101
|
Vourc'h C, Biamonti G. Transcription of Satellite DNAs in Mammals. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:95-118. [PMID: 21287135 DOI: 10.1007/978-3-642-16502-3_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Centromeric and pericentric regions have long been regarded as transcriptionally inert portions of chromosomes. A number of studies in the past 10 years disproved this dogma and provided convincing evidence that centromeric and pericentric sequences are transcriptionally active in several biological contexts.In this chapter, we provide a comprehensive picture of the various contexts (cell growth and differentiation, stress, effect of chromatin organization) in which these sequences are expressed in mouse and human cells and discuss the possible functional implications of centromeric and pericentric sequences activation and/or of the resulting noncoding RNAs. Moreover, we provide an overview of the molecular mechanisms underlying the activation of centromeric and pericentromeric sequences as well as the structural features of encoded RNAs.
Collapse
Affiliation(s)
- Claire Vourc'h
- INSERM U823; Institut Albert Bonniot, Université Joseph Fourier-Grenoble, La Tronche BP170, 38042, Grenoble cedex 9, France,
| | | |
Collapse
|
102
|
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010; 19:625-38. [PMID: 20951352 DOI: 10.1016/j.devcel.2010.09.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/01/2010] [Accepted: 08/18/2010] [Indexed: 01/21/2023]
Abstract
At the time of fertilization, the paternal genome lacks the typical configuration and marks characteristic of pericentric heterochromatin. It is thus essential to understand the dynamics of this region during early development, its importance during that time period and how a somatic configuration is attained. Here, we show that pericentric satellites undergo a transient peak in expression precisely at the time of chromocenter formation. This transcription is regulated in a strand-specific manner in time and space and is strongly biased by the parental asymmetry. The transcriptional upregulation follows a developmental clock, yet when replication is blocked chromocenter formation is impeded. Furthermore, interference with major satellite transcripts using locked nucleic acid (LNA)-DNA gapmers results in developmental arrest before completion of chromocenter formation. We conclude that the exquisite strand-specific expression dynamics at major satellites during the 2-cell stage, with both up and downregulation, are necessary events for proper chromocenter organization and developmental progression.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Genome Plasticity, Unité Mixte de Recherche, 218 Centre National de la Recherche Scientifique/Institut Curie, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
103
|
Abstract
Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due to recent findings of alternative CENH3 nucleosomal forms in invertebrate centromeres, it has been debated whether the classical octameric nucleosomal arrangement of two copies of CENH3, H4, H2A, and H2B forms the basis of the vertebrate centromere. To address this question directly, we examined CENH3 [centromere protein A (CENP-A)] nucleosomal organization in human cells, using a combination of nucleosome component analysis, atomic force microscopy (AFM), and immunoelectron microscopy (immuno-EM). We report that native CENP-A nucleosomes contain centromeric alpha satellite DNA, have equimolar amounts of H2A, H2B, CENP-A, and H4, and bind kinetochore proteins. These nucleosomes, when measured by AFM, yield one-half the dimensions of canonical octameric nucleosomes. Using immuno-EM, we find that one copy of CENP-A, H2A, H2B, and H4 coexist in CENP-A nucleosomes, in which internal C-terminal domains are accessible. Our observations indicate that CENP-A nucleosomes are organized as asymmetric heterotypic tetramers, rather than canonical octamers. Such altered nucleosomes form a chromatin fiber with distinct folding characteristics, which we utilize to discriminate tetramers directly within bulk chromatin. We discuss implications of our observations in the context of universal epigenetic and mechanical requirements for functional centromeres.
