings indicate the general value of quantitative proteomic analysis in understanding the regeneration of complex structures.
Collapse
Affiliation(s)
- Nandini Rao
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Deepali Jhamb
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Derek J Milner
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Bingbing Li
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mu Wang
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Center, University of Kentucky at Lexington, Lexington, KY, USA
| | - Mathew Palakal
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael W King
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Behnaz Saranjami
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Holly LD Nye
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Jo Ann Cameron
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - David L Stocum
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
126
|
Morrison JI, Borg P, Simon A. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J 2009; 24:750-6. [DOI: 10.1096/fj.09-134825] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jamie I. Morrison
- Department of Cell and Molecular BiologyCentre of Excellence in Developmental Biology for Regenerative MedicineKarolinska InstituteStockholmSweden
| | - Paula Borg
- Department of Cell and Molecular BiologyCentre of Excellence in Developmental Biology for Regenerative MedicineKarolinska InstituteStockholmSweden
| | - András Simon
- Department of Cell and Molecular BiologyCentre of Excellence in Developmental Biology for Regenerative MedicineKarolinska InstituteStockholmSweden
| |
Collapse
|
127
|
|
128
|
Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009; 460:60-5. [PMID: 19571878 DOI: 10.1038/nature08152] [Citation(s) in RCA: 604] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/22/2009] [Indexed: 11/08/2022]
Abstract
During limb regeneration adult tissue is converted into a zone of undifferentiated progenitors called the blastema that reforms the diverse tissues of the limb. Previous experiments have led to wide acceptance that limb tissues dedifferentiate to form pluripotent cells. Here we have reexamined this question using an integrated GFP transgene to track the major limb tissues during limb regeneration in the salamander Ambystoma mexicanum (the axolotl). Surprisingly, we find that each tissue produces progenitor cells with restricted potential. Therefore, the blastema is a heterogeneous collection of restricted progenitor cells. On the basis of these findings, we further demonstrate that positional identity is a cell-type-specific property of blastema cells, in which cartilage-derived blastema cells harbour positional identity but Schwann-derived cells do not. Our results show that the complex phenomenon of limb regeneration can be achieved without complete dedifferentiation to a pluripotent state, a conclusion with important implications for regenerative medicine.
Collapse
|
129
|
|
130
|
Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 2009; 20:535-42. [DOI: 10.1016/j.semcdb.2008.11.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/03/2008] [Accepted: 11/17/2008] [Indexed: 01/19/2023]
|
131
|
Barker DM, Beck CW. Overexpression of the transcription factor Msx1 is insufficient to drive complete regeneration of refractory stageXenopus laevishindlimbs. Dev Dyn 2009; 238:1366-78. [DOI: 10.1002/dvdy.21923] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
132
|
Endo T. Stem cells and plasticity of skeletal muscle cell differentiation: potential application to cell therapy for degenerative muscular diseases. Regen Med 2009; 2:243-56. [PMID: 17511561 DOI: 10.2217/17460751.2.3.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degenerative muscular diseases, such as muscular dystrophies, have been the representative targets of regenerative cell therapy. Although satellite cells play central roles in skeletal muscle regeneration that intrinsically occurs after muscle injury, their application to cell therapy is confronted by difficulties. Other stem cells expected to be applicable to cell therapy include muscle-resident stem cells and nonmuscle-resident stem cells. Moreover, dedifferentiated cells of skeletal muscle might provide unique system for cell therapy. Terminally differentiated myotubes have plasticity of differentiation and dedifferentiate under certain experimental conditions, including the expression of SV40 large T antigen or the homeobox gene Msx1. The dedifferentiated cells exhibit multipotency to transdifferentiate into multiple mesenchymal origin cells. In addition, fibroblasts or undifferentiated myoblasts treated with a drug acquire multipotency. These cells may open new doors in cell therapy.
