101
|
Li MS, Liu Z, Liu JQ, Zhu X, Liu Z, Bai XF. The Yin and Yang aspects of IL-27 in induction of cancer-specific T-cell responses and immunotherapy. Immunotherapy 2015; 7:191-200. [PMID: 25713993 DOI: 10.2217/imt.14.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidences from animal studies have indicated that both endogenous and exogenous IL-27, an IL-12 family of cytokine, can increase antitumor T-cell activities and inhibit tumor growth. IL-27 can modulate Treg responses, and program effector T cells into a unique T-effector stem cell (TSEC) phenotype, which enhances T-cell survival in the tumor microenvironment. However, animal studies also suggest that IL-27 induces molecular pathways such as IL-10, PD-L1 and CD39, which may downregulate tumor-specific T-cell responses. In this review paper, we will discuss the Yin and Yang aspects of IL-27 in the induction of tumor-specific T-cell responses, and the potential impacts of these functions of IL-27 in the design of cancer immunotherapy.
Collapse
Affiliation(s)
- Ming-Song Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
102
|
Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, Harfuddin Z, Schwarz H. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology 2015; 5:e1113367. [PMID: 27141396 DOI: 10.1080/2162402x.2015.1113367] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022] Open
Abstract
CD137 is expressed on activated T cells and NK cells, among others, and is a potent co-stimulator of antitumor immune responses. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), and CD137L reverse signaling into APC enhances their activity. CD137-CD137L interactions as main driver of type 1, cell-mediated immune responses explains the puzzling observation that CD137 agonists which enhance antitumor immune responses also ameliorate autoimmune diseases. Upon co-stimulation by CD137, Th1 CD4+ T cells together with Tc1 CD8+ T cells and NK cells inhibit other T cell subsets, thereby promoting antitumor responses and mitigating non-type 1 auto-immune diseases.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Meihui Wu
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Sharalyn Abdullah
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Sakthi Rajendran
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Diana Ishak
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
103
|
Dong H, Franklin NA, Ritchea SB, Yagita H, Glennie MJ, Bullock TNJ. CD70 and IFN-1 selectively induce eomesodermin or T-bet and synergize to promote CD8+ T-cell responses. Eur J Immunol 2015; 45:3289-301. [PMID: 26461455 DOI: 10.1002/eji.201445291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 08/21/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
CD70-mediated stimulation of CD27 is an important cofactor of CD4(+) T-cell licensed dendritic cells (DCs). However, it is unclear how CD70-mediated stimulation of T cells is integrated with signals that emanate from signal 3 pathways, such as type-1 interferon (IFN-1) and IL-12. We find that while stimulation of CD27 in isolation drives weak Eomesodermin(hi) T-bet(lo) CD8(+) T-cell responses to OVA immunization, profound synergistic expansion is achieved by cotargeting TLR. This cooperativity can substantially boost antiviral CD8(+) T-cell responses during acute infection. Concomitant stimulation of TLR significantly increases per cell IFN-γ production and the proportion of the population with characteristics of short-lived effector cells, yet also promotes the ability to form long-lived memory. Notably, while IFN-1 contributes to the expression of CD70 on DCs, the synergy between CD27 and TLR stimulation is dependent upon IFN-1's effect directly on CD8(+) T cells, and is associated with the increased expression of T-bet in T cells. Surprisingly, we find that IL-12 fails to synergize with CD27 stimulation to promote CD8(+) T-cell expansion, despite its capacity to drive effector CD8(+) T-cell differentiation. Together, these data identify complex interactions between signal 3 and costimulatory pathways, and identify opportunities to influence the differentiation of CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Han Dong
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nathan A Franklin
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Shane B Ritchea
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Martin J Glennie
- Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton, UK
| | | |
Collapse
|
104
|
Abstract
Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8(+) T cell functions, and specialization of CD4(+) T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications.
Collapse
Affiliation(s)
- Elina I Zuniga
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Monica Macal
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Gavin M Lewis
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - James A Harker
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
105
|
Lupar E, Brack M, Garnier L, Laffont S, Rauch KS, Schachtrup K, Arnold SJ, Guéry JC, Izcue A. Eomesodermin Expression in CD4+ T Cells Restricts Peripheral Foxp3 Induction. THE JOURNAL OF IMMUNOLOGY 2015; 195:4742-52. [PMID: 26453746 DOI: 10.4049/jimmunol.1501159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
CD4(+) T cells polarize into effector Th subsets characterized by signature transcription factors and cytokines. Although T-bet drives Th1 responses and represses the alternative Th2, Th17, and Foxp3(+) regulatory T cell fates, the role of the T-bet-related transcription factor eomesodermin (Eomes) in CD4(+) T cells is less well understood. In this study, we analyze the expression and effects of Eomes in mouse CD4(+) T lymphocytes. We find that Eomes is readily expressed in activated CD4(+) Th1 T cells in vivo. Eomes(+) CD4(+) T cells accumulated in old mice, under lymphopenic conditions in a T cell transfer model of colitis, and upon oral Ag administration. However, despite its expression, genetic deletion of Eomes in CD4(+) T cells did not impact on IFN-γ production nor increase Th2 or Th17 responses. In contrast, Eomes deficiency favored the accumulation of Foxp3(+) cells in old mice, after in vivo differentiation of Eomes-deficient naive CD4(+) T cells, and in response to oral Ag in a cell-intrinsic way. Enforced Eomes expression during in vitro regulatory T cell induction also reduced Foxp3 transcription. Likewise, bystander Eomes-deficient CD4(+) T cells were more efficient at protecting from experimental autoimmune encephalitis compared with wild-type CD4(+) T cells. This enhanced capacity of Eomes-deficient CD4(+) T cells to inhibit EAE in trans was associated with an enhanced frequency of Foxp3(+) cells. Our data identify a novel role for Eomes in CD4(+) T cells and indicate that Eomes expression may act by limiting Foxp3 induction, which may contribute to the association of EOMES to susceptibility to multiple sclerosis.
