101
|
Buşu C, Li W, Caldito G, Aw TY. Inhibition of glutathione synthesis in brain endothelial cells lengthens S-phase transit time in the cell cycle: Implications for proliferation in recovery from oxidative stress and endothelial cell damage. Redox Biol 2013; 1:131-139. [PMID: 23682351 PMCID: PMC3652486 DOI: 10.1016/j.redox.2013.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress-induced decrease in tissue or systemic glutathione (GSH) and damage to the vascular endothelium of the blood-brain barrier such as occurs in diabetes or stroke will have important implications for brain homeostasis. Endothelial proliferation or repair is crucial to preserving barrier function. Cell proliferation has been associated with increased intracellular GSH, but the kinetic and distribution of GSH during cell cycle is poorly understood. Here, we determined the influence of cellular GSH status on the early dynamics of nuclear-to-cytosol (N-to-C) GSH distribution (6-h interval) during proliferation in a human brain microvascular endothelial cell line (IHEC). Control IHECs exhibited two peak S-phases of the cell cycle at 48 and 60 h post seeding that temporally corresponded to peak nuclear GSH levels and expression of cdk1, the S-to-G2-to-M checkpoint controller, suggesting a link between cell cycle progression and nuclear GSH. Sustained inhibition of GSH synthesis delayed S-to-G2/M cell transition; cell arrest in the S-phase was correlated with decreased total nuclear GSH and increased nuclear expressions of chk2/phospho-chk2 and GADPH. The temporal correspondence of nuclear chk2 activation and GAPDH expression with S-phase prolongation is consistent with enhanced DNA damage response and extended time for DNA repair. Strikingly, when GSH synthesis was restored, cell transit time through S-phase remained delayed. Significantly, total nuclear GSH remained depressed, indicating a time lag between restored cellular GSH synthetic capacity and recovery of the nuclear GSH status. Interestingly, despite a delay in cell cycle recovery, nuclear expressions of chk2/phospho-chk2 and GAPDH resembled those of control cells. This means that restoration of nuclear DNA integrity preceded normalization of the cell cycle. The current results provide important insights into GSH control of endothelial proliferation with implications for cell repair or wound healing in recovery post-oxidative damage.
Collapse
Affiliation(s)
- Carmina Buşu
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center- Shreveport, 1501 Kings Highway, Shreveport, Louisiana, 71130, USA
| | | | | | | |
Collapse
|
102
|
Almeida A. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci 2013; 70:71-88. [PMID: 22695677 PMCID: PMC11113535 DOI: 10.1007/s00018-012-1029-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/22/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
Abstract
Apoptosis is a common mode of cell death that contributes to neuronal loss associated with neurodegeneration. Single-nucleotide polymorphisms (SNPs) in chromosomal DNA are contributing factors dictating natural susceptibility of humans to disease. Here, the most common SNPs affecting neuronal vulnerability to apoptosis are reviewed in the context of neurological disorders. Polymorphic variants in genes encoding apoptotic proteins, either from the extrinsic (FAS, TNF-α, CASP8) or the intrinsic (BAX, BCL2, CASP3, CASP9) pathways could be highly valuable in the diagnosis of neurodegenerative diseases and stroke. Interestingly, the Arg72Pro SNP in TP53, the gene encoding tumor suppressor p53, was recently revealed a biomarker of poor prognosis in stroke due to its ability to modulate neuronal apoptotic death. Search for new SNPs responsible for genetic variability to apoptosis will ensure the implementation of novel diagnostic and prognostic tools, as well as therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Angeles Almeida
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
103
|
Manzoni L, Belvisi L, Bianchi A, Conti A, Drago C, de Matteo M, Ferrante L, Mastrangelo E, Perego P, Potenza D, Scolastico C, Servida F, Timpano G, Vasile F, Rizzo V, Seneci P. Homo- and heterodimeric Smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part I: Synthesis. Bioorg Med Chem 2012; 20:6687-708. [DOI: 10.1016/j.bmc.2012.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 12/22/2022]
|
104
|
Sica RE. Is amyotrophic lateral sclerosis a primary astrocytic disease? Med Hypotheses 2012; 79:819-22. [PMID: 23026704 DOI: 10.1016/j.mehy.2012.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/15/2012] [Accepted: 08/23/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is thought to be due to primary involvement of motor neurons. Pathogenic mechanisms underlying its appearance are relatively well known and include inflammation, excitotoxicity, oxidative stress, endoplasmic reticulum stress, protein damage, genetic abnormalities and type of neuronal death. Although these processes have been investigated in detail in the past two decades none of them appear to be the cause of the illness. In addition several possible environmental agents have been investigated but the results, in every case, were conflicting and therefore inconclusive. However, since the motor neurons display the features of apoptosis in this illness, the possibility remains that the motor neurons die because of a hostile environment, one that is unable to sustain their health, rather than being directly targeted themselves. The above considerations lead to an examination of astrocytes, for these cells play a key role in controlling the environment of neurons. It is known that astrocytes are exquisitely plastic, adapting their metabolism and behaviour to the needs of the neurons they contact. Each population of astrocytes is therefore unique and, were one to be adversely affected at the start of a disease process, the consequences would extend to the neurons that it normally chaperoned. The disturbed relationship might involve inappropriate production and secretion of astrocytic neurotransmitters, defective transport of glutamate and impaired trophic and metabolic support of the motor neurons. In order to explain the spread of weakness and pyramidal signs in ALS patients, which is very often from one group of muscles to a neighbouring one, it is postulated that, within the spinal cord, the brainstem and the motor cortex, the disease-causing process is also spreading-in this case, from one group of astrocytes to its neighbours. A misfolded protein, possibly a prion-like protein, would be a candidate for this type of transmission.