Collapse
|
104
|
Abstract
Genetic screens in Drosophila have been instrumental in distinguishing approximately 390 loci involved in position effect variegation and heterochromatin stabilization. Most of the identified genes [so-called Su(var) and E(var) genes] are also conserved in mammals, where more than 50 of their gene products are known to localize to constitutive heterochromatin. From these proteins, approximately 12 core heterochromatin components can be inferred. In addition, there are approximately 30 additional Su(var) and 10 E(var) factors that can, under distinct developmental options, interchange with constitutive heterochromatin and participate in the partitioning of the genome into repressed and active chromatin domains. A significant fraction of the Su(var) and E(var) factors are enzymes that respond to environmental and metabolic signals, thereby allowing both the variation and propagation of epigenetic states to a dynamic chromatin template. Moreover, the misregulation of human SU(VAR) and E(VAR) function can advance cancer and many other human diseases including more complex disorders. As such, mammalian Su(var) and E(var) genes and their products provide a rich source of novel targets for diagnosis of and pharmaceutical intervention in many human diseases.
Collapse
Affiliation(s)
- Barna D Fodor
- Max-Planck Institute of Immunobiology, D-79108 Freiburg, Germany.
| | | | | | | |
Collapse
|
105
|
Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010; 12:853-62. [PMID: 20676102 PMCID: PMC3701880 DOI: 10.1038/ncb2089] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/01/2010] [Indexed: 01/03/2023]
Abstract
In mammals, oocyte fertilization by sperm initiates development. This is followed by epigenetic reprogramming of both parental genomes, which involves the de novo establishment of chromatin domains. In the mouse embryo, methylation of histone H3 establishes an epigenetic asymmetry and is predominant in the maternal pronucleus. However, the roles of differential incorporation of histone H3 variants in the parental chromatin, and of modified residues within specific histone variants, have not been addressed. Here we show that the histone variant H3.3, and in particular lysine 27, is required for the establishment of heterochromatin in the mouse embryo. H3.3 localizes to paternal pericentromeric chromatin during S phase at the time of transcription of pericentromeric repeats. Mutation of H3.3 K27, but not of H3.1 K27, results in aberrant accumulation of pericentromeric transcripts, HP1 mislocalization, dysfunctional chromosome segregation and developmental arrest. This phenotype is rescued by injection of double-stranded RNA (dsRNA) derived from pericentromeric transcripts, indicating a functional link between H3.3K27 and the silencing of such regions by means of an RNA-interference (RNAi) pathway. Our work demonstrates a role for a modifiable residue within a histone-variant-specific context during reprogramming and identifies a novel function for mammalian H3.3 in the initial formation of dsRNA-dependent heterochromatin.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Blastocyst/cytology
- Blastocyst/metabolism
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Segregation/genetics
- DNA, Satellite/genetics
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryonic Development/genetics
- Epigenesis, Genetic/genetics
- Female
- Genetic Variation
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Histones/genetics
- Histones/metabolism
- Lysine/genetics
- Male
- Methylation
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- RNA, Double-Stranded/administration & dosage
- RNA, Double-Stranded/genetics
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Zygote/cytology
- Zygote/metabolism
Collapse
Affiliation(s)
- Angèle Santenard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Céline Ziegler-Birling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Marc Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Andrew J. Bannister
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| |
Collapse
|
106
|
Sugimura K, Fukushima Y, Ishida M, Ito S, Nakamura M, Mori Y, Okumura K. Cell cycle-dependent accumulation of histone H3.3 and euchromatic histone modifications in pericentromeric heterochromatin in response to a decrease in DNA methylation levels. Exp Cell Res 2010; 316:2731-46. [PMID: 20599948 DOI: 10.1016/j.yexcr.2010.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023]
Abstract
In mammals, DNA methylation is an important epigenetic mark that is associated with gene silencing, particularly in constitutive heterochromatin. However, the effect of DNA methylation on other epigenetic properties of chromatin is controversial. In this study, we show that inhibition of DNA methylation in mouse fibroblast cells affects histone modification and the subnuclear localization of histone H3.3 in a cell cycle-dependent manner. Using a DNA methyltransferase (Dnmt) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we found that reduced levels of DNA methylation were associated with the activation of transcription from centromeric and pericentromeric satellite repeats. The de-repressed pericentromeric chromatin was enriched in euchromatic histone modifications such as acetylation of histone H4, and di- and tri-methylation of lysine 4 on histone H3. Spatio-temporal analysis showed that the accumulation of these euchromatic histone modifications occurred during the second S phase following 5-aza-dC treatment, corresponding precisely with a shift in replication timing of the pericentromeric satellite repeats from middle/late S phase to early S phase. Moreover, we found that histone H3.3 was deposited on the pericentromeric heterochromatin prior to the accumulation of the euchromatic histone modifications. These results suggest that DNA CpG methylation is essential for the proper organization of pericentromeric heterochromatin in differentiated mouse cells.