Collapse
Affiliation(s)
- Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Maria Brack
- Max-Planck-Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany
| | - Laure Garnier
- INSERM, U1043, Toulouse, F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse, F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
| | - Sophie Laffont
- INSERM, U1043, Toulouse, F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse, F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
| | - Katharina S Rauch
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany
| | - Sebastian J Arnold
- University Medical Centre, Renal Department, Centre for Clinical Research, D-79106 Freiburg, Germany; BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, D-79104 Freiburg, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, D-79102 Freiburg, Germany
| | - Jean-Charles Guéry
- INSERM, U1043, Toulouse, F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse, F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, D-79106 Freiburg, Germany;
| |
Collapse
|
106
|
Eomesodermin-expressing T-helper cells are essential for chronic neuroinflammation. Nat Commun 2015; 6:8437. [PMID: 26436530 DOI: 10.1038/ncomms9437] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/09/2022] Open
Abstract
Development of acute experimental autoimmune encephalomyelitis (EAE) depends on Th17 cells expressing the nuclear factor NR4A2. However, in mice lacking NR4A2 in T cells, a late-onset disease is still inducible, despite a great reduction in acute inflammation. We here reveal that development of this late onset disease depends on cytotoxic T-cell-like CD4(+) T cells expressing the T-box transcription factor Eomesodermin (Eomes). T-cell-specific deletion of the Eomes gene remarkably ameliorates the late-onset EAE. Strikingly, similar Eomes(+) CD4(+) T cells are increased in the peripheral blood and cerebrospinal fluid from patients in a progressive state of multiple sclerosis. Collective data indicate an involvement of granzyme B and protease-activated receptor-1 in the neuroinflammation mediated by Eomes(+) CD4(+) T cells.
Collapse
|
107
|
Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci U S A 2015; 112:E5290-9. [PMID: 26351680 DOI: 10.1073/pnas.1514418112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15-19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV(+) TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8(+) versus regulatory FoxP3(+) T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies.
Collapse
|
108
|
Weist BJD, Wehler P, El Ahmad L, Schmueck-Henneresse M, Millward JM, Nienen M, Neumann AU, Reinke P, Babel N. A revised strategy for monitoring BKV-specific cellular immunity in kidney transplant patients. Kidney Int 2015. [PMID: 26221751 DOI: 10.1038/ki.2015.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactivation of Polyomavirus BKV is a severe complication in kidney transplant patients. Current treatment requires close monitoring, and modification of immunosuppressive drugs. As an important additional tool, the monitoring of BKV immunity has been based on detection of cytokine-secreting T cells upon BKV-antigen challenge. However, low frequent BKV-specific T cells are often barely detectable and their roles in BKV clearance remain unclear. Here, we analyzed the effects of immunosuppressive agents on BKV-specific T cells in vitro. Significant reductions in expression of several markers, and reduced killing functions upon treatment with calcineurin but not mTOR inhibitors were detected. However, effects of these drugs on expression of surface markers and GranzymeB were substantially less striking than effects on cytokine expression. Consequently, we applied a novel detection strategy for BKV-specific T cells in immunosuppressed kidney transplant patients using these more robust markers, and showed significantly improved sensitivity compared with the conventional IFNγ-based method. Using this strategy and 17-color flow cytometry, we found BKV-specific helper and cytolytic CD4+ T-cell subsets that differed in their memory phenotype, which corresponded with BKV clearance in kidney transplant patients. Thus, our results offer an improved detection strategy for BKV-specific T cells in kidney transplant patients, and shed light on the contributions of these cells to BKV clearance.