Collapse
Affiliation(s)
- Roberto E Sica
- Department of Neurology, Buenos Aires University, Argentina.
| |
Collapse
|
105
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 702] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
106
|
Gagyi E, Kormos B, Castellanos KJ, Valyi-Nagy K, Korneff D, LoPresti P, Woltjer R, Valyi-Nagy T. Decreased oligodendrocyte nuclear diameter in Alzheimer's disease and Lewy body dementia. Brain Pathol 2012; 22:803-10. [PMID: 22429607 DOI: 10.1111/j.1750-3639.2012.00595.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To better understand the pathogenesis of dementia, it is important to understand histopathologic changes in neurodegenerative diseases because they might highlight key aspects of the degenerative process. In this study, the nuclear diameter of neurons and oligodendrocytes in selected temporal lobe areas were determined in autopsy tissue sections from patients with Alzheimer's disease (AD), Lewy body dementia (LBD) and controls. Our morphometric studies targeted neurons in the CA4 region of the pyramidal cell layer of the hippocampus, neurons in the granular layer of the dentate gyrus and oligodendrocytes in parahippocampal white matter. Mean neuronal nuclear diameters were not different among the studied groups. However, our studies revealed a statistically significant reduction of mean oligodendrocyte nuclear diameter in AD and LBD relative to controls. The reduction of the mean nucleus diameter of oligodendrocytes in LBD was independent of the presence of associated AD pathology in LBD. These findings for the first time identify decreased oligodendrocyte nucleus diameter as a morphologic feature of AD and LBD and may lead to a better understanding of the role of oligodendrocytes in AD and LBD pathogenesis.
Collapse
Affiliation(s)
- Eva Gagyi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Akiibinu MO, Ogundahunsi OA, Ogunyemi EO. Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics. BMC Res Notes 2012; 5:169. [PMID: 22463715 PMCID: PMC3337813 DOI: 10.1186/1756-0500-5-169] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 03/31/2012] [Indexed: 11/30/2022] Open
Abstract
Background The relationship of oxidative stress to thyroid hormones has not been studied in the schizophrenics. The present study determined the status and interrelationship of plasma markers of oxidative stress, nitric oxide and thyroid hormones in thirty (17 males and 13 females) newly diagnosed patients with acute schizophrenia before initiation of chemotherapy. Twenty five (13 males and 12 females) mentally healthy individuals served as controls. Patients and controls with history of hard drugs (including alcohol and cigarette), pre-diagnosis medications (e.g. antiparkinsonian/antipsychotic drugs), chronic infections, liver disease and diabetes mellitus were excluded from the study. Plasma levels of total antioxidant potential (TAP), total plasma peroxides (TPP), nitric oxide (NO), malondialdehyde (MDA), thyroxine (T4), tri-iodothyronine (T3) and thyroid stimulating hormone (TSH) were determined in all participants using spectrophotometric and enzyme linked immunosorbent assay (ELISA) methods respectively. Oxidative stress index (OSI) was calculated as the percent ratio of total plasma peroxides and total antioxidant potential. Findings Significantly higher plasma levels of MDA (p < 0.01), TPP (p < 0.01), OSI (p < 0.01), T3 (p < 0.01) and T4 (p < 0.05) were observed in schizophrenics when compared with the controls. The mean levels of TAP, NO and TSH were significantly lower in schizophrenics (p < 0.01) when compared with the controls. The result shows that T3 values correlate significantly with MDA (p < 0.05) and TPP (p < 0.01) in schizophrenics. Conclusions Higher level of TPP may enhance thyroid hormogenesis in schizophrenics. Adjuvant antioxidant therapy may be a novel approach in the treatment of schizophrenic patients.
Collapse
Affiliation(s)
- Moses O Akiibinu
- Department of Chemical Pathology and Immunology, College of Health Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria.
| | | | | |
Collapse
|
108
|
Bianchi A, Ugazzi M, Ferrante L, Lecis D, Scavullo C, Mastrangelo E, Seneci P. Rational design, synthesis and characterization of potent, drug-like monomeric Smac mimetics as pro-apoptotic anticancer agents. Bioorg Med Chem Lett 2012; 22:2204-8. [PMID: 22342627 DOI: 10.1016/j.bmcl.2012.01.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/15/2022]
Abstract
A set of phenyl-substituted Smac mimetics/IAP inhibitor analogues of lead compound 2a was synthesized, aiming to retain its strong cell-free potency while increasing its bioavailability. Seventeen compounds 2b-r were prepared and characterized in vitro, using cell-free and cellular assays. Among them, the p-CF(3) substituted analogue 2m showed the best permeability through cell membranes, and was selected for further in vitro and in vivo studies due to its strong, sub-micromolar cellular potency.
Collapse
Affiliation(s)
- Aldo Bianchi
- CISI scrl, Via Fantoli 16/15, I-20138 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
109
|
ADF/cofilin proteins translocate to mitochondria during apoptosis but are not generally required for cell death signaling. Cell Death Differ 2011; 19:958-67. [PMID: 22139132 DOI: 10.1038/cdd.2011.180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Non-muscle cofilin (n-cofilin) is a member of the ADF/cofilin family of actin depolymerizing proteins. Recent studies reported a mitochondrial translocation of n-cofilin during apoptosis. As these studies also revealed impaired cytochrome c release and a block in apoptosis upon small interfering RNA-mediated n-cofilin knockdown, n-cofilin was postulated to be essential for apoptosis induction. To elucidate the general importance of ADF/cofilin activity for apoptosis, we exposed mouse embryonic fibroblasts deficient for n-cofilin, ADF (actin depolymerizing factor), or all ADF/cofilin isoforms to well-characterized apoptosis inducers. Cytochrome c release, caspase-3 activation, and apoptotic chromatin condensation were unchanged in all mutant fibroblasts. Thus, we conclude that ADF/cofilin activity is not generally required for induction or progression of apoptosis in mammalian cells. Interestingly, mitochondrial association of ADF and n-cofilin during apoptosis was preceded by, and dependent on, actin that translocated by a yet unknown mechanism to mitochondria during cell death.