Collapse
Affiliation(s)
- Kazuto Sugimura
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan.
| | | | | | | | | | | | | |
Collapse
|
107
|
Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM. G2 phase chromatin lacks determinants of replication timing. ACTA ACUST UNITED AC 2010; 189:967-80. [PMID: 20530209 PMCID: PMC2886351 DOI: 10.1083/jcb.201002002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin spatial organization helps establish the replication timing decision point at early G1. However, at G2, although retained, chromatin organization is no longer necessary or sufficient to maintain the replication timing program. DNA replication in all eukaryotes follows a defined replication timing program, the molecular mechanism of which remains elusive. Using a Xenopus laevis egg extract replication system, we previously demonstrated that replication timing is established during early G1 phase of the cell cycle (timing decision point [TDP]), which is coincident with the repositioning and anchorage of chromatin in the newly formed nucleus. In this study, we use this same system to show that G2 phase chromatin lacks determinants of replication timing but maintains the overall spatial organization of chromatin domains, and we confirm this finding by genome-wide analysis of rereplication in vivo. In contrast, chromatin from quiescent cells retains replication timing but exhibits disrupted spatial organization. These data support a model in which events at the TDP, facilitated by chromatin spatial organization, establish determinants of replication timing that persist independent of spatial organization until the process of chromatin replication during S phase erases those determinants.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
108
|
Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010; 24:1253-65. [PMID: 20504901 DOI: 10.1101/gad.566910] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The histone variant H3.3 marks active chromatin by replacing the conventional histone H3.1. In this study, we investigate the detailed mechanism of H3.3 replication-independent deposition. We found that the death domain-associated protein DAXX and the chromatin remodeling factor ATRX (alpha-thalassemia/mental retardation syndrome protein) are specifically associated with the H3.3 deposition machinery. Bacterially expressed DAXX has a marked binding preference for H3.3 and assists the deposition of (H3.3-H4)(2) tetramers on naked DNA, thus showing that DAXX is a H3.3 histone chaperone. In DAXX-depleted cells, a fraction of H3.3 was found associated with the replication-dependent machinery of deposition, suggesting that cells adapt to the depletion. The reintroduced DAXX in these cells colocalizes with H3.3 into the promyelocytic leukemia protein (PML) bodies. Moreover, DAXX associates with pericentric DNA repeats, and modulates the transcription from these repeats through assembly of H3.3 nucleosomes. These findings establish a new link between the PML bodies and the regulation of pericentric DNA repeat chromatin structure. Taken together, our data demonstrate that DAXX functions as a bona fide histone chaperone involved in the replication-independent deposition of H3.3.
Collapse
Affiliation(s)
- Pascal Drané
- IGMBC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch F-67400, France
| | | | | | | | | |
Collapse
|
109
|
Down the rabbit hole of centromere assembly and dynamics. Curr Opin Cell Biol 2010; 22:392-402. [PMID: 20303726 DOI: 10.1016/j.ceb.2010.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/15/2010] [Accepted: 02/24/2010] [Indexed: 12/19/2022]
Abstract
The centromere is perhaps the most iconic feature on a eukaryotic chromosome. An amateur enthusiast equipped with a light microscope can easily identify the center of each metacentric chromosome, marking the spot responsible for accurate genome segregation. This review will highlight findings that provide novel insights into how centromeres are assembled and disassembled, the role centromeric proteins play in repair, epigenetic features uniquely found at the centromere, and the three dimensional organization of centromeres caught in the act of mitosis. These advances have unveiled a veritable wonderland of non-canonical features that drive centromere function.