Collapse
Affiliation(s)
- Benjamin J D Weist
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany
| | - Patrizia Wehler
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany
| | - Linda El Ahmad
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany
| | | | - Jason M Millward
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany
| | - Mikalai Nienen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany
| | - Avidan U Neumann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany.,Department of Nephrology, Charité Universitätsmedizin Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Germany.,Medical Clinic I, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| |
Collapse
|
109
|
Ai M, Curran MA. Immune checkpoint combinations from mouse to man. Cancer Immunol Immunother 2015; 64:885-92. [PMID: 25555570 PMCID: PMC11028659 DOI: 10.1007/s00262-014-1650-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022]
Abstract
The discovery that antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte-associated protein 4 (CTLA-4) can restore tumor immunity against many murine transplantable tumors leading to complete rejection of established cancer forever changed the field of immunotherapy. In more robust murine models as well as human cancer, however, CTLA-4 blockade alone can slow tumor growth and extend patient survival, but is rarely curative. Subsequent studies have revealed a large family of T cell immune checkpoint receptors which tumors engage to shield themselves from host immunity. As with CTLA-4, blockade of one of these additional inhibitory receptors, programmed death 1, has led to remarkable therapeutic responses against tumors of multiple lineages. Checkpoint monotherapy has demonstrated that durable, immune-mediated cures of established metastatic cancers are possible, yet the percentage of patients experiencing these outcomes remains low due to both redundant mechanisms of immune suppression in the tumor and limiting toxicity associated with some therapies. Thus, extending the curative potential of immunotherapy to a larger percentage of patients with a broader spectrum of malignancies will likely require combinations of co-inhibitory blockade and co-stimulatory activation designed to peel back multiple layers of tumor immune suppression while at the same time minimizing immune-mediated toxicity. As over a dozen T cell immune checkpoints and an additional dozen more co-stimulatory receptors have now been described, the challenge before us is to identify the most advantageous combinations of these agents based on the knowledge of their underlying biology and preclinical studies in murine tumor models.
Collapse
Affiliation(s)
- Midan Ai
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit Number: 901, Houston, TX 77030 USA
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit Number: 901, Houston, TX 77030 USA
| |
Collapse
|
110
|
Verdeil G, Fuertes Marraco SA, Murray T, Speiser DE. From T cell "exhaustion" to anti-cancer immunity. Biochim Biophys Acta Rev Cancer 2015; 1865:49-57. [PMID: 26123831 DOI: 10.1016/j.bbcan.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.
Collapse
Affiliation(s)
- Grégory Verdeil
- Ludwig Cancer Research Center and Department of Oncology, Clinical Tumor Biology & Immunotherapy Group, Lausanne University Hospital Center (CHUV) and University of Lausanne, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - Silvia A Fuertes Marraco
- Ludwig Cancer Research Center and Department of Oncology, Clinical Tumor Biology & Immunotherapy Group, Lausanne University Hospital Center (CHUV) and University of Lausanne, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - Timothy Murray
- Ludwig Cancer Research Center and Department of Oncology, Clinical Tumor Biology & Immunotherapy Group, Lausanne University Hospital Center (CHUV) and University of Lausanne, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - Daniel E Speiser
- Ludwig Cancer Research Center and Department of Oncology, Clinical Tumor Biology & Immunotherapy Group, Lausanne University Hospital Center (CHUV) and University of Lausanne, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
111
|
Abstract
Research over the past decade has revealed the increasingly complex biologic features of the CD4(+) T-cell lineage. This T-cell subset, which was originally defined on the basis of helper activity in antibody responses, expresses receptors that recognize peptides that have been processed and presented by specialized antigen-presenting cells. At the core of the adaptive immune response, CD4 T cells display a large degree of plasticity and the ability to differentiate into multiple sublineages in response to developmental and environmental cues. These differentiated sublineages can orchestrate a broad range of effector activities during the initiation, expansion, and memory phase of an immune response. The contribution of CD4 cells to host defense against pathogenic invasion and regulation of autoimmunity is now well established. Emerging evidence suggests that CD4 cells also actively participate in shaping antitumor immunity. Here, we outline the biologic properties of CD4 T-cell subsets with an emphasis on their contribution to the antitumor response.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Authors' Affiliations: Department of Microbiology & Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
112
|
Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015; 5:117. [PMID: 26106583 PMCID: PMC4459101 DOI: 10.3389/fonc.2015.00117] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| |
Collapse
|
113
|
Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc Natl Acad Sci U S A 2015; 112:7551-6. [PMID: 26034288 DOI: 10.1073/pnas.1506357112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cancer immunotherapy is undergoing significant progress due to recent clinical successes by refined adoptive T-cell transfer and immunostimulatory monoclonal Ab (mAbs). B16F10-derived OVA-expressing mouse melanomas resist curative immunotherapy with either adoptive transfer of activated anti-OVA OT1 CTLs or agonist anti-CD137 (4-1BB) mAb. However, when acting in synergistic combination, these treatments consistently achieve tumor eradication. Tumor-infiltrating lymphocytes that accomplish tumor rejection exhibit enhanced effector functions in both transferred OT-1 and endogenous cytotoxic T lymphocytes (CTLs). This is consistent with higher levels of expression of eomesodermin in transferred and endogenous CTLs and with intravital live-cell two-photon microscopy evidence for more efficacious CTL-mediated tumor cell killing. Anti-CD137 mAb treatment resulted in prolonged intratumor persistence of the OT1 CTL-effector cells and improved function with focused and confined interaction kinetics of OT-1 CTL with target cells and increased apoptosis induction lasting up to six days postadoptive transfer. The synergy of adoptive T-cell therapy and agonist anti-CD137 mAb thus results from in vivo enhancement and sustainment of effector functions.