Collapse
|
110
|
Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011; 34:646-56. [DOI: 10.1016/j.tins.2011.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/10/2023]
|
111
|
Iłżecka J. Serum caspase-9 levels are increased in patients with amyotrophic lateral sclerosis. Neurol Sci 2011; 33:825-9. [PMID: 22048794 PMCID: PMC3397227 DOI: 10.1007/s10072-011-0837-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 10/21/2011] [Indexed: 12/24/2022]
Abstract
It is known that apoptosis may play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Moreover, caspase-9 is implicated in the apoptosis pathway. The aim of the study was to investigate caspase-9 levels in serum of patients with ALS. The study involved 30 patients with ALS and 30 patients from the control group. The serum caspase-9 levels were measured using the enzyme-linked immunosorbent method. The study showed that caspase-9 levels are significantly increased in serum of the patients with ALS comparing to the control group (p < 0.05). There was a significant correlation of serum caspase-9 levels with severity of clinical state of ALS patients and duration of the disease (p < 0.05). The results indicate that caspase-9 may be implicated in pathomechanism of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Joanna Iłżecka
- Department of Neurological Rehabilitation, Medical University, ul. Chodźki 6, 20-093 Lublin, Poland.
| |
Collapse
|
112
|
Mas S, Gassó P, Trias G, Bernardo M, Lafuente A. Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol 2011; 26:712-21. [PMID: 21923690 DOI: 10.1111/j.1472-8206.2011.00988.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse reactions to antipsychotic drugs (APs) have been attributed to oxidative stress. Sulforaphane (SF) is a potent antioxidant that protects against dopaminergic cell death. We examined the protective properties of SF against AP-induced oxidative stress in dopaminergic neuroblastoma cells. Human neuroblastoma SK-N-SH cells were treated with SF (0.5-5 μM), and 24 h later, haloperidol, risperidone or paliperidone (100 μM) was administered, either alone or in combination with dopamine (100 μM). To determine the antioxidant properties of SF, quinone oxidoreductase (NQO1) activity, glutathione S-transferase activity, and glutathione (GSH) levels were determined. Oxidative stress was measured by the increase in thiobarbituric acid reactive substances (TBARS) and in protein-bound quinones. Cell viability was also assessed. SF treatment increased GSH levels and induced NQO1 activity in SK-N-SH cells. Haloperidol was the only AP that increased TBARS when administered alone. When cells were cocultured with a drug in combination with dopamine, all three APs increased TBARS and protein-bound quinones and also induced neurotoxicity. In all the experimental conditions, 5 μM SF attenuated the accumulation of TBARS and protein-bound quinones and increased cell survival rates. Our results indicate that SF increases GSH levels and induces NQO1 activity and the removal of electrophilic quinones and radical oxygen species. Furthermore, SF could provide protective effects against AP-induced toxicity in dopaminergic cells.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
113
|
Chen C, Li X, Wang T, Wang HH, Fu Y, Zhang L, Xiao SF. Association between NMDA receptor subunit 2b gene polymorphism and Alzheimer's disease in Chinese Han population in Shanghai. Neurosci Bull 2011; 26:395-400. [PMID: 20882066 DOI: 10.1007/s12264-010-0729-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE N-methyl-D-aspartate (NMDA) receptor has been indicated to be involved in the pathogenesis of Alzheimer's disease (AD). The NMDA receptor subunit 2b (NR2B) has attracted more attention due to its characteristic distribution and selective reduction in AD brain. The present study aimed to explore the association between NMDA gene polymorphism and AD. METHODS A total of 63 AD patients and 68 normal controls in Shanghai city were employed in this study. Genotype of C2664T variant (rs1806201) in the exon13 of GRIN2B gene was determined by gene sequencing. RESULTS Among AD patients, 15 (23.6%) subjects were identified as C/C genotype, and 35 (55.6%) were identified as C/T genotype. The left 13 (20.6%) subjects were identified as T/T genotype. In normal controls, 15 (22.1%) subjects were identified as C/C genotype, 39 (57.4%) as C/T genotype and 14 (20.6%) as T/T genotype. The distribution frequency of neither GRIN2B C2664T genotype (P=0.895) nor allele (P=0.790) was significantly different between AD patients and normal controls, even when the subjects were stratified by gender and age of disease onset in AD patients. CONCLUSION The results suggest that there is no relation between GRIN2B C2664T polymorphism and AD in Chinese Han population of Shanghai City.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | | | | | | | | | | | | |
Collapse
|
114
|
González-López M, Welsh K, Finlay D, Ardecky RJ, Ganji SR, Su Y, Yuan H, Teriete P, Mace PD, Riedl SJ, Vuori K, Reed JC, Cosford NDP. Design, synthesis and evaluation of monovalent Smac mimetics that bind to the BIR2 domain of the anti-apoptotic protein XIAP. Bioorg Med Chem Lett 2011; 21:4332-6. [PMID: 21680182 DOI: 10.1016/j.bmcl.2011.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 12/22/2022]
Abstract
We report the systematic rational design and synthesis of new monovalent Smac mimetics that bind preferentially to the BIR2 domain of the anti-apoptotic protein XIAP. Characterization of compounds in vitro (including 9i; ML101) led to the determination of key structural requirements for BIR2 binding affinity. Compounds 9h and 9j sensitized TRAIL-resistant breast cancer cells to apoptotic cell death, highlighting the value of these probe compounds as tools to investigate the biology of XIAP.
Collapse
Affiliation(s)
- Marcos González-López
- Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Dallas ML, Boyle JP, Milligan CJ, Sayer R, Kerrigan TL, McKinstry C, Lu P, Mankouri J, Harris M, Scragg JL, Pearson HA, Peers C. Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2.1. FASEB J 2011; 25:1519-30. [PMID: 21248240 PMCID: PMC7615704 DOI: 10.1096/fj.10-173450] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in response to apoptotic stimuli. An additional feature of neuronal oxidative stress is the up-regulation of the inducible enzyme heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). CO provides neuronal protection against stresses such as stroke and excitotoxicity, although the underlying mechanisms are not yet elucidated. Here, we demonstrate that CO reversibly inhibits K(v)2.1. Channel inhibition by CO involves reactive oxygen species and protein kinase G activity. Overexpression of K(v)2.1 in HEK293 cells increases their vulnerability to oxidant-induced apoptosis, and this is reversed by CO. In hippocampal neurons, CO selectively inhibits K(v)2.1, reverses the dramatic oxidant-induced increase in K(+) current density, and provides marked protection against oxidant-induced apoptosis. Our results provide a novel mechanism to account for the neuroprotective effects of CO against oxidative apoptosis, which has potential for therapeutic exploitation to provide neuronal protection in situations of oxidative stress.
