101
|
Yang M, Chen Y, Zhu L, You L, Tong H, Meng H, Sheng J, Jin J. Harnessing Nanotechnology: Emerging Strategies for Multiple Myeloma Therapy. Biomolecules 2024; 14:83. [PMID: 38254683 PMCID: PMC10813273 DOI: 10.3390/biom14010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Advances in nanotechnology have provided novel avenues for the diagnosis and treatment of multiple myeloma (MM), a hematological malignancy characterized by the clonal proliferation of plasma cells in the bone marrow. This review elucidates the potential of nanotechnology to revolutionize myeloma therapy, focusing on nanoparticle-based drug delivery systems, nanoscale imaging techniques, and nano-immunotherapy. Nanoparticle-based drug delivery systems offer enhanced drug targeting, reduced systemic toxicity, and improved therapeutic efficacy. We discuss the latest developments in nanocarriers, such as liposomes, polymeric nanoparticles, and inorganic nanoparticles, used for the delivery of chemotherapeutic agents, siRNA, and miRNA in MM treatment. We delve into nanoscale imaging techniques which provide spatial multi-omic data, offering a holistic view of the tumor microenvironment. This spatial resolution can help decipher the complex interplay between cancer cells and their surrounding environment, facilitating the development of highly targeted therapies. Lastly, we explore the burgeoning field of nano-immunotherapy, which employs nanoparticles to modulate the immune system for myeloma treatment. Specifically, we consider how nanoparticles can be used to deliver tumor antigens to antigen-presenting cells, thus enhancing the body's immune response against myeloma cells. In conclusion, nanotechnology holds great promise for improving the prognosis and quality of life of MM patients. However, several challenges remain, including the need for further preclinical and clinical trials to assess the safety and efficacy of these emerging strategies. Future research should also focus on developing personalized nanomedicine approaches, which could tailor treatments to individual patients based on their genetic and molecular profiles.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Yu Chen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Liangshun You
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Jianpeng Sheng
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| |
Collapse
|
102
|
Yang JX, Yang YQ, Hu WY, Yang L, Wu J, Wen XX, Yu J, Huang ML, Xu DD, Tie DC, Wang L, Li FF, Li NL. A Phase II Study of Neoadjuvant PLD/Cyclophosphamide and Sequential nab-Paclitaxel Plus Dual HER2 Blockade in HER2-Positive Breast Cancer. Oncologist 2024; 29:e15-e24. [PMID: 37279780 PMCID: PMC10769796 DOI: 10.1093/oncolo/oyad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Neoadjuvant trastuzumab/pertuzumab (HP) plus chemotherapy for HER2-positive breast cancer (BC) achieved promising efficacy. The additional cardiotoxicity still existed. Brecan study evaluated the efficacy and safety of neoadjuvant pegylated liposomal doxorubicin (PLD)/cyclophosphamide and sequential nab-paclitaxel based on HP (PLD/C/HP-nabP/HP). PATIENTS AND METHODS Brecan was a single-arm phase II study. Eligible patients with stages IIA-IIIC HER2-positive BC received 4 cycles of PLD, cyclophosphamide, and HP, followed by 4 cycles of nab-paclitaxel and HP. Definitive surgery was scheduled after 21 days for patients completing treatment or experiencing intolerable toxicity. The primary endpoint was the pathological complete response (pCR). RESULTS Between January 2020 and December 2021, 96 patients were enrolled. Ninety-five (99.0%) patients received 8 cycles of neoadjuvant therapy and all underwent surgery with 45 (46.9%) breast-conserving surgery and 51 (53.1%) mastectomy. The pCR was 80.2% (95%CI, 71.2%-87.0%). Four (4.2%) experienced left ventricular insufficiency with an absolute decline in LVEF (43%-49%). No congestive heart failure and ≥grade 3 cardiac toxicity occurred. The objective response rate was 85.4% (95%CI, 77.0%-91.1%), including 57 (59.4%) complete responses and 25 (26.0%) partial responses. The disease control rate was 99.0% (95%CI, 94.3%-99.8%). For overall safety, ≥grade 3 AEs occurred in 30 (31.3%) and mainly included neutropenia (30.2%) and asthenia (8.3%). No treatment-related deaths occurred. Notably, age of >30 (P = .01; OR = 5.086; 95%CI, 1.44-17.965) and HER2 IHC 3+ (P = .02; OR = 4.398; 95%CI, 1.286-15.002) were independent predictors for superior pCR (ClinicalTrials.gov Identifier NCT05346107). CONCLUSION Brecan study demonstrated the encouraging safety and efficacy of neoadjuvant PLD/C/HP-nabP/HP, suggesting a potential therapeutic option in HER2-positive BC.