Collapse
|
114
|
Wang L, Liu JQ, Talebian F, Liu Z, Yu L, Bai XF. IL-10 enhances CTL-mediated tumor rejection by inhibiting highly suppressive CD4 + T cells and promoting CTL persistence in a murine model of plasmacytoma. Oncoimmunology 2015; 4:e1014232. [PMID: 26140236 DOI: 10.1080/2162402x.2015.1014232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 01/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine that regulates immune responses. IL-10 has also been shown to enhance antitumor CD8+ T-cell responses in tumor models although the underlying mechanisms are not fully understood. In this study, we used a series of genetic mouse models and the mouse plasmacytoma J558 model to investigate this issue. J558 tumors grew significantly faster in IL-10-/- mice than in wild type (WT) mice, but similarly in IL-10 -/- Rag2 -/- and Rag2 -/- mice. Tumors from IL-10 -/- mice contained fewer IFN-γ-producing CD8+ and CD4+ T cells than tumors from WT mice. Strikingly, depletion of total CD4+ T cells, but not CD25+ cells, resulted in tumor eradication in IL-10 -/- mice. Adoptive transfer studies revealed that CD4+ T cells from IL-10 -/- mice exhibited more potent suppression of cytotoxic T lymphocyte (CTL)-mediated tumor rejection than their WT counterparts, and IL-10-deficient tumor-infiltrating CD4+ T cells expressed higher levels of PD-L1 and CTLA-4 inhibitory molecules. Although IL-10-deficient CD8+ T cells are not defective in activation and initial rejection of tumors, adoptive transfer studies using IL-10-deficient P1CTL transgenic T cells that recognize the tumor rejection antigen P1A reveal that IL-10 is required for long-term persistence of CTLs and control of tumor growth. Thus, we have found that IL-10 enhances antitumor CTL responses by inhibiting highly suppressive CD4+ T cells and promoting CTL persistence. These data have important implications for the design of immunotherapy for human cancer.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Hematology; Chinese Navy General Hospital ; Beijing, China ; Department of Pathology and Comprehensive Cancer Center; The Ohio State University Medical Center ; Columbus, OH USA ; Department of Hematology; Chinese PLA General Hospital ; Beijing, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center; The Ohio State University Medical Center ; Columbus, OH USA
| | - Fatemeh Talebian
- Department of Pathology and Comprehensive Cancer Center; The Ohio State University Medical Center ; Columbus, OH USA
| | - Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center; The Ohio State University Medical Center ; Columbus, OH USA
| | - Li Yu
- Department of Hematology; Chinese PLA General Hospital ; Beijing, China
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center; The Ohio State University Medical Center ; Columbus, OH USA
| |
Collapse
|
115
|
Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia. J Virol 2015; 89:7494-505. [PMID: 25972560 DOI: 10.1128/jvi.00438-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are important for our understanding of HIV immunopathology.
Collapse
|
116
|
Affiliation(s)
- Hiroki Yoshida
- Department of Biomolecular Sciences, Division of Molecular and Cellular Immunoscience, Saga University Faculty of Medicine, Saga 849-8501, Japan;
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4539;
| |
Collapse
|
117
|
Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015; 36:265-76. [PMID: 25797516 DOI: 10.1016/j.it.2015.02.008] [Citation(s) in RCA: 797] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
Inhibitors of the Programmed Cell Death 1: Programmed Cell Death 1 ligand 1 (PD-1:PD-L1) pathway, a central regulator of T cell exhaustion, have been recently shown to be effective for treatment of different cancers. However, clinical responses are mixed, highlighting the need to better understand the mechanisms of action of PD-1:PD-L1, the role of this pathway in immunity to different tumors, and the molecular and cellular effects of PD-1 blockade. Here, we review the molecular regulation of T cell exhaustion, placing recent findings on PD-1 blockade therapies in cancer in the context of the broader understanding of the roles of the PD-1:PD-L1 pathway in T cell exhaustion during chronic infection. We discuss the current understanding of the mechanisms involved in reversing T cell exhaustion, and outline critical areas of focus for future research, both basic and clinical.
Collapse
Affiliation(s)
- Kristen E Pauken
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
118
|
Kobayashi T, Doff BL, Rearden RC, Leggatt GR, Mattarollo SR. NKT cell-targeted vaccination plus anti-4-1BB antibody generates persistent CD8 T cell immunity against B cell lymphoma. Oncoimmunology 2015; 4:e990793. [PMID: 25949907 PMCID: PMC4404843 DOI: 10.4161/2162402x.2014.990793] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 12/28/2022] Open
Abstract
Harnessing the immune adjuvant properties of natural killer T (NKT) cells is an effective strategy to generate anticancer immunity. The objective of this study was to increase the potency and durability of vaccine-induced immunity against B cell lymphoma by combining α-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with an agonistic antibody targeting the immune checkpoint molecule 4–1BB (CD137). We observed potent synergy when combining vaccination and anti-4–1BB antibody treatment resulting in significantly enhanced survival of mice harboring Eμ-myc tumors, including complete eradication of lymphoma in over 50% of mice. Tumor-free survival required interferon γ (IFNγ)-dependent expansion of CD8+ T cells and was associated with 4–1BB-mediated differentiation of KLRG1+ effector CD8+ T cells. 'Cured' mice were also resistant to lymphoma re-challenge 80 days later indicating successful generation of immunological memory. Overall, our results demonstrate that therapeutic anticancer vaccination against B cell lymphoma using an NKT cell ligand can be boosted by subsequent co-stimulation through 4–1BB leading to a sustainable immune response that may enhance outcomes to conventional treatment.