Collapse
Affiliation(s)
- Mark L. Dallas
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John P. Boyle
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Rachael Sayer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Connor McKinstry
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Peiyuan Lu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jamel Mankouri
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mark Harris
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jason L. Scragg
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hugh A. Pearson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Chris Peers
- Division of Cardiovascular and Neuronal Remodelling, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
116
|
Coutts M, Kong LX, Keirstead HS. A model of motor neuron loss: selective deficits after ricin injection. J Neurotrauma 2011; 27:1333-42. [PMID: 20486802 DOI: 10.1089/neu.2010.1285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study characterizes a model of motor neuron (MN) loss on the molecular, cellular, and behavioral levels. Injection of the toxic lectin Ricinus communis agglutinin I (RCA I or ricin) caused cellular deficit and loss of function by damaging the sciatic nerve. Since the sciatic nerve supplies movement to most of the lower limb, damaging this motor system models lower limb paralysis and the deficits that occur in diseases like amyotrophic lateral sclerosis (ALS) and infantile progressive spinal muscular atrophy (SMA). We used motor-, sensorimotor-, locomotor-, and reflex-based tests to demonstrate loss of function after ricin injection. Loss of function was also demonstrated by decreased retrograde transport, and supported by measurements of muscle wasting. Histochemical and molecular methods were used to characterize sciatic nerve damage in axons and cell bodies, including apoptotic cell death in MNs. This battery of tests documents the extent of the ricin-induced damage and provides a baseline that can be used to judge the efficacy of MN treatment strategies in preclinical studies.
Collapse
Affiliation(s)
- Margaret Coutts
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, School of Medicine, University of California at Irvine, Irvine, California 92697-4292, USA
| | | | | |
Collapse
|
117
|
Maiese K, Chong ZZ, Shang YC, Hou J. Therapeutic promise and principles: metabotropic glutamate receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:1-14. [PMID: 19750024 PMCID: PMC2740993 DOI: 10.4161/oxim.1.1.6842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
118
|
Smith B, Galbiati F, Cantuti Castelvetri L, Givogri MI, Lopez-Rosas A, Bongarzone ER. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3. ASN Neuro 2011; 3:e00066. [PMID: 21929508 PMCID: PMC3192484 DOI: 10.1042/an20110019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/07/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023] Open
Abstract
Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine), demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein) isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.
Collapse
Key Words
- apoptosis
- caspase 3
- dying-back pathology
- krabbe disease
- leukodystrophies
- myelin
- twitcher mouse
- apc, adenomatous polyposis coli
- cct, central conduction time
- cns, central nervous system
- cmap, compound motor action potential
- cmep, cortical motor evoked potential
- dab, diaminobenzidine
- gfap, glial fibrillary acidic protein
- mbp, myelin basic protein
- mcv, motor conduction velocity
- ncam, neural cell adhesion molecule
- nf-h, neurofilament heavy chain
- pfa, paraformaldehyde
- wt, wild-type
Collapse
Affiliation(s)
- Benjamin Smith
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | - Francesca Galbiati
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | | | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | - Aurora Lopez-Rosas
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, IL, U.S.A
| |
Collapse
|
119
|
Abstract
Matrix metalloproteinase-3 (MMP-3) is a member of the class of zinc-dependent proteases known to degrade the extracellular matrix. MMP-3 activity is regulated at three different levels: gene expression, proteolytic activation of the zymogen, and inhibition by the endogenous tissue inhibitors of metalloproteinase. A line of evidence indicates a role of MMP-3 in neurodegeneration. In neuronal cells, MMP-3 expression is increased in response to cell stress, and the cleaved, active MMP-3 participates in apoptotic signaling. In the extracellular space, MMP-3 triggers microglia to produce proinflammatory and cytotoxic molecules as well as MMP-3, which in turn contribute to neuronal damage. MMP-3 is increased in various experimental models of Parkinson's disease that are produced by selective toxins and by inflammagen, and the neuronal death is attenuated by various ways that inhibit MMP-3. α-Synuclein, whose gene mutations are associated with familial forms of Parkinson's disease, is proteolyzed by MMP-3. Contribution of MMP-3 toward the pathogenesis of Alzheimer's disease and other neurodegenerative diseases has also been suggested. Thus, modulation of MMP-3 expression and/or activity could be of therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Mee Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | | |
Collapse
|
120
|
Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat. Exp Brain Res 2010; 210:477-87. [DOI: 10.1007/s00221-010-2491-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/03/2010] [Indexed: 02/06/2023]
|
121
|
Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chem Biol Interact 2010; 188:289-300. [PMID: 20542017 PMCID: PMC2942983 DOI: 10.1016/j.cbi.2010.06.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 11/20/2022]
Abstract
Pesticides are widely used in agricultural and other settings, resulting in continued human exposure. Pesticide toxicity has been clearly demonstrated to alter a variety of neurological functions. Particularly, there is strong evidence suggesting that pesticide exposure predisposes to neurodegenerative diseases. Epidemiological data have suggested a relationship between pesticide exposure and brain neurodegeneration. However, an increasing debate has aroused regarding this issue. Paraquat is a highly toxic quaternary nitrogen herbicide which has been largely studied as a model for Parkinson's disease providing valuable insight into the molecular mechanisms involved in the toxic effects of pesticides and their role in the progression of neurodegenerative diseases. In this work, we review the molecular mechanisms involved in the neurotoxic action of pesticides, with emphasis on the mechanisms associated with the induction of neuronal cell death by paraquat as a model for Parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, 68583, United States.
