101
|
Patarroyo ME, Salazar LM, Cifuentes G, Lozano JM, Delgado G, Rivera Z, Rosas J, Vargas LE. Protective cellular immunity against P. falciparum malaria merozoites is associated with a different P7 and P8 residue orientation in the MHC–peptide–TCR complex. Biochimie 2006; 88:219-30. [PMID: 16126320 DOI: 10.1016/j.biochi.2005.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/19/2022]
Abstract
Developing a logical and rational methodology for obtaining vaccines, especially against the main parasite causing human malaria (P. falciparum), consists of blocking receptor-ligand interactions. Conserved peptides derived from proteins involved in invasion and having high red blood cell binding ability have thus been identified. Immunization studies using Aotus monkeys have revealed that these peptides were neither immunogenic nor protection inducing. When modified in their critical binding residues, previously identified by Glycine scanning, some of these peptides were immunogenic and non-protection inducers; others induced short-lived antibodies whilst a few were both immunogenic and protection inducing. However, very few of these modified high activity binding peptides (HABPs) reproducibly induced protection without inducing antibody production, but with high cytokine liberation, suggesting that cellular mechanisms had been activated in the protection process. The three-dimensional structure of these peptides inducing protection without producing antibodies was determined by 1H-NMR. Their HLA-DRbeta1* molecule binding ability was also determined to ascertain association between their 3D structure and ability to bind to Major Histocompatibility Complex Class-II molecules (MHC-II). 1H Nuclear Magnetic Resonance analysis and structure calculations clearly showed that these modified HABPs inducing protective cellular immune responses (but not producing antibodies against malaria) adopted special structural configuration to fit into the MHC II-peptide-TCR complex. A different orientation for P7 and P8 TCR contacting residues was clearly recognized when comparing their structure with modified peptides, which induced high antibody titers and protection, suggesting that these residues are involved in activating the immune system associated with antibody production and protection.
Collapse
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No., 26-00 Bogotá, Colombia; Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Achtman AH, Bull PC, Stephens R, Langhorne J. Longevity of the Immune Response and Memory to Blood-Stage Malaria Infection. Curr Top Microbiol Immunol 2005; 297:71-102. [PMID: 16265903 DOI: 10.1007/3-540-29967-x_3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunity to malaria develops slowly with protection against the parasite lagging behind protection against disease symptoms. The data on the longevity of protective immune responses are sparse. However, studies of antibody responses associated with protection reveal that they consist of a short- and a long-lived component. Compared with the antibody levels observed in other infection and immunization systems, the levels of the short-lived antibody compartment drop below the detectable threshold with unusual rapidity. The prevalence of long-lived antibodies is comparable to that seen after bacterial and protozoan infections. There is even less available data concerning T cell longevity in malaria infection, but what there is seems to indicate that T cell memory is short in the absence of persistent antigen. In general, the degree and duration of parasite persistence represent a major factor determining how immune response longevity and protection correlate. The predilection for short-lived immune responses in malaria infection could be caused by a number of mechanisms resulting from the interplay of normal regulatory mechanisms of the immune system and immune evasion by the parasite. In conclusion, it appears that the parasite-host relationship has developed to favor some short-lived responses, which allow the host to survive while allowing the parasite to persist. Anti-malarial immune responses present a complex picture, and many aspects of regulation and longevity of the response require further research.
Collapse
Affiliation(s)
- A H Achtman
- Molecular Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
103
|
Wykes MN, Zhou YH, Liu XQ, Good MF. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:2510-6. [PMID: 16081823 DOI: 10.4049/jimmunol.175.4.2510] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malaria is a serious cause of morbidity and mortality for people living in endemic areas, but unlike many other infections, individuals exposed to the parasite do not rapidly become resistant to subsequent infections. High titers of Ab against the 19-kDa C-terminal fragment of the merozoite surface protein-1 can mediate complete protection in model systems; however, previous studies had not determined whether this vaccine generated long-term protection. In this study, we report that functional memory cells generated by merozoite surface protein-1, per se, do not offer any protection. This is because the parasite induces deletion of vaccine-specific memory B cells as well as long-lived plasma cells including those specific for bystander immune responses. Our study demonstrates a novel mechanism by which Plasmodium ablates immunological memory of vaccines, which would leave the host immuno-compromised.