Collapse
Affiliation(s)
- Takumi Kobayashi
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Brianna L Doff
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Rory C Rearden
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| |
Collapse
|
119
|
Differential effects of agonistic 4-1BB (CD137) monoclonal antibody on the maturation and functions of hypoxic dendritic cells. Int Immunopharmacol 2014; 23:609-16. [PMID: 25466269 DOI: 10.1016/j.intimp.2014.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022]
Abstract
Agonistic 4-1BB monoclonal antibody (mAb), a promising approach for tumor immunotherapy, has entered clinical trials for some tumors due to its immunostimulatory effects on immune cells. Hypoxia, the hallmark of tumor microenvironment, influences functions of immune cells including dendritic cells (DCs). It remains unestablished whether 4-1BB mAb takes effects on DCs in hypoxic microenvironment. This study aims to examine the role of agonistic 4-1BB mAb in the maturation and functions of murine hypoxic DCs. As expected, hypoxia suppressed the maturation and activation of DCs, as suggested by down-regulation of class II MHC, co-stimulatory molecules and proinflammatory cytokines. These inhibitory effects of hypoxia were partially reversed by triggering 4-1BB on DCs with agonistic mAb, as evidenced by elevated co-stimulatory molecules CD80, CD86, and proinflammatory cytokines such as IL-6, TNF-α. Unexpectedly, the ability of hypoxic DCs to stimulate CD4+T cell proliferation seemed not to be affected by agonistic 4-1BB mAb. These data demonstrate that agonistic 4-1BB mAb partially restores the phenotypic maturation and proinflammatory function of hypoxic DCs, but fails to rescue their ability to stimulate T cell response. Collectively, our study provides evidence on the efficiency of agonistic 4-1BB mAb in hypoxic microenvironment, deserving of further consideration for clinic application.
Collapse
|
120
|
Chen S, Lee LF, Fisher TS, Jessen B, Elliott M, Evering W, Logronio K, Tu GH, Tsaparikos K, Li X, Wang H, Ying C, Xiong M, VanArsdale T, Lin JC. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 2014; 3:149-60. [PMID: 25387892 DOI: 10.1158/2326-6066.cir-14-0118] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunotherapies targeting the programmed death 1 (PD-1) coinhibitory receptor have shown great promise for a subset of patients with cancer. However, robust and safe combination therapies are still needed to bring the benefit of cancer immunotherapy to broader patient populations. To search for an optimal strategy of combinatorial immunotherapy, we have compared the antitumor activity of the anti-4-1BB/anti-PD-1 combination with that of the anti-PD-1/anti-LAG-3 combination in the poorly immunogenic B16F10 melanoma model. Pronounced tumor inhibition occurred only in animals receiving anti-PD-1 and anti-4-1BB concomitantly, while combining anti-PD-1 with anti-LAG-3 led to a modest degree of tumor suppression. The activity of the anti-4-1BB/anti-PD-1 combination was dependent on IFNγ and CD8(+) T cells. Both 4-1BB and PD-1 proteins were elevated on the surface of CD8(+) T cells by anti-4-1BB/anti-PD-1 cotreatment. In the tumor microenvironment, an effective antitumor immune response was induced as indicated by the increased CD8(+)/Treg ratio and the enrichment of genes such as Cd3e, Cd8a, Ifng, and Eomes. In the spleen, the combination treatment shaped the immune system to an effector/memory phenotype and increased the overall activity of tumor-specific CD8(+) CTLs, reflecting a long-lasting systemic antitumor response. Furthermore, combination treatment in C57BL/6 mice showed no additional safety signals, and only minimally increased severity of the known toxicity relative to 4-1BB agonist alone. Therefore, in the absence of any cancer vaccine, anti-4-1BB/anti-PD-1 combination therapy is sufficient to elicit a robust antitumor effector/memory T-cell response in an aggressive tumor model and is therefore a candidate for combination trials in patients.
Collapse
Affiliation(s)
- Shihao Chen
- Rinat Laboratories, Pfizer Inc., South San Francisco, California.
| | - Li-Fen Lee
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | | | - Bart Jessen
- Drug Safety R&D, Pfizer Inc., San Diego, California
| | - Mark Elliott
- Oncology Research Unit, Pfizer Inc., San Diego, California
| | | | - Kathryn Logronio
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Guang Huan Tu
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | | | - Xiaoai Li
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Hui Wang
- Oncology Research Unit, Pfizer Inc., San Diego, California
| | - Chi Ying
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Mengli Xiong
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | | | - John C Lin
- Rinat Laboratories, Pfizer Inc., South San Francisco, California.