Collapse
|
110
|
Pichugin A, Le Bourhis D, Adenot P, Lehmann G, Audouard C, Renard JP, Vignon X, Beaujean N. Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 2010; 139:129-37. [PMID: 19778997 DOI: 10.1530/rep-08-0435] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efficient reprograming of the donor cell genome in nuclear transfer (NT) embryos is linked to the ability of the embryos to sustain full-term development. As the nuclear architecture has recently emerged as a key factor in the regulation of gene expression, we questioned whether early bovine embryos obtained from transfer of cultured fibroblasts into enucleated oocytes would adopt an embryo-like nuclear organization. We studied the dynamics of constitutive heterochromatin in the stages prior to embryonic genome activation by distribution analysis of heterochromatin protein CBX1 (HP1), centromeric proteins CENPA and CENPB, and histone H3 three-methylated at lysine 9. Then we applied descriptive, quantitative, and co-localization analyses. A dramatic reorganization of heterochromatic blocks of somatic donor cells was first observed in the late one-cell stage NT embryos. Then at two- and four-cell stages, we found two types of NT embryos: one displaying noncondensed heterochromatin patches similar to IVF embryos, whereas the second type displayed condensed heterochromatin blocks, normally observed in IVF embryos only after the eight-cell stage. These analyses discriminate for the first time two contrasted types of nuclear organization in NT embryos, which may correspond to different functional states of the nuclei. The relationship with the somatic nucleus reprograming efficiency is discussed.
Collapse
Affiliation(s)
- Andrey Pichugin
- INRA, UMR 1198 Biologie du développement et reproduction, F-78350 Jouy en Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Developmental diseases and the hypothetical Master Development Program. Med Hypotheses 2010; 74:564-73. [DOI: 10.1016/j.mehy.2009.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/24/2022]
|
112
|
Kavi HH, Birchler JA. Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin 2009; 2:15. [PMID: 19917092 PMCID: PMC2785806 DOI: 10.1186/1756-8935-2-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 11/16/2009] [Indexed: 01/17/2023] Open
Abstract
Background Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in Schizosaccharomyces pombe have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on Drosophila heterochromatin structure. Results The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (dcr-2, ago1, ago2, piwi, Lip [D], aub and hls). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of white-mottled4h position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using Drosophila embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites. Conclusion Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in Drosophila. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in Drosophila.
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
113
|
Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD. DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 2009; 18:3178-93. [PMID: 19482874 PMCID: PMC2722982 DOI: 10.1093/hmg/ddp256] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/27/2009] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an epigenetically imposed mark of transcriptional repression that is essential for maintenance of chromatin structure and genomic stability. Genome-wide methylation patterns are mediated by the combined action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B. Compelling links exist between DNMT3B and chromosome stability as emphasized by the mitotic defects that are a hallmark of ICF syndrome, a disease arising from germline mutations in DNMT3B. Centromeric and pericentromeric regions are essential for chromosome condensation and the fidelity of segregation. Centromere regions contain distinct epigenetic marks, including dense DNA hypermethylation, yet the mechanisms by which DNA methylation is targeted to these regions remains largely unknown. In the present study, we used a yeast two-hybrid screen and identified a novel interaction between DNMT3B and constitutive centromere protein CENP-C. CENP-C is itself essential for mitosis. We confirm this interaction in mammalian cells and map the domains responsible. Using siRNA knock downs, bisulfite genomic sequencing and ChIP, we demonstrate for the first time that CENP-C recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and that CENP-C and DNMT3B regulate the histone code in these regions, including marks characteristic of centromeric chromatin. Finally, we demonstrate that loss of CENP-C or DNMT3B leads to elevated chromosome misalignment and segregation defects during mitosis and increased transcription of centromeric repeats. Taken together, our data reveal a novel mechanism by which DNA methylation is targeted to discrete regions of the genome and contributes to chromosomal stability.