Collapse
Affiliation(s)
- Takeshi Endo
- Chiba University, Department of Biology, Graduate School of Science, Chiba 263-8522, Japan.
| |
Collapse
|
133
|
Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol 2009; 7:1. [PMID: 19144100 PMCID: PMC2630914 DOI: 10.1186/1741-7007-7-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/13/2009] [Indexed: 02/01/2023] Open
Abstract
Background Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR) and denervated (DL) forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration. Results Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa). Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST) contigs from the Ambystoma EST database more than doubled (3935 to 9411) the number of non-redundant human-A. mexicanum orthologous sequences. Conclusion Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.
Collapse
Affiliation(s)
- James R Monaghan
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Collapse
Affiliation(s)
- Ali M Riazi
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
135
|
Abstract
Most but not all phyla include examples of species that are able to regenerate large sections of the body plan. The mechanisms underlying regeneration on this scale are currently being studied in a variety of contexts in both vertebrates and invertebrates. Regeneration generally involves the formation of a wound epithelium after transection or injury, followed by the generation of regenerative progenitor cells and morphogenesis to give the regenerate. Common mechanisms may exist in relation to each of these aspects. For example, the initial proliferation of progenitor cells often depends on the nerve supply, whereas morphogenesis reflects the generation of positional disparity between adjacent cells-the principle of intercalation. These mechanisms are reviewed here across a range of contexts. We also consider the evolutionary origins of regeneration and how regeneration may relate to both agametic reproduction and to ontogeny.
Collapse
Affiliation(s)
- Jeremy P Brockes
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, England.
| | | |
Collapse
|
136
|
|
137
|
Stocum DL, Zupanc GK. Stretching the limits: Stem cells in regeneration science. Dev Dyn 2008; 237:3648-71. [DOI: 10.1002/dvdy.21774] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
138
|
Muneoka K, Allan CH, Yang X, Lee J, Han M. Mammalian regeneration and regenerative medicine. ACTA ACUST UNITED AC 2008; 84:265-80. [DOI: 10.1002/bdrc.20137] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
139
|
Blake JA, Thomas M, Thompson JA, White R, Ziman M. Perplexing Pax: From puzzle to paradigm. Dev Dyn 2008; 237:2791-803. [DOI: 10.1002/dvdy.21711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
140
|
Yin VP, Poss KD. New regulators of vertebrate appendage regeneration. Curr Opin Genet Dev 2008; 18:381-6. [PMID: 18644447 DOI: 10.1016/j.gde.2008.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/16/2008] [Accepted: 06/25/2008] [Indexed: 01/09/2023]
Abstract
Appendage regeneration is a complex and fascinating biological process exhibited in vertebrates by urodele amphibians and teleost fish. A current focus in the field is to identify new molecules that control formation and function of the regeneration blastema, a mass of proliferative mesenchyme that emerges after limb or fin amputation and serves as progenitor tissue for lost structures. Two studies published recently have illuminated new molecular regulators of blastemal proliferation. After amputation of a newt limb, the nerve sheath releases nAG, a blastemal mitogen that facilitates regeneration. In amputated zebrafish fins, regeneration is optimized through depletion of the microRNA miR-133, a mechanism that requires Fgf signaling. These discoveries establish research avenues that may impact the regenerative capacity of mammalian tissues.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
141
|
Abstract
The molecular, genetic and cellular bases for skeletal muscle growth and regeneration have been recently documented in a number of vertebrate species. These studies highlight the role of transient subcompartments of the early somite as a source of distinct waves of myogenic precursors. Individual myogenic progenitor populations undergo a complex series of cell rearrangements and specification events in different regions of the body, all of which are controlled by distinct gene regulatory networks. Collectively, these studies have opened a window into the morphogenetic and molecular bases of the different phases of vertebrate myogenesis, from embryo to adult.