| | | | | | | | | |
Collapse
|
122
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
123
|
Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K. Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:374-91. [PMID: 21307646 PMCID: PMC3154047 DOI: 10.4161/oxim.3.6.14787] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian target of rapamycin (mTOR) and its associated cell signaling pathways have garnered significant attention for their roles in cell biology and oncology. Interestingly,the explosion of information in this field has linked mTOR to neurological diseases with promising initial studies. mTOR, a 289 kDa serine/threonine protein kinase, plays an important role in cell growth and proliferation and is activated through phosphorylation in response to growth factors, mitogens and hormones. Growth factors, amino acids, cellular nutrients and oxygen deficiency can downregulate mTOR activity. The function of mTOR signaling is mediated primarily through two mTOR complexes: mTORC1 and mTORC2. mTORC1 initiates cap-dependent protein translation, a rate-limiting step of protein synthesis, through the phosphorylation of the targets eukaryotic initiation factor 4E-binding protein 1 (4EBP1) and p70 ribosomal S6 kinase (p70S6K). In contrast, mTORC2 regulates development of the cytoskeleton and also controls cell survival. Although closely tied to tumorigenesis, mTOR and the downstream signaling pathways are significantly involved in the central nervous system (CNS) with synaptic plasticity, memory retention, neuroendocrine regulation associated with food intake and puberty and modulation of neuronal repair following injury. The signaling pathways of mTOR also are believed to be a significant component in a number of neurological diseases, such as Alzheimer disease, Parkinson disease and Huntington disease, tuberous sclerosis, neurofibromatosis, fragile X syndrome, epilepsy, traumatic brain injury and ischemic stroke. Here we describe the role of mTOR in the CNS and illustrate the potential for new strategies directed against neurological disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology and Neurosciences, Cancer Center, University of Medicine and Dentistry - New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
124
|
Kawajiri S, Machida Y, Saiki S, Sato S, Hattori N. Zonisamide reduces cell death in SH-SY5Y cells via an anti-apoptotic effect and by upregulating MnSOD. Neurosci Lett 2010; 481:88-91. [PMID: 20600601 DOI: 10.1016/j.neulet.2010.06.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 12/21/2022]
Abstract
Zonisamide, originally known as an antiepileptic drug, has been approved in Japan as adjunctive therapy with levodopa for the treatment of Parkinson's disease (PD). Although zonisamide reduces neurotoxicity, the precise mechanism of this action is not known. Here, we show that zonisamide increases cell viability in SH-SY5Y cells via an anti-apoptotic effect and by upregulating levels of manganese superoxide dismutase (MnSOD). These results would give us novel evidences of PD treatment.
Collapse
Affiliation(s)
- Sumihiro Kawajiri
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | | | | | | | | |
Collapse
|
125
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Apnea produces neuronal degeneration in the pons and medulla of guinea pigs. Neurobiol Dis 2010; 40:251-64. [PMID: 20554036 DOI: 10.1016/j.nbd.2010.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/19/2010] [Accepted: 05/30/2010] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea and other sleep-related breathing disorders result in recurrent periods of oxygen deprivation (hypoxia), hypercapnia and an increase in the cellular production of reactive oxygen species (oxidative stress-related injury). Individuals with these disorders suffer from a variety of cellular abnormalities that result in cardiopulmonary dysfunctions, disturbances in sleep and other pathologies. In the present experiment, using an animal model of sleep apnea, we determined that the degeneration of neurons and glia, due to apoptosis, occurs in specific regions of the pons and medulla. Adult guinea pigs, which were divided into control (normoxic) and experimental (hypoxic) groups, were anesthetized with alpha-chloralose and immobilized with Flaxedil. Apnea (hypoxia) was induced by ventilatory arrest in order to desaturate the oxyhemoglobin to 75% SpO(2). A sequence of apnea, followed by ventilation with recovery to >95% SpO(2), was repeated for a period of 3h. At the end of the period of recurrent apnea, the animals were perfused and brain sections were immunostained with a mouse monoclonal antibody raised against single-stranded DNA (ssDNA). Apoptotic neurons and glia, which were not found in the control group of animals, were present in brainstem regions in hypoxic group of animals; these regions involved in the control of respiration (e.g., the parafacial respiratory group and the ventral respiratory group), cardiovascular functions (e.g., the nucleus ambiguus, the nucleus tractus solitarius and the dorsal motor nucleus of the vagus) as well as REM sleep (the nucleus pontis oralis) and wakefulness (e.g., the dorsal raphe and locus ceruleus). We suggest apoptotic neurons and glia in critical areas of the pons and medulla results in many of the comorbidities experienced by patients with sleep-disordered breathing pathologies.
Collapse
|
126
|
Copanaki E, Chang S, Vlachos A, Tschäpe JA, Müller UC, Kögel D, Deller T. sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 2010; 44:386-93. [PMID: 20472066 DOI: 10.1016/j.mcn.2010.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/09/2010] [Accepted: 04/29/2010] [Indexed: 01/01/2023] Open
Abstract
Impaired proteasomal function is a major hallmark in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). Here we investigated the biological properties of the secreted cleavage product of APP (sAPPalpha) in antagonizing stress signalling, dendritic degeneration and neuronal cell death induced by the proteasome inhibitor epoxomicin. Analysis of executioner caspase activation demonstrated that sAPPalpha was able to protect PC12 cells from apoptosis triggered by epoxomicin, as well as by genotoxic stress (UV irradiation). This anti-apoptotic effect of sAPPalpha was associated with inhibition of the stress-triggered c-Jun N-terminal kinase (JNK)-signalling pathway. The anti-apoptotic effect of sAPPalpha could also be confirmed in organotypic slice cultures of Thy1-GFP mouse hippocampi. Confocal time-lapse imaging of CA1 pyramidal neurons revealed that preincubation with sAPPalpha preserves the structural integrity of neurons after epoxomicin treatment. Taken together, our data demonstrate that sAPPalpha is neuroprotective under conditions of proteasomal stress.
Collapse
Affiliation(s)
- Ekaterini Copanaki
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
A perspective on neuronal cell death signaling and neurodegeneration. Mol Neurobiol 2010; 42:25-31. [PMID: 20480262 DOI: 10.1007/s12035-010-8128-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 12/12/2022]
Abstract
Although neuronal cell death through apoptotic pathways represents a common feature of dysferopathies, the canonical apoptotic changes familiar from nonneuronal cells are late events. Loss of neuronal function occurs at a much early time, when synaptic-based neuronal connectivity fails. In this context, apoptotic pathways may normally serve a cleanup role, rather than a pathogenic one. Reframing the consideration of cell death in the nervous system to include the early stages of axonal degeneration provides a better understanding of the roles played by various apoptotic signaling pathways in neurodegenerative diseases. Focusing on disease-specific mechanisms that initiate the sequence that eventually leads to neuronal loss should facilitate development of therapies that preserve neuronal function and neuronal numbers.