Collapse
Affiliation(s)
- Michelle N Wykes
- Molecular Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
104
|
Abstract
Since malaria continues to account for millions of deaths annually in endemic regions, the development of an effective vaccine remains highly desirable. The life cycle of malaria poses a number of challenges to the immune response since phases of the cycle express varying antigen profiles and have different locations, thus requiring differing antigenic targets and effector mechanisms. To confer sterile immunity, a vaccine would have to target the pre-erythrocytic stages of infection. Since at this stage the parasite is hidden within liver cells, the host defence predominantly requires cell-mediated immunity, chiefly T cells, to eliminate infected hepatocytes. The development of such vaccines has progressed from irradiated sporozoites, through recombinant proteins, to recombinant DNA and viral vectors. Some of the experimental vaccination regimens that explore various combinations of vaccines for priming and boosting, together with numbers of vaccinations, interval between them, and the vaccination site, are revealing strong immunogenicity and evidence of efficacy in human challenge studies and in field trials. Such approaches should lead to deployable vaccines that protect against malarial disease.
Collapse
Affiliation(s)
- Stephen M Todryk
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
| | | |
Collapse
|
105
|
Good MF, Xu H, Wykes M, Engwerda CR. DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annu Rev Immunol 2005; 23:69-99. [PMID: 15771566 DOI: 10.1146/annurev.immunol.23.021704.115638] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune response to the malaria parasite is complex and poorly understood. Although antibodies and T cells can control parasite growth in model systems, natural immunity to malaria in regions of high endemicity takes several years to develop. Variation and polymorphism of antibody target antigens are known to impede immune responses, but these factors alone cannot account for the slow acquisition of immunity. In human and animal model systems, cell-mediated responses can control parasite growth effectively, but such responses are regulated by parasite load via direct effects on dendritic cells and possibly on T and B cells as well. Furthermore, high parasite load is associated with pathology, and cell-mediated responses may also harm the host. Inflammatory cytokines have been implicated in the pathogenesis of cerebral malaria, anemia, weight loss, and respiratory distress in malaria. Immunity without pathology requires rapid parasite clearance, effective regulation of the inflammatory anti-parasite effects of cellular responses, and the eventual development of a repertoire of antibodies effective against multiple strains. Data suggest that this may be hastened by exposure to malaria antigens in low dose, leading to augmented cellular immunity and rapid parasite clearance.
Collapse
Affiliation(s)
- Michael F Good
- The Queensland Institute of Medical Research, Brisbane, 4029, Australia.
| | | | | | | |
Collapse
|
106
|
Elliott SR, Kuns RD, Good MF. Heterologous immunity in the absence of variant-specific antibodies after exposure to subpatent infection with blood-stage malaria. Infect Immun 2005; 73:2478-85. [PMID: 15784594 PMCID: PMC1087398 DOI: 10.1128/iai.73.4.2478-2485.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/23/2004] [Accepted: 12/03/2004] [Indexed: 11/20/2022] Open
Abstract
We examined immunity induced by subpatent blood-stage malaria (undetectable by microscopy) using the rodent malaria parasite, Plasmodium chabaudi chabaudi, postulating that limited infection may allow expansion of antigen-specific T cells that are normally deleted by apoptosis. After three infections drug cured at 48 h, mice were protected against high-dose challenge with homologous or heterologous parasites (different strain or variant). Immunity differed from that generated by three untreated, patent infections. Subpatently infected mice lacked immunoglobulin G (IgG) to variant surface antigens, despite producing similar titers of total malaria-specific IgG to those produced by patently infected mice, including antibodies specific for merozoite surface antigens conserved between heterologous strains. Antigen-specific proliferation of splenocytes harvested prechallenge was significantly higher in subpatently infected mice than in patently infected or naive mice. In subpatently infected mice, lymphoproliferation was similar in response to homologous and heterologous parasites, suggesting that antigenic targets of cell-mediated immunity were conserved. A Th1 cytokine response was evident during challenge. Apoptosis of CD4+ and CD8+ splenic lymphocytes occurred during patent but not subpatent infection, suggesting a reason for the relative prominence of cell-mediated immunity after subpatent infection. In conclusion, subpatent infection with blood stage malaria parasites induced protective immunity, which differed from that induced by patent infection and targeted conserved antigens. These findings suggest that alternative vaccine strategies based on delivery of multiple parasite antigens at low dose may induce effective immunity targeting conserved determinants.
Collapse
Affiliation(s)
- Salenna R Elliott
- The Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Queensland, Australia
| | | | | |
Collapse
|
107
|
Abstract
Advances in immune visualization have enabled the physical tracking of immune responses in vivo. The adaptation of such technology to models of infectious disease holds the promise of a more detailed analysis of host-pathogen interactions in a natural setting. However, the visualization of pathogen-specific immune responses in vivo confronts challenges that are inherent to the study of infectious disease systems. Recent attempts to track pathogen-specific immune responses in vivo validate the usefulness and underline the complexity of this experimental strategy.