Collapse
Affiliation(s)
- Robert J Bryson-Richardson
- Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
142
|
Glandular stem cells are a promising source for much more than beta-cell replacement. Ann Anat 2008; 191:62-9. [PMID: 18838258 DOI: 10.1016/j.aanat.2008.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/25/2008] [Indexed: 12/26/2022]
Abstract
Glandular stem cells (GSCs) can be obtained from exocrine glands such as pancreas or salivary glands using well-established cell culturing methods. The resulting cell populations are characterized by a high proliferative capacity and an unusually high plasticity. Cells from pancreas have been demonstrated to differentiate into a multitude of cell types and even into oocyte-like cells. It has been found that the preparation method for GSCs can be applied to many vertebrates, including fishes and birds. Since the cells are excellently cryopreservable, this finding has been utilized to establish a new stem cell bank for preserving living cells of rare and wild animals. Apart from these advances, this mini-review also points out that GSCs from pancreas must not be confused with beta-cell progenitors but constitute a distinct cell type.
Collapse
|
143
|
Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 2008; 319:321-35. [DOI: 10.1016/j.ydbio.2008.04.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
|
144
|
Pearl EJ, Barker D, Day RC, Beck CW. Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. BMC DEVELOPMENTAL BIOLOGY 2008; 8:66. [PMID: 18570684 PMCID: PMC2483965 DOI: 10.1186/1471-213x-8-66] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1) in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. RESULTS In the current study, we have taken advantage of the N1 transgenic line to directly compare morphology and gene expression in same stage regenerating vs. BMP signalling deficient non-regenerating hindlimb buds. The wound epithelium of N1 transgenic hindlimb buds, which forms over the cut surface of the limb bud after amputation, does not transition normally into the distal thickened apical epithelial cap. Instead, a basement membrane and dermis form, indicative of mature skin. Furthermore, the underlying mesenchyme remains rounded and does not expand to form a cone shaped blastema, a normal feature of successful regeneration. Using Affymetrix Gene Chip analysis, we have identified genes linked to regenerative success downstream of BMP signalling, including the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish). Gene Ontology analysis showed that genes involved in embryonic development and growth are significantly over-represented in regenerating early hindlimb buds and that successful regeneration in the Xenopus hindlimb correlates with the induction of stress response pathways. CONCLUSION N1 transgenic hindlimbs, which do not regenerate, do not form an apical epithelial cap or cone shaped blastema following amputation. Comparison of gene expression in stage matched N1 vs. wild type hindlimb buds has revealed several new targets for regeneration research.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montreal (IRCM), 110 avenue des Pins Ouest, Montreal, QC H2W 1R7, Canada
| | - Donna Barker
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Robert C Day
- Biochemistry Department, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
145
|
Kurosaka H, Takano-Yamamoto T, Yamashiro T, Agata K. Comparison of molecular and cellular events during lower jaw regeneration of newt (Cynops pyrrhogaster) and West African clawed frog (Xenopus tropicalis). Dev Dyn 2008; 237:354-65. [PMID: 18161063 DOI: 10.1002/dvdy.21419] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
When mammals, including humans, lose a major part of their lower jaw, they are unable to regenerate the lost structures. Urodele amphibians, especially newts, can regenerate their lower jaw after amputation, whereas most anuran amphibians, including the West African clawed frog, can not. In the present study, we investigated the difference between newts and frogs during lower jaw regeneration. One difference was the distribution of myosin heavy chain (MHC) mRNA after lower jaw amputation: MHC mRNA was immediately expressed at the tip of the amputated lower jaw in newts but not in frogs. Moreover, there were proliferating cells that expressed Pax7 in newts but not in frogs, although proliferating cells were present in both animals. These results suggest that the difference of the jaw-regenerating abilities between newts and frogs depends on the expression of MHC mRNA at the tip of the amputated jaw and the contribution of Pax7-positive cells.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
146
|
Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth. J Invest Dermatol 2008; 128:2894-903. [PMID: 18548112 DOI: 10.1038/jid.2008.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.