| |
Collapse
|
121
|
Macdonald DC, Hotblack A, Akbar S, Britton G, Collins MK, Rosenberg WC. 4-1BB ligand activates bystander dendritic cells to enhance immunization in trans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5056-64. [PMID: 25305314 DOI: 10.4049/jimmunol.1301723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of the costimulatory receptor 4-1BB is induced by TCR recognition of Ag, whereas 4-1BB ligand (4-1BBL) is highly expressed on activated APC. 4-1BB signaling is particularly important for survival of activated and memory CD8(+) T cells. We wished to test whether coexpression of Ag and 4-1BBL by dendritic cells (DC) would be an effective vaccine strategy. Therefore, we constructed lentiviral vectors (LV) coexpressing 4-1BBL and influenza nucleoprotein (NP). Following s.c. immunization of mice, which targets DC, we found superior CD8(+) T cell responses against NP and protection from influenza when 4-1BBL was expressed. However, functionally superior CD8(+) T cell responses were obtained when two LV were coinjected: one expressing 4-1BBL and the other expressing NP. This surprising result suggested that 4-1BBL is more effective when expressed in trans, acting on adjacent DC. Therefore, we investigated the effect of LV expression of 4-1BBL in mouse DC cultures and observed induced maturation of bystander, untransduced cells. Maturation was blocked by anti-4-1BBL Ab, required cell-cell contact, and did not require the cytoplasmic signaling domain of 4-1BBL. Greater maturation of untransduced cells could be explained by LV expression of 4-1BBL, causing downregulation of 4-1BB. These data suggest that coexpression of 4-1BBL and Ag by vaccine vectors that target DC may not be an optimal strategy. However, 4-1BBL LV immunization activates significant numbers of bystander DC in the draining lymph nodes. Therefore, transactivation by 4-1BBL/4-1BB interaction following DC-DC contact may play a role in the immune response to infection or vaccination.
Collapse
Affiliation(s)
- Douglas C Macdonald
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Alastair Hotblack
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Saniath Akbar
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Gary Britton
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Mary K Collins
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom; National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertsfordshire EN6 3QG, United Kingdom; and
| | - William C Rosenberg
- Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
122
|
Diken M, Boegel S, Grunwitz C, Kranz LM, Reuter K, van de Roemer N, Vascotto F, Vormehr M, Kreiter S. CIMT 2014: Next waves in cancer immunotherapy - Report on the 12th annual meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2014; 10:3090-100. [PMID: 25483671 PMCID: PMC5443098 DOI: 10.4161/hv.29767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mustafa Diken
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Sebastian Boegel
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Christian Grunwitz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Lena M. Kranz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | | | - Niels van de Roemer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Fulvia Vascotto
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Mathias Vormehr
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Sebastian Kreiter
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| |
Collapse
|
123
|
Costimulatory molecules as vaccine adjuvants: to 4-1BB or not to 4-1BB? Cell Mol Immunol 2014; 12:508-9. [PMID: 25195512 DOI: 10.1038/cmi.2014.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022] Open
|
124
|
Abstract
Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3β by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells.
Collapse
|
125
|
Knox JJ, Cosma GL, Betts MR, McLane LM. Characterization of T-bet and eomes in peripheral human immune cells. Front Immunol 2014; 5:217. [PMID: 24860576 PMCID: PMC4030168 DOI: 10.3389/fimmu.2014.00217] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
The T-box transcription factors T-bet and Eomesodermin (Eomes) have been well defined as key drivers of immune cell development and cytolytic function. While the majority of studies have defined the roles of these factors in the context of murine T-cells, recent results have revealed that T-bet, and possibly Eomes, are expressed in other immune cell subsets. To date, the expression patterns of these factors in subsets of human peripheral blood mononuclear cells beyond T-cells remain relatively uncharacterized. In this study, we used multiparametric flow cytometry to characterize T-bet and Eomes expression in major human blood cell subsets, including total CD4(+) and CD8(+) T-cells, γδ T-cells, invariant NKT cells, natural killer cells, B-cells, and dendritic cells. Our studies identified novel cell subsets that express T-bet and Eomes and raise implications for their possible functions in the context of other human immune cell subsets besides their well-known roles in T-cells.
Collapse
Affiliation(s)
- James J Knox
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| | - Gabriela L Cosma
- Department of Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Michael R Betts
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| | - Laura M McLane
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
126
|
Montufar-Solis D, Vigneswaran N, Nakra N, Schaefer JS, Klein JR. Hematopoietic not systemic impairment of Roquin expression accounts for intestinal inflammation in Roquin-deficient mice. Sci Rep 2014; 4:4920. [PMID: 24815331 PMCID: PMC4017215 DOI: 10.1038/srep04920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023] Open
Abstract
Roquin, an E3 ligase, is involved in curtailing autoimmune pathology as seen from studies using mice with mutated (Rc3h1san/san) or disrupted (Rc3h1gt/gt) Rc3h1 gene. The extent to which intestinal immunopathology is caused by insufficient Roquin expression in the immune system, or by Roquin impairment in non-hematopoietic cells, has not been determined. Using bone marrow cells from Rc3h1gt/gt mice transferred into irradiated normal mice (Rc3h1gt/gt → NL chimeras), we show that inflammation developed in the small intestine, kidney, lung, liver, and spleen. Proinflammatory cytokine levels were elevated in lamina propria lymphocytes (LPLs). Inflammation in the liver was accompanied by areas of hepatocyte apoptosis. Lung inflammation consisted of an influx of both T cells and B cells. Small intestinal LPLs had increased numbers of CD44hi, CD62Llo, KLRG1+, ICOS+ short-lived effector cells, indicating an influx of activated T cells. Following oral infection with L. monocytogenes, Rc3h1gt/gt → NL chimeras had more liver pathology and greater numbers of bacteria in the Peyer's patches than NL → NL chimeras. These findings demonstrate that small intestinal inflammation in Rc3h1san/san and Rc3h1gt/gt mice is due to a failure of Roquin expression in the immune system and not to insufficient systemic Roquin expression.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Niyati Nakra