Collapse
Affiliation(s)
- Aparna Srinivasan
- Department of Medicine, Division of Immunology, University of Connecticut Health Center, Farmington, CT 06030-1319, USA
| | | |
Collapse
|
108
|
Pearl JE, Khader SA, Solache A, Gilmartin L, Ghilardi N, deSauvage F, Cooper AM. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. THE JOURNAL OF IMMUNOLOGY 2005; 173:7490-6. [PMID: 15585875 DOI: 10.4049/jimmunol.173.12.7490] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resistance to tuberculosis (TB) is dependent on the induction of Ag-specific CD4 Th1 T cells capable of expressing IFN-gamma. Generation of these T cells is dependent upon IL-12p70, yet other cytokines have also been implicated in this process. One such cytokine, IL-27, augments differentiation of naive T cells toward an IFN-gamma-producing phenotype by up-regulating the transcription factor T-bet and promoting expression of the IL-12Rbeta2 chain allowing T cells to respond to IL-12p70. We show that the components of IL-27 are induced during TB and that the absence of IL-27 signaling results in an altered disease profile. In the absence of the IL-27R, there is reduced bacterial burden and an increased lymphocytic character to the TB granuloma. Although the number of Ag-specific CD4 IFN-gamma-producing cells is unaffected by the absence of the IL-27R, there is a significant decrease in the level of mRNA for IFN-gamma and T-bet within the lungs of infected IL-27R(-/-) mice. Ag-specific CD4 T cells in the lungs of IL-27R(-/-) also produce less IFN-gamma protein per cell. The data show that expression of IL-27 during TB is detrimental to the control of bacteria and that although it does not affect the number of cells capable of producing IFN-gamma it does reduce the ability of CD4 T cells to produce large amounts of IFN-gamma. Because IFN-gamma is detrimental to the survival of effector T cells, we hypothesize that the reduced IFN-gamma within the IL-27R(-/-) lung is responsible for the increased accumulation of lymphocytes within the mycobacterial granuloma.
Collapse
MESH Headings
- Aerosols
- Animals
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Female
- Glycoproteins/biosynthesis
- Granuloma/genetics
- Granuloma/immunology
- Granuloma/pathology
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukins/biosynthesis
- Interleukins/deficiency
- Interleukins/genetics
- Interleukins/physiology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Minor Histocompatibility Antigens
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Protein Subunits/biosynthesis
- Protein Subunits/deficiency
- Protein Subunits/genetics
- RNA, Messenger/antagonists & inhibitors
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Receptors, Cytokine/physiology
- Receptors, Interleukin
- Signal Transduction/genetics
- Signal Transduction/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
- John E Pearl
- Trudeau Institute, Inc., Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Good MF, Stanisic D, Xu H, Elliott S, Wykes M. The immunological challenge to developing a vaccine to the blood stages of malaria parasites. Immunol Rev 2004; 201:254-67. [PMID: 15361246 DOI: 10.1111/j.0105-2896.2004.00178.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-one years after malaria antigens were first cloned, a vaccine still appears to be a long way off. There have been periods of great excitement, and in model systems, subunit vaccine homologs can induce robust protection. However, significant challenges exist concerning antigenic variation and polymorphism, immunological non-responsiveness to individual vaccine antigens, parasite-induced apoptosis of immune effector and memory cells, and immune deviation as a result of maternal immunity and alterations of dendritic cell function. Novel approaches will be required. This review addresses some of the approaches that might present malaria antigens in a way designed to induce superior immune responses or that target novel conserved epitopes. Cell-mediated immunity, acting independently of antibody, may exert potent anti-parasite effects, and identification of multiple target antigens/epitopes could lead to the development of vaccines with profound efficacy.