Collapse
|
147
|
Perino MG, Yamanaka S, Li J, Wobus AM, Boheler KR. Cardiomyogenic stem and progenitor cell plasticity and the dissection of cardiopoiesis. J Mol Cell Cardiol 2008; 45:475-94. [PMID: 18565538 DOI: 10.1016/j.yjmcc.2008.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/04/2008] [Accepted: 05/02/2008] [Indexed: 12/13/2022]
Abstract
Cell-based therapies hold promise of repairing an injured heart, and the description of stem and progenitor cells with cardiomyogenic potential is critical to its realization. At the vanguard of these efforts are analyses of embryonic stem cells, which clearly have the capacity to generate large numbers of cardiomyocytes in vitro. Through the use of this model system, a number of signaling mechanisms have been worked out that describes at least partially the process of cardiopoiesis. Studies on adult stem and on progenitor cells with cardiomyogenic potential are still in their infancy, and much less is known about the molecular signals that are required to induce the differentiation to cardiomyocytes. It is also unclear whether the pathways are similar or different between embryonic and adult cell-induced cardiomyogenesis, partly because of the continued controversies that surround the stem cell theory of cardiac self-renewal. Irrespective of any perceived or actual limitations, the study of stem and progenitor cells has provided important insights into the process of cardiomyogenesis, and it is likely that future research in this area will turn the promise of repairing an injured heart into a reality.
Collapse
Affiliation(s)
- Maria Grazia Perino
- Laboratory of Cardiovascular Sciences, National Institute on Aging, NIH, Baltimore MD 21224, USA
| | | | | | | | | |
Collapse
|
148
|
Rolf HJ, Kierdorf U, Kierdorf H, Schulz J, Seymour N, Schliephake H, Napp J, Niebert S, Wölfel H, Wiese KG. Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler. PLoS One 2008; 3:e2064. [PMID: 18446198 PMCID: PMC2312329 DOI: 10.1371/journal.pone.0002064] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/18/2008] [Indexed: 12/11/2022] Open
Abstract
The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama). In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR) were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1(+) cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process.
Collapse
Affiliation(s)
- Hans J Rolf
- University Hospital, Department of Maxillofacial Surgery, Clinical Research, University of Goettingen, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Multicellular organisms possessing relatively long life spans are subjected to diverse, constant, and often intense intrinsic and extrinsic challenges to their survival. Animal and plant tissues wear out as part of normal physiological functions and can be lost to predators, disease, and injury. Both kingdoms survive this wide variety of insults by strategies that include the maintenance of adult stem cells or the induction of stem cell potential in differentiated cells. Repatterning mechanisms often deploy embryonic genes, but the question remains in both plants and animals whether regeneration invokes embryogenesis, generic patterning mechanisms, or unique circuitry comprised of well-established patterning genes.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
150
|
Figeac N, Daczewska M, Marcelle C, Jagla K. Muscle stem cells and model systems for their investigation. Dev Dyn 2008; 236:3332-42. [PMID: 17948301 DOI: 10.1002/dvdy.21345] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stem cells are characterized by their clonal ability both to generate differentiated progeny and to undergo self-renewal. Studies of adult mammalian organs have revealed stem cells in practically every tissue. In the adult skeletal muscle, satellite cells are the primary muscle stem cells, responsible for postnatal muscle growth, hypertrophy, and regeneration. In the past decade, several molecular markers have been found that identify satellite cells in quiescent and activated states. However, despite their prime importance, surprisingly little is known about the biology of satellite cells, as their analysis was for a long time hampered by a lack of genetically amenable experimental models where their properties can be dissected. Here, we review how the embryonic origin of satellite cells was discovered using chick and mouse model systems and discuss how cells from other sources can contribute to muscle regeneration. We present evidence for evolutionarily conserved properties of muscle stem cells and their identification in lower vertebrates and in the fruit fly. In Drosophila, muscle stem cells called adult muscle precursors (AMP) can be identified in embryos and in larvae by persistent expression of a myogenic basic helix-loop-helix factor Twist. AMP cells play a crucial role in the Drosophila life cycle, allowing de novo formation and regeneration of adult musculature during metamorphosis. Based on the premise that AMPs represent satellite-like cells of the fruit fly, important insight into the biology of vertebrate muscle stem cells can be gained from genetic analysis in Drosophila.
Collapse
|