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Jeremy S Schaefer
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - John R Klein
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| |
Collapse
|
127
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
128
|
Kanagavelu S, Termini JM, Gupta S, Raffa FN, Fuller KA, Rivas Y, Philip S, Kornbluth RS, Stone GW. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity. PLoS One 2014; 9:e90100. [PMID: 24587225 PMCID: PMC3938597 DOI: 10.1371/journal.pone.0090100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia-Gag challenge, but the protection was independent of standard immune markers. Soluble multi-trimeric SP-D-4-1BBL and SP-D-BAFF provide a novel technology to enhance adenoviral vector vaccines against HIV-1.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Francesca N. Raffa
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Katherine A. Fuller
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yaelis Rivas
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sakhi Philip
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Richard S. Kornbluth
- Multimeric Biotherapeutics, Inc., La Jolla, California, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
129
|
Song C, Sadashivaiah K, Furusawa A, Davila E, Tamada K, Banerjee A. Eomesodermin is required for antitumor immunity mediated by 4-1BB-agonist immunotherapy. Oncoimmunology 2014; 3:e27680. [PMID: 24790793 PMCID: PMC4002624 DOI: 10.4161/onci.27680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/29/2013] [Accepted: 12/29/2013] [Indexed: 12/30/2022] Open
Abstract
CD8+ T cells in progressing tumors frequently fail to mount an effective antitumor response often in association with the expression of inhibitory receptors, including programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (Lag3). Using a lymphoma tumor model, we demonstrate that tumor-infiltrating CD8+ T cells from growing tumors co-express inhibitory receptors and co-stimulatory receptors, including 4-1BB (TNFRSF9) as well as high levels of 2 transcription factors, Eomesodermin (Eomes) and T-bet (Tbx21), critical determinants of CD8+ T cell fate. Immunotherapy with an agonistic anti-4–1-BB antibody altered the ratio of Eomes to T-bet expression in tumor-infiltrating CD8+ T cells by increasing Eomes and decreasing T-bet expression. 4-1BB-agonist immunotherapy was also associated with downregulated expression of the inhibitory receptors PD-1 and Lag3 on tumor-infiltrating CD8+ T cells, a molecular phenotype associated with subsequent attenuation of tumor growth. Furthermore, 4-1BB-agonist immunotherapy failed to effect tumor progression in mice with Eomes deficient T cells. However, upon resumption of tumor growth, tumor-infiltrating CD8+ T cells from treated animals continued to express high levels of Eomes as well as elevated levels of the inhibitory receptors PD-1 and Lag3. Our data suggest that tumor-infiltrating CD8+ T cells are poised between activation and inhibition as dictated by expression of both co-stimulatory receptors and inhibitory receptors and demonstrate that T cell expression of Eomes is necessary, but not sufficient, for efficacious 4-1BB-agonist-mediated immunotherapy.
Collapse
Affiliation(s)
- Chang Song
- Program in Oncology; Greenebaum Cancer Center; Center for Stem Cell Research and Regenerative Medicine; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Kavitha Sadashivaiah
- Program in Oncology; Greenebaum Cancer Center; Center for Stem Cell Research and Regenerative Medicine; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Aki Furusawa
- Program in Oncology; Greenebaum Cancer Center; Center for Stem Cell Research and Regenerative Medicine; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Eduardo Davila
- Department of Otolaryngology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Koji Tamada
- Department of Immunology and Cellular Signal Analysis; Yamaguchi University School of Medicine; Ube, Japan
| | - Arnob Banerjee
- Program in Oncology; Greenebaum Cancer Center; Center for Stem Cell Research and Regenerative Medicine; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
130
|
Workman AM, Jacobs AK, Vogel AJ, Condon S, Brown DM. Inflammation enhances IL-2 driven differentiation of cytolytic CD4 T cells. PLoS One 2014; 9:e89010. [PMID: 24586481 PMCID: PMC3930678 DOI: 10.1371/journal.pone.0089010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/14/2014] [Indexed: 12/24/2022] Open
Abstract
Cytolytic CD4 T cells (CD4 CTL) have been identified in vivo in response to viral infections; however, the factors necessary for driving the cytolytic phenotype have not been fully elucidated. Our previously published work suggests IL-2 may be the master regulator of perforin-mediated cytotoxicity in CD4 effectors. To further dissect the role of IL-2 in CD4 CTL generation, T cell receptor transgenic mice deficient in the ability to produce IL-2 or the high affinity IL-2 receptor (IL-2Rα, CD25) were used. Increasing concentrations of IL-2 were necessary to drive perforin (Prf) expression and maximal cytotoxicity. Granzyme B (GrB) expression and killing correlated with STAT5 activation and CD25 expression in vitro, suggesting that signaling through the high affinity IL-2R is critical for full cytotoxicity. IL-2 signaling was also necessary in vivo for inducing the Th1 phenotype and IFN-γ expression in CD4 T cells during influenza A (IAV) infection. In addition, GrB expression, as measured by mean fluorescent intensity, was decreased in CD25 deficient cells; however, the frequency of CD4 cells expressing GrB was unchanged. Similarly, analysis of cytolytic markers such as CD107a/b and Eomesodermin indicate high IL-2Rα expression is not necessary to drive the CD4 CTL phenotype during IAV infection. Thus, inflammatory signals induced by viral infection may overcome the need for strong IL-2 signals in driving cytotoxicity in CD4 cells.