Collapse
|
128
|
Fontana A, Gast H, Reith W, Recher M, Birchler T, Bassetti CL. Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss? ACTA ACUST UNITED AC 2010; 133:1300-11. [PMID: 20403960 DOI: 10.1093/brain/awq086] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain, tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at onset of narcolepsy. The hallmarks of anti-self reactions in the tissue--namely upregulation of major histocompatibility antigens and lymphocyte infiltrates--are missing in the hypothalamus. These findings are questionable because they were obtained by analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2, which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4(+) T cells or superantigen stimulated CD8(+) T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause selective destruction of hypocretin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Adriano Fontana
- Institute of Experimental Immunology, University Hospital Zurich, Haeldeliweg 4, CH 8044 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
129
|
Distribution of apoptosis-related proteins in sporadic Creutzfeldt–Jakob disease. Brain Res 2010; 1323:192-9. [DOI: 10.1016/j.brainres.2010.01.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 02/06/2023]
|
130
|
Calpain plays a central role in 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in cerebellar granule neurons. Neurotox Res 2010; 19:374-88. [PMID: 20333497 DOI: 10.1007/s12640-010-9172-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/19/2010] [Accepted: 03/09/2010] [Indexed: 12/15/2022]
Abstract
1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress and dysfunction.
Collapse
|
131
|
Shang YC, Chong ZZ, Hou J, Maiese K. FoxO3a governs early microglial proliferation and employs mitochondrial depolarization with caspase 3, 8, and 9 cleavage during oxidant induced apoptosis. Curr Neurovasc Res 2010; 6:223-38. [PMID: 19807657 DOI: 10.2174/156720209789630302] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
Abstract
Microglia of the central nervous system have a dual role in the ability to influence the survival of neighboring cells. During inflammatory cell activation, microglia can lead to the disposal of toxic cellular products and permit tissue regeneration, but microglia also may lead to cellular destruction with phagocytic removal. For these reasons, it is essential to elucidate not only the underlying pathways that control microglial activation and proliferation, but also the factors that determine microglial survival. In this regard, we investigated in the EOC 2 microglial cell line with an oxygen-glucose deprivation (OGD) injury model of oxidative stress the role of the "O" class forkhead transcription factor FoxO3a that in some scenarios is closely linked to immune system function. We demonstrate that FoxO3a is a necessary element in the control of early and late apoptotic injury programs that involve membrane phosphatidylserine externalization and nuclear DNA degradation, since transient knockdown of FoxO3a in microglia preserves cellular survival 24 hours following OGD exposure. However, prior to the onset of apoptotic injury, FoxO3a facilitates the activation and proliferation of microglia as early as 3 hours following OGD exposure that occurs in conjunction with the trafficking of the unphosphorylated and active post-translational form of FoxO3a from the cytoplasm to the cell nucleus. FoxO3a also can modulate apoptotic mitochondrial signal transduction pathways in microglia, since transient knockdown of FoxO3a prevents mitochondrial membrane depolarization as well as the release of cytochrome c during OGD. Control of this apoptotic cascade also extends to progressive caspase activation as early as 1 hour following OGD exposure. The presence of FoxO3a is necessary for the expression of cleaved (active) caspase 3, 8, and 9, since loss of FoxO3a abrogates the induction of caspase activity. Interestingly, elimination of FoxO3a reduced caspase 9 activity to a lesser extent than that noted with caspase 3 and 8 activities, suggesting that FoxO3a in relation to caspase 9 may be more reliant upon other signal transduction pathways potentially independent from caspase 3 and 8.
Collapse
Affiliation(s)
- Yan Chen Shang
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
132
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
133
|
Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli-Forti G, Hrelia P. Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem 2009; 111:1161-71. [DOI: 10.1111/j.1471-4159.2009.06394.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
134
|
Maiese K, Chong ZZ, Hou J, Shang YC. New strategies for Alzheimer's disease and cognitive impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:279-89. [PMID: 20716915 PMCID: PMC2835916 DOI: 10.4161/oxim.2.5.9990] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 02/06/2023]
Abstract
Approximately five million people suffer with Alzheimer's disease (AD) and more than twenty-four million people are diagnosed with AD, pre-senile dementia, and other disorders of cognitive loss worldwide. Furthermore, the annual cost per patient with AD can approach $200,000 with an annual population aggregate cost of $100 billion. Yet, complete therapeutic prevention or reversal of neurovascular injury during AD and cognitive loss is not achievable despite the current understanding of the cellular pathways that modulate nervous system injury during these disorders. As a result, identification of novel therapeutic targets for the treatment of neurovascular injury would be extremely beneficial to reduce or eliminate disability from diseases that lead to cognitive loss or impairment. Here we describe the capacity of intrinsic cellular mechanisms for the novel pathways of erythropoietin and forkhead transcription factors that may offer not only new strategies for disorders such as AD and cognitive loss, but also function as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
135
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
136
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
137
|
Neuroprotective Effect of Baicalein on Hydrogen Peroxide-Mediated Oxidative Stress and Mitochondrial Dysfunction in PC12 Cells. J Mol Neurosci 2009; 40:311-20. [DOI: 10.1007/s12031-009-9285-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 08/03/2009] [Indexed: 11/26/2022]
|
138
|
Structural Basis for Bivalent Smac-Mimetics Recognition in the IAP Protein Family. J Mol Biol 2009; 392:630-44. [DOI: 10.1016/j.jmb.2009.04.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 01/22/2023]
|
139
|
Molecular imaging of neurodegeneration by a novel cross-disease biomarker. Exp Neurol 2009; 219:274-83. [DOI: 10.1016/j.expneurol.2009.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/14/2009] [Accepted: 05/23/2009] [Indexed: 01/25/2023]
|
140
|