Collapse
Affiliation(s)
- Michael F Good
- Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
110
|
Affiliation(s)
- Eric R James
- Department of Ophthalmology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| | | |
Collapse
|
111
|
Mahanty S, Saul A, Miller LH. Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J Exp Biol 2003; 206:3781-8. [PMID: 14506213 DOI: 10.1242/jeb.00646] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe use of asexual blood-stage proteins as malaria vaccines is strongly supported by experimental data directly implicating antibodies induced by these antigens in parasite clearance and protection from re-challenge. The selection of blood-stage antigens is based on their ability to interfere with the pathogenesis of clinical malaria by reducing parasitemias. These vaccines could complement other vaccines aimed at preventing infection, such as those targeted at pre-erythrocytic or mosquito stages of the parasite. Asexual blood-stage vaccines may reduce disease by blockade of red blood cell invasion, inhibition of parasite growth in red cells or interference in cytoadherence of infected red cells. Clearance of blood-stage parasites is dependent primarily on antibody-mediated mechanisms, but CD4 T cells may also play an important role in help for B cells and probably have a direct effector function in the clearance of blood-stage parasites. Since asexual blood-stage parasites reside within erythrocytes, they are accessible to immune clearance mechanisms only for a short time, which imposes special requirements on vaccines. For example, immunity that induces high titers of antibody will be required. Antigenic variation and extensive polymorphism of malarial proteins also needs to be addressed. Several recombinant antigens derived from blood-stage proteins have moved beyond basic research and are now poised for phase I trials in endemic countries. In this review we discuss the state of asexual blood-stage vaccines, focusing on recombinant antigens from Plasmodium falciparum. The significance of polymorphism and antigenic variation, the relevance of parasite immune evasion mechanisms, the need for reliable measures of successful intervention and new adjuvants are reviewed. Results from trials of asexual blood stage vaccine that support the continued effort to develop these antigens as key ingredients of multicomponent,multistage malaria vaccines are documented.
Collapse
Affiliation(s)
- Siddhartha Mahanty
- Malaria Vaccine Development Unit, NIAID, NIH, Twin Brook I, 5640 Fishers Lane, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
112
|
Jiang J, Lau LL, Shen H. Selective Depletion of Nonspecific T Cells During the Early Stage of Immune Responses to Infection. THE JOURNAL OF IMMUNOLOGY 2003; 171:4352-8. [PMID: 14530360 DOI: 10.4049/jimmunol.171.8.4352] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transient T cell depletion occurs before the development of an effective immune response to infection. In this study we show that most T cells, regardless of specificity, are induced to express early activation markers soon after infection with Listeria monocytogenes or lymphocytic choriomeningitis virus. Ag-specific T cells are further activated to display late activation markers and undergo extensive proliferation. As Ag-specific T cells begin to expand, nonspecific T cells are depleted en masse and exhibit no sign of further activation or proliferation before their depletion. This selective depletion of nonspecific T cells is due to in situ death via apoptosis, as visualized by confocal microscopy. Thus, early activation and subsequent depletion of nonspecific T cells are integral parts of the immune response to proinflammatory infections. These results have important implications for our understanding of early events in the development of a robust T cell response.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | |
Collapse
|
113
|
Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 2003; 4:835-42. [PMID: 12942084 DOI: 10.1038/ni969] [Citation(s) in RCA: 631] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Naive CD4+ and CD8+ T cells undergo unique developmental programs after activation, resulting in the generation of effector and long-lived memory T cells. Recent evidence indicates that both cell-intrinsic and cell-extrinsic factors regulate memory T cell differentiation. This review compares and contrasts how naive CD4+ and CD8+ T cells make the transition to effector and/or memory cells and discusses the implications of these findings for vaccine development.
Collapse
Affiliation(s)
- Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3005, USA.
| | | |
Collapse
|
114
|
Makobongo MO, Riding G, Xu H, Hirunpetcharat C, Keough D, de Jersey J, Willadsen P, Good MF. The purine salvage enzyme hypoxanthine guanine xanthine phosphoribosyl transferase is a major target antigen for cell-mediated immunity to malaria. Proc Natl Acad Sci U S A 2003; 100:2628-33. [PMID: 12594331 PMCID: PMC151391 DOI: 10.1073/pnas.0337629100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 12/13/2002] [Indexed: 11/18/2022] Open
Abstract
Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4(+) T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-alpha, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.
Collapse
Affiliation(s)
- Morris O Makobongo
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane 4029, Australia
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Stowers AW, Kennedy MC, Keegan BP, Saul A, Long CA, Miller LH. Vaccination of monkeys with recombinant Plasmodium falciparum apical membrane antigen 1 confers protection against blood-stage malaria. Infect Immun 2002; 70:6961-7. [PMID: 12438375 PMCID: PMC133036 DOI: 10.1128/iai.70.12.6961-6967.2002] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge facing malaria vaccine development programs is identifying efficacious combinations of antigens. To date, merozoite surface protein 1 (MSP1) is regarded as the leading asexual vaccine candidate. Apical membrane antigen 1 (AMA1) has been identified as another leading candidate for an asexual malaria vaccine, but without any direct in vivo evidence that a recombinant form of Plasmodium falciparum AMA1 would have efficacy. We evaluated the efficacy of a form of P. falciparum AMA1, produced in Pichia pastoris, by vaccinating Aotus vociferans monkeys and then challenging them with P. falciparum parasites. Significant protection from this otherwise lethal challenge with P. falciparum was observed. Five of six animals had delayed patency; two of these remained subpatent for the course of the infection, and two controlled parasite growth at <0.75% of red blood cells parasitized. The protection induced by AMA1 was superior to that obtained with a form of MSP1 used in the same trial. The protection induced by a combination vaccine of AMA1 and MSP1 was not superior to the protection obtained with AMA1 alone, although the immunity generated appeared to operate against both vaccine components.