Collapse
Affiliation(s)
- Aspen M Workman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley K Jacobs
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Alexander J Vogel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Shirley Condon
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
131
|
Murine autoimmune cholangitis requires two hits: cytotoxic KLRG1(+) CD8 effector cells and defective T regulatory cells. J Autoimmun 2014; 50:123-34. [PMID: 24556277 DOI: 10.1016/j.jaut.2014.01.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/26/2023]
Abstract
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFβRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1(+)) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFβRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFβRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1(+) CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1(+) CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.
Collapse
|
132
|
Murphy KA, Erickson JR, Johnson CS, Seiler CE, Bedi J, Hu P, Pluhar GE, Epstein AL, Ohlfest JR. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. THE JOURNAL OF IMMUNOLOGY 2013; 192:224-33. [PMID: 24293627 DOI: 10.4049/jimmunol.1301633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Although some promising advances have been made, the immune response stimulated as a result of immunotherapeutic protocols has been inefficient at complete tumor elimination, primarily due to our lack of understanding of the necessary effector functions of the immune system. We previously demonstrated that a tumor lysate vaccine/Fc-OX40L therapy is capable of inducing enhanced survival and tumor elimination in the GL261 mouse glioma model. The following experiments were performed to determine the mechanism(s) of action of this therapy that elicits a potent antitumor immune response. The evidence subsequently outlined indicates a CD8(+) T cell-independent and CD4(+) T cell-, NK cell-, and B cell-dependent means of prolonged survival. CD8(+) T cell-independent tumor clearance is surprising considering the current focus of many cancer immunotherapy protocols. These results provide evidence for CD8(+) T cell-independent means of antitumor response and should lead to additional examination of the potential manipulation of this mechanism for future treatment strategies.
Collapse
Affiliation(s)
- Katherine A Murphy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 2013; 73:6900-12. [PMID: 23975756 DOI: 10.1158/0008-5472.can-13-1550] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Authors' Affiliations: Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; and Department of Oncology and Ludwig Center for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
134
|
Liu Z, Yu J, Carson WE, Bai XF. The role of IL-27 in the induction of anti-tumor cytotoxic T lymphocyte response. Am J Transl Res 2013; 5:470-480. [PMID: 23977407 PMCID: PMC3745435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/06/2013] [Indexed: 06/02/2023]
Abstract
Cytotoxic T lymphocyte (CTL) response is a critical component of the immune response to tumors, therefore optimal induction of CTL responses to tumor antigens is highly desired for developing efficient cancer immunotherapy. IL-27 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3), and a p35-related subunit, p28. IL-27 functions through IL-27R and has been shown to have potent anti-tumor activity via activation of a variety of immune components, including anti-tumor CD8(+) T cell responses. However, the exact mechanisms of how IL-27 enhances anti-tumor CD8(+) T cell responses are not fully understood. In this paper we mainly discuss the evidences that suggest novel mechanisms by which IL-27 enhances anti-tumor CTL responses, including IL-27 inhibition of activation-induced cell death; the phenotypes of IL-27-stimulated CTLs; IL-27-induced CTL IL-10/IL-21 production and IL-27-mediated suppression of regulatory T cell responses. These evidences suggest that IL-27 may have a great potential to be utilized in boosting anti-tumor CTL responses in human cancer patients.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Columbus, OH, USA
| | | | | | | |
Collapse
|
135
|
Abstract
A growing body of evidence suggests an essential role of the heterodimeric cytokine, IL-27, for regulating immunity. IL-27 is composed of two subunits (p28 and EBI3) and is classified as a member of the IL-12 family of cytokines. APCs have been recognized as a major cellular source of IL-27 following activation with microbial products or IFNs (types I and II). In this review, we describe the current knowledge of the implications of IL-27 during the pathogenesis of infectious and autoimmune diseases. Experimental studies have used genetically targeted IL-27RA-/- mice, EBI3-/- mice, and p28-/- mice or involved study designs with administration of bioengineered IL-27/IL-27RA homologs. Whereas many reports have described that IL-27 suppresses inflammation, we also review the current literature, suggesting promotion of inflammation by IL-27 in some settings. Recent advances have also been made in understanding the cross-talk of cleavage products of the complement system with IL-27-mediated immune responses. Additional data on IL-27 have been obtained recently by observational studies in human patients with acute and chronic inflammatory diseases. Collectively, the findings from the past decade identify IL-27 as a critical immunoregulatory cytokine, especially for T cells, whereas some controversy is fueled by results challenging the view of IL-27 as a classical silencer of inflammation.
Collapse
Affiliation(s)
- Markus Bosmann
- 1.University of Michigan Medical School, 1301 Catherine Rd., Ann Arbor, MI 48109-5602, USA.
| | | |
Collapse
|