Ye J, Han Y, Wang C, Yu W. Cytoprotective effect of polypeptide from Chlamys farreri on neuroblastoma (SH-SY5Y) cells following HO exposure involves scavenging ROS and inhibition JNK phosphorylation. J Neurochem 2009; 111:441-51. [PMID: 19682211 DOI: 10.1111/j.1471-4159.2009.06328.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative stress has long been linked to cell death in many neurodegenerative conditions. Treatment with antioxidants is a promising approach for slowing disease progression. In this study, we used the neuroblastoma SH-SY5Y cells as an in vitro model to first assess the effect of polypeptide from Chlamys farreri (PCF), a natural marine antioxidant, on H(2)O(2)-induced neuronal cell death. Pre-treatment of SH-SY5Y cells with PCF inhibited H(2)O(2)-induced cell death in a concentration-dependent manner. In parallel, intracellular reactive oxygen species generation and lipid peroxidation were inhibited by PCF. Under severe H(2)O(2) insult, PCF promoted endogenous antioxidant defense components including glutathione peroxidase, catalase, superoxide dismutase, and glutathione. PCF also protected DNA from oxidative damage and enhanced the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine from DNA. Further, we found that PCF potentially prevented H(2)O(2)-induced cell apoptosis. When investigated mitogen-activated protein kinase signaling pathway, we found that pre-treatment of cells with PCF significantly blocked H(2)O(2)-induced phosphorylation of c-Jun N-terminal kinase of the mitogen-activated protein kinase family. However, PCF had little inhibitory effect on the H(2)O(2)-induced activation of extracellular signal-regulated kinase. Taken together, these data demonstrate that PCF prevents oxidative stress-induced reactive oxygen species production and c-Jun N-terminal kinase activation and may be useful in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junli Ye
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| | | | | | | |
Collapse
|
141
|
Seneci P, Bianchi A, Battaglia C, Belvisi L, Bolognesi M, Caprini A, Cossu F, Franco ED, Matteo MD, Delia D, Drago C, Khaled A, Lecis D, Manzoni L, Marizzoni M, Mastrangelo E, Milani M, Motto I, Moroni E, Potenza D, Rizzo V, Servida F, Turlizzi E, Varrone M, Vasile F, Scolastico C. Rational design, synthesis and characterization of potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer therapy. Bioorg Med Chem 2009; 17:5834-56. [DOI: 10.1016/j.bmc.2009.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/01/2009] [Accepted: 07/05/2009] [Indexed: 01/02/2023]
|
142
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
143
|
Noble W, Garwood CJ, Hanger DP. Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding. Prion 2009; 3:78-83. [PMID: 19458490 DOI: 10.4161/pri.3.2.8820] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many neurodegenerative disorders share common features including the accumulation of aggregated misfolded proteins, neuroinflammation and the induction of apoptosis. While the contributions of each of these individual elements to neuronal death remain unclear, a commonly used antibiotic, minocycline, has been shown to reduce the progression and severity of disease in several models of neurodegeneration by variously downregulating these molecular pathways. Here we discuss the evidence for the potential of minocycline as a broad-specificity therapeutic agent for those neurodegenerative diseases that are characterized by the presence of misfolded proteins.
Collapse
Affiliation(s)
- Wendy Noble
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.
| | | | | |
Collapse
|
144
|
Chong ZZ, Maiese K. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr Neurovasc Res 2009; 5:159-70. [PMID: 18691073 DOI: 10.2174/156720208785425666] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Focus upon therapeutic strategies that intersect between pathways that govern cellular metabolism and cellular survival may offer the greatest impact for the treatment of a number of neurodegenerative and metabolic disorders, such as diabetes mellitus. In this regard, we investigated the role of a Drosophila nicotinamidase (DN) in mammalian SH-SY5Y neuronal cells during oxidative stress. We demonstrate that during free radical exposure to nitric oxide generators DN neuronal expression significantly increased cell survival and blocked cellular membrane injury. Furthermore, DN neuronal expression prevented both apoptotic late DNA degradation and early phosphatidylserine exposure that may serve to modulate inflammatory cell activation in vivo. Nicotinamidase activity that limited nicotinamide cellular concentrations appeared to be necessary for DN neuroprotection, since application of progressive nicotinamide concentrations could abrogate the benefits of DN expression during oxidative stress. Pathways that involved sirtuin activation and SIRT1 were suggested to be vital, at least in part, for DN to confer protection through a series of studies. First, application of resveratrol increased cell survival during oxidative stress either alone or in conjunction with the expression of DN to a similar degree, suggesting that DN may rely upon SIRT1 activation to foster neuronal protection. Second, the overexpression of either SIRT1 or DN in neurons prevented apoptotic injury specifically in neurons expressing these proteins during oxidative stress, advancing the premise that DN and SIRT1 may employ similar pathways for neuronal protection. Third, inhibition of sirtuin activity with sirtinol was detrimental to neuronal survival during oxidative stress and prevented neuronal protection during overexpression of DN or SIRT1, further supporting that SIRT1 activity may be necessary for DN neuroprotection during oxidative stress. Implementation of further work to elucidate the cellular mechanisms that govern nicotinamidase activity in mammalian cells may offer novel avenues for the treatment of disorders tied to oxidative stress and cellular metabolic dysfunction.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine; Detroit, Michigan 48201, USA
| | | |
Collapse
|
145
|
Zhang QL, Niu Q, Ji XL, Conti P, Boscolo P. Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise? Int J Immunopathol Pharmacol 2009; 21:787-96. [PMID: 19144264 DOI: 10.1177/039463200802100403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Besides being an aggravating factor secondary to major physiological alterations in degenerative diseases, aluminum has also been considered as a risk factor in the etiology. Although many in vivo and in vitro data are in favor of apoptosis and necrosis being involved in Al induced neurodegenerative processes, there is considerable evidence that very complex events may contribute to neural cell death. Necroptosis, a novel cell death pathway, was recently reported to contribute to ischemia brain injury. It is different from, but associated with, apoptosis and necrosis, the two common major pathways of cell demise. In the present study, SH-SY5Y cells were put under stress by Al, a potential degenerative cell death inducer. Nec-1, a specific inhibitor, was used to identify necroptosis. The characteristics observed in Nec-1 and Al treated SH-SY5Y cells showed that necrotic morphological changes were reduced, and a sharp decrease of necrotic rate was detected. Besides, there were Al-induced mitochondria membrane potential decreasing, reactive oxygen species remaining, and autophagosomes declining. The mechanism of Nec-1s effect on cell death may be related to caspases pathways. To our best knowledge, this is the pioneer report on necroptosis in mixed human neural cell death pathways, which might offer a novel therapeutic target for neurodegenerative diseases, and an extended window for neuroprotection.