Collapse
Affiliation(s)
- Suhasni Gopalakrishnan
- Department of Biochemistry and Molecular Biology, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Beth A. Sullivan
- Department of Molecular Genetics and Microbiology, Duke University, 101 Science Dr, Durham, NC 27708, USA
| | - Stefania Trazzi
- Department of Human and General Physiology, P.zza Porta San Donato, 40126 Bologna, Italy
| | | | - Keith D. Robertson
- Department of Biochemistry and Molecular Biology, University of Florida, Box 100245, Gainesville, FL 32610, USA
| |
Collapse
|
114
|
Ferri F, Bouzinba-Segard H, Velasco G, Hubé F, Francastel C. Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 2009; 37:5071-80. [PMID: 19542185 PMCID: PMC2731909 DOI: 10.1093/nar/gkp529] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere. Consistent with this, we describe that murine minor satellite RNA are components of CENP-A-associated centromeric fractions and associate with proteins of the chromosomal passenger complex Aurora B and Survivin at the onset of mitosis. Interactions of endogenous Aurora B with CENP-A and Survivin are sensitive to RNaseA. Likewise, the kinase activity of Aurora B requires an RNA component. More importantly, Aurora B kinase activity can be potentiated by minor satellite RNA. In addition, decreased Aurora B activity after RNA depletion can be specifically rescued by restitution of these transcripts. Together, our data provide new functional evidence for minor satellite transcripts as key partners and regulators of the mitotic kinase Aurora B.
Collapse
Affiliation(s)
| | | | | | | | - Claire Francastel
- *To whom correspondence should be addressed. Tel: +33 1 57 27 89 18; Fax: +33 1 57 27 89 11;
| |
Collapse
|
115
|
Abstract
Centromeres are the discrete sites of spindle microtubule attachment on chromosomes during mitosis and meiosis in all eukaryotes. These highly specialized chromatin structures typically occupy the same site for thousands of generations, yet the mechanism by which centromeres are established, maintained, and function remain a mystery. In metazoans, centromeric DNA sequence has proven not to be the key determinant of centromeric identity; therefore, centromeres are thought to be epigenetically specified by their specialized chromatin structure. In all eukaryotes, the centromere-specific histone H3 variant CenH3 replaces canonical H3 within nucleosomes at centric chromatin. This specialized nucleosome is the building block upon which all other centromere-associated proteins depend. This review highlights exciting new findings that have resulted in a paradigm shift in our understanding of CenH3 assembly into centromeric chromatin, CenH3 nucleosomal structure, CenH3 chromatin folding, the contribution of these factors to centromeric identity, and finally, the intimate role cell-cycle-regulated transcription and pericentric heterochromatin play in the maintenance and integrity of centromeres.
Collapse
Affiliation(s)
- Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms Unit, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
116
|
Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 2009; 10:192-206. [PMID: 19234478 DOI: 10.1038/nrm2640] [Citation(s) in RCA: 574] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies that concern the mechanism of DNA replication have provided a major framework for understanding genetic transmission through multiple cell cycles. Recent work has begun to gain insight into possible means to ensure the stable transmission of information beyond just DNA, and has led to the concept of epigenetic inheritance. Considering chromatin-based information, key candidates have arisen as epigenetic marks, including DNA and histone modifications, histone variants, non-histone chromatin proteins, nuclear RNA as well as higher-order chromatin organization. Understanding the dynamics and stability of these marks through the cell cycle is crucial in maintaining a given chromatin state.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR218 Centre National de la Recherche Scientifique/Institut Curie, 26, rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
117
|
Abstract
Heterochromatin is dynamically regulated during the cell cycle and in response to developmental signals. Recent findings from diverse systems suggest an extensive role for transcription in the assembly of heterochromatin, highlighting the emerging theme that transcription and noncoding RNAs can provide the initial scaffold for the formation of heterochromatin, which serves as a versatile recruiting platform for diverse factors involved in many cellular processes.