Collapse
Affiliation(s)
- Anthony W Stowers
- Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | | | | | | | | | |
Collapse
|
116
|
O'Connor RA, Devaney E. Nitric oxide limits the expansion of antigen-specific T cells in mice infected with the microfilariae of Brugia pahangi. Infect Immun 2002; 70:5997-6004. [PMID: 12379675 PMCID: PMC130375 DOI: 10.1128/iai.70.11.5997-6004.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 06/29/2002] [Accepted: 07/27/2002] [Indexed: 11/20/2022] Open
Abstract
Infection of BALB/c mice with the microfilariae (Mf) of the filarial nematode Brugia pahangi results in an antigen-specific proliferative defect that is induced by high levels of NO. Using carboxyfluorescein diacetate succinimydl ester and cell surface labeling, it was possible to identify a population of antigen-specific T cells from Mf-infected BALB/c mice that expressed particularly high levels of CD4 (CD4(hi)). These cells proliferated in culture only when inducible NO synthase was inhibited and accounted for almost all of the antigen-specific proliferative response under those conditions. CD4(hi) cells also expressed high levels of CD44, consistent with their status as activated T cells. A similar population of CD4(hi) cells was observed in cultures from Mf-infected gamma interferon receptor knockout (IFN-gammaR(-/-)) mice. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling staining revealed that the CD4(+) T cells from Mf-infected wild-type mice were preferentially susceptible to apoptosis compared to CD4(+) T cells from IFN-gammaR(-/-) mice. These studies suggest that the expansion of antigen-specific T cells in Mf-infected mice is limited by NO.
Collapse
Affiliation(s)
- Richard A O'Connor
- Department of Veterinary Parasitology, University of Glasgow, Glasgow G61 1QH, Scotland
| | | |
Collapse
|
117
|
Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, Anderson K, Mahakunkijcharoen Y, Martin LB, Wilson D, Elliott S, Elliott S, Eisen DP, Weinberg JB, Saul A, Good MF. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 2002; 360:610-7. [PMID: 12241933 DOI: 10.1016/s0140-6736(02)09784-2] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The ability of T cells, acting independently of antibodies, to control malaria parasite growth in people has not been defined. If such was shown to be effective, an additional vaccine strategy could be pursued. Our aim was to ascertain whether or not development of cell-mediated immunity to Plasmodium falciparum blood-stage infection could be induced in human beings by exposure to malaria parasites in very low density. METHODS We enrolled five volunteers from the staff at our research institute who had never had malaria. We used a cryopreserved inoculum of red cells infected with P falciparum strain 3D7 to give them repeated subclinical infections of malaria that we then cured early with drugs, to induce cell-mediated immune responses. We tested for development of immunity by measurement of parasite concentrations in the blood of volunteers by PCR of the multicopy gene STEVOR and by following up the volunteers clinically, and by measuring antibody and cellular immune responses to the parasite. FINDINGS After challenge and a extended period without drug cure, volunteers were protected against malaria as indicated by absence of parasites or parasite DNA in the blood, and absence of clinical symptoms. Immunity was characterised by absence of detectable antibodies that bind the parasite or infected red cells, but by the presence of a proliferative T-cell response, involving CD4+ and CD8+ T cells, a cytokine response, consisting of interferon gamma but not interleukin 4 or interleukin 10, induction of high concentrations of nitric oxide synthase activity in peripheral blood mononuclear cells, and a drop in the number of peripheral natural killer T cells. INTERPRETATION People can be protected against the erythrocytic stage of malaria by a strong cell-mediated immune response, in the absence of detectable parasite-specific antibodies, suggesting an additional strategy for development of a malaria vaccine
Collapse
Affiliation(s)
- David J Pombo
- Queensland Institute of Medical Research, Australian Centre for International and Tropical Health and Nutrition, and Cooperative Research Centre for Vaccine Technology, PO Royal Brisbane Hospital, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|