Collapse
Affiliation(s)
- Q L Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | | | | | | | | |
Collapse
|
146
|
Martínez MC, Andriantsitohaina R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 2009; 11:669-702. [PMID: 19014277 DOI: 10.1089/ars.2007.1993] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reactive nitrogen species (RNS) are various nitric oxide-derived compounds, including nitroxyl anion, nitrosonium cation, higher oxides of nitrogen, S-nitrosothiols, and dinitrosyl iron complexes. RNS have been recognized as playing a crucial role in the physiologic regulation of many, if not all, living cells, such as smooth muscle cells, cardiomyocytes, platelets, and nervous and juxtaglomerular cells. They possess pleiotropic properties on cellular targets after both posttranslational modifications and interactions with reactive oxygen species. Elevated levels of RNS have been implicated in cell injury and death by inducing nitrosative stress. The aim of this comprehensive review is to address the mechanisms of formation and removal of RNS, highlighting their potential cellular targets: lipids, DNA, and proteins. The specific importance of RNS and their paradoxic effects, depending on their local concentration under physiologic conditions, is underscored. An increasing number of compounds that modulate RNS processing or targets are being identified. Such compounds are now undergoing preclinical and clinical evaluations in the treatment of pathologies associated with RNS-induced cellular damage. Future research should help to elucidate the involvement of RNS in the therapeutic effect of drugs used to treat neurodegenerative, cardiovascular, metabolic, and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- M Carmen Martínez
- INSERM, U771, CNRS UMR, 6214, and Université d' Angers, Angers, France
| | | |
Collapse
|
147
|
Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 2009; 11:497-508. [PMID: 18717629 PMCID: PMC2933570 DOI: 10.1089/ars.2008.2242] [Citation(s) in RCA: 357] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce expression of a variety of cytoprotective and detoxification genes. Several of the genes commonly regulated by Nrf2 have been implicated in protection from neurodegenerative conditions. Work from several laboratories has uncovered the potential for Nrf2-mediated transcription to protect from neurodegeneration resulting from mechanisms involving oxidative stress. For this reason, Nrf2 may be considered a therapeutic target for conditions that are known to involve free radical damage. Because common mechanisms of neurodegeneration, such as mitochondrial dysfunction and build-up of reactive oxygen species, are currently being uncovered, targeting Nrf2 may be valuable in combating conditions with variable causes and etiologies. Most effectively to target this protein in neurodegenerative conditions, a description of the involvement of Nrf2 and potential for neuroprotection must come from laboratory models. Herein, we review the current literature that suggests that Nrf2 may be a valuable therapeutic target for neurodegenerative disease, as well as experiments that illustrate potential mechanisms of protection.
Collapse
Affiliation(s)
- Marcus J Calkins
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 2009; 11:481-96. [PMID: 18764739 PMCID: PMC2933567 DOI: 10.1089/ars.2008.2263] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
149
|
Johansson S, Ekström TJ, Marinova Z, Okvist A, Sheedy D, Garrick T, Harper C, Kuzmin A, Yakovleva T, Bakalkin G. Dysregulation of cell death machinery in the prefrontal cortex of human alcoholics. Int J Neuropsychopharmacol 2009; 12:109-15. [PMID: 18937880 PMCID: PMC3391550 DOI: 10.1017/s1461145708009589] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In human alcoholics, the cell density is decreased in the prefrontal cortex (PFC) and other brain areas. This may be due to persistent activation of cell death pathways. To address this hypothesis, we examined the status of cell death machinery in the dorsolateral PFC in alcoholics. Protein and mRNA expression levels of several key pro- and anti-apoptotic genes were compared in post-mortem samples of 14 male human alcoholics and 14 male controls. The findings do not support the hypothesis. On the contrary, they show that several components of intrinsic apoptotic pathway are decreased in alcoholics. No differences were evident in the motor cortex, which is less damaged in alcoholics and was analysed for comparison. Thus, cell death mechanisms may be dysregulated by inhibition of intrinsic apoptotic pathway in the PFC in human alcoholics. This inhibition may reflect molecular adaptations that counteract alcohol neurotoxicity in cells that survive after many years of alcohol exposure and withdrawal.
Collapse
Affiliation(s)
- Sofia Johansson
- Section of Alcohol and Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Cossu F, Mastrangelo E, Milani M, Sorrentino G, Lecis D, Delia D, Manzoni L, Seneci P, Scolastico C, Bolognesi M. Designing Smac-mimetics as antagonists of XIAP, cIAP1, and cIAP2. Biochem Biophys Res Commun 2008; 378:162-7. [PMID: 18992220 DOI: 10.1016/j.bbrc.2008.10.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 11/24/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) such as XIAP, cIAP1, and cIAP2 are upregulated in many cancer cells. Several compounds targeting IAPs and inducing cell death in cancer cells have been developed. Some of these are synthesized mimicking the N-terminal tetrapeptide sequence of Smac/DIABLO, the natural endogenous IAPs inhibitor. Starting from such conceptual design, we generated a library of 4-substituted azabicyclo[5.3.0]alkane Smac-mimetics. Here we report the crystal structure of the BIR3 domain from XIAP in complex with Smac037, a compound designed according to structural principles emerging from our previously analyzed XIAP BIR3/Smac-mimetic complexes. In parallel, we present an in silico docking analysis of three Smac-mimetics to the BIR3 domain of cIAP1, providing general considerations for the development of high affinity lead compounds targeting three members of the IAP family.
Collapse
Affiliation(s)
- Federica Cossu
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|