Collapse
Affiliation(s)
- Hugh P Cam
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
118
|
Gilbert DM. [Establishment of spatial and temporal program for mammalian chromosome replication]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2009; 54:320-326. [PMID: 21089470 PMCID: PMC3057877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has been 55 years since the elucidation of the structure of DNA, suggesting an elegantly simple means for its self-replication. Who would have dreamed in 1953 that it would take longer for us to understand DNA replication than it would for us to uncover the basic rules of animal development? Without question, the mechanisms regulating where and when DNA replication initiates in the cells of our own body is the greatest remaining fundamental mystery in molecular biology. Cis-acting sequences that function as replication origins in mammalian cells have not been identified and the mechanisms that regulate where and when origins will fire during S-phase remain elusive. Indeed, the problem has been so difficult that most researchers move on to more lucrative fields. In this essay, I will summarize my laboratory's humble attempts to make some progress in this area. In doing so, I hope that I can inspire a few young scientists to breath fresh energy into this challenging field.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, USA.
| |
Collapse
|
119
|
Ugarković DI. Centromere-competent DNA: structure and evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:53-76. [PMID: 19521812 DOI: 10.1007/978-3-642-00182-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although extant data favour centromere being an epigenetic structure, it is also clear that centromere formation is based on DNA, in particular, tandemly repeated satellite DNA and its transcripts. Presence of conserved structural motifs within satellite DNAs such as periodically distributed AT tracts, protein binding sites, or promoter elements indicate that despite sequence flexibility, there are structural determinants that are prerequisite for centromere function. In addition, existence of functional centromeric DNA transcripts indicates possible importance of structural elements at the level of RNA secondary or tertiary structure. Rapid centromere evolution is explained by homologous recombination followed by extrachromosomal rolling circle replication. This could lead to amplification of different satellite sequences within a genome. However, only those satellites that have inherent centromere-competence in the form of structural requirements necessary for centromere function are after amplification fixed in a population as a new centromere.
Collapse
Affiliation(s)
- Durd Ica Ugarković
- Department of Molecular Biology, Rud er Bosković Institute, Bijenicka 54, HR-10002, Zagreb, Croatia.
| |
Collapse
|
120
|
Papait R, Magrassi L, Rigamonti D, Cattaneo E. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells. Biochem Biophys Res Commun 2008; 379:434-9. [PMID: 19116135 DOI: 10.1016/j.bbrc.2008.12.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/16/2008] [Indexed: 11/29/2022]
Abstract
Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Here we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1alpha bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.
Collapse
Affiliation(s)
- Roberto Papait
- Dialectica s.r.l V.le Pasteur 10, 20014 Nerviano, Milan, Italy
| | | | | | | |
Collapse
|
121
|
Utani KI, Shimizu N. How transcription proceeds in a large artificial heterochromatin in human cells. Nucleic Acids Res 2008; 37:393-404. [PMID: 19043073 PMCID: PMC2632932 DOI: 10.1093/nar/gkn970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heterochromatin is critical for genome integrity, and recent studies have suggested the importance of transcription in heterochromatin for maintaining its silent state. We previously developed a method to generate a large homogeneously staining region (HSR) composed of tandem plasmid sequences in human cells that showed typical heterochromatin characteristics. In this study, we examined transcription in the HSR. We found that transcription of genes downstream to no-inducible SRα promoter was restricted to a few specific points inside the large HSR domain. Furthermore, the HSR localized to either to the surface or to the interior of the nucleolus, where it was more actively transcribed. The perinucleolar or intranucleolar locations were biased to late or early S-phase, and the location depended on either RNA polymerase II/III or I transcription, respectively. Strong activation of the inducible TRE promoter resulted in the reversible loosening of the HSR domain and the appearance of transcripts downstream of not only the TRE promoters, but also the SRα promoters. During this process, detection of HP1α or H3K9Me3 suggested that transcription was activated at many specific points dispersed inside large heterochromatin. The transcriptional rules obtained from studying artificial heterochromatin should be useful for understanding natural heterochromatin.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521, Japan
| | | |
Collapse
|
122
|
Bühler M. RNA turnover and chromatin-dependent gene silencing. Chromosoma 2008; 118:141-51. [DOI: 10.1007/s00412-008-0195-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/31/2022]
|
123
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|
124
|
Lu J, Gilbert DM. Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence? Cell Cycle 2008; 7:1907-10. [PMID: 18604169 DOI: 10.4161/cc.7.13.6206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although it is tempting to speculate that the transcription-dependent heterochromatin assembly pathway found in fission yeast may operate in higher mammals, transcription of heterochromatin has been difficult to substantiate in mammalian cells. We recently demonstrated that transcription from the mouse pericentric heterochromatin major (gamma) satellite repeats is under cell cycle control, being sharply downregulated at the metaphase to anaphase transition and resuming in late G(1)-phase dependent upon passage through the restriction point. The highest rates of transcription were in early S-phase and again in mitosis with different RNA products detected at each of these times.(1) Importantly, differences in the percentage of cells in G(1)-phase can account for past discrepancies in the detection of major satellite transcripts and suggest that pericentric heterochromatin transcription takes place in all proliferating mammalian cells. A similar cell cycle regulation of heterochromatin transcription has now been shown in fission yeast,(2,3) providing further support for a conserved mechanism. However, there are still fundamental differences between these two systems that preclude the identification of a functional or mechanistic link.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | | |
Collapse
|
125
|
PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 2008; 40:411-20. [PMID: 18311137 DOI: 10.1038/ng.99] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/22/2008] [Indexed: 01/20/2023]
Abstract
In eukaryotes, Suv39h H3K9 trimethyltransferases are required for pericentric heterochromatin formation and function. In early mouse preimplantation embryos, however, paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and downstream marks. Here we demonstrate Ezh2-independent targeting of maternally provided polycomb repressive complex 1 (PRC1) components to paternal heterochromatin. In Suv39h2 maternally deficient zygotes, PRC1 also associates with maternal heterochromatin lacking H3K9me3, thereby revealing hierarchy between repressive pathways. In Rnf2 maternally deficient zygotes, the PRC1 complex is disrupted, and levels of pericentric major satellite transcripts are increased at the paternal but not the maternal genome. We conclude that in early embryos, Suv39h-mediated H3K9me3 constitutes the dominant maternal transgenerational signal for pericentric heterochromatin formation. In absence of this signal, PRC1 functions as the default repressive back-up mechanism. Parental epigenetic asymmetry, also observed along cleavage chromosomes, is resolved by the end of the 8-cell stage--concurrent with blastomere polarization--marking the end of the maternal-to-embryonic transition.
Collapse
|
126
|
Pezer Z, Ugarković D. RNA Pol II promotes transcription of centromeric satellite DNA in beetles. PLoS One 2008; 3:e1594. [PMID: 18270581 PMCID: PMC2220036 DOI: 10.1371/journal.pone.0001594] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/17/2008] [Indexed: 12/04/2022] Open
Abstract
Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera). This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80%) are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A) tails in a portion of the transcripts indicate RNA polymerase II–dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.
Collapse
Affiliation(s)
- Zeljka Pezer
- Department of Molecular Biology, Ruder Bosković Institute, Zagreb, Croatia
| | | |
Collapse
|