Collapse
Affiliation(s)
- Ji-Xin Yang
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Yu-Qing Yang
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Wen-Yu Hu
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Lu Yang
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Jiang Wu
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Xin-Xin Wen
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Jing Yu
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Mei-Ling Huang
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Dong-Dong Xu
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Dan-Chen Tie
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Lei Wang
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| | - Fan-Fan Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People’s Republic of China
| | - Nan-Lin Li
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital of Air Force Military Medical University, Xi’an 710032, People’s Republic of China
| |
Collapse
|
103
|
Rajora MA, Dhaliwal A, Zheng M, Choi V, Overchuk M, Lou JWH, Pellow C, Goertz D, Chen J, Zheng G. Quantitative Pharmacokinetics Reveal Impact of Lipid Composition on Microbubble and Nanoprogeny Shell Fate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304453. [PMID: 38032129 PMCID: PMC10811482 DOI: 10.1002/advs.202304453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.
Collapse
Affiliation(s)
- Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Alexander Dhaliwal
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Mark Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Victor Choi
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Marta Overchuk
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNC27599USA
| | - Jenny W. H. Lou
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Carly Pellow
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - David Goertz
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Juan Chen
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| |
Collapse
|
104
|
Nooreen Z, Tandon S, Wal A, Rai AK. An Updated Insight into Phytomolecules and Novel Approaches used in the Management of Breast Cancer. Curr Drug Targets 2024; 25:201-219. [PMID: 38231060 DOI: 10.2174/0113894501277556231221072938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer is a widespread condition that kills more women from cancer-related causes than any other type of cancer globally. Women who have estrogen-dependent, initial metastatic breast cancer frequently receive treatment with surgery, radiation therapy, and chemotherapy. They may also get more specialized treatments like tamoxifen or aromatase inhibitors (anastrozole or letrozole). The World Health Organisation reported in 2012 that by 2030, breast cancer will be more common worldwide. There are several phytochemicals, such as isoflavones, coumestans, lignans, and prenylflavonoides. Isoflavones have been shown in studies to prevent the spread of breast cancer and to trigger apoptosis. Targeting BCs in metastatic breast cancer may be made possible by combining well-formulated phytochemicals in nanoparticles or other novel drug delivery agents with currently accepted endocrine and/or conventional chemotherapies. Cell signaling, regulation of cell cycles, oxidative stress action, and inflammation could be positively impacted by phytoconstituents. They have the ability to alter non-coding RNAs, to prevent the proliferation and regeneration of cancer cells. The availability of novel approaches helps in disease targeting, safety, effectiveness and efficacy. The current literature helps to know the available drugs i.e. phytoconstituents or novel drug delivery like nanoparticle, microsphere, micelles, liposomes and neosomes. The literature has been taken from PubMed, Google Scholar, SciFinder, or other internet sites.
Collapse
Affiliation(s)
- Zulfa Nooreen
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhautipratapur, Uttar Pradseh 209305, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhautipratapur, Uttar Pradseh 209305, India
| | - Awani Kumar Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhautipratapur, Uttar Pradseh 209305, India
| |
Collapse
|
105
|
Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev 2024; 321:246-262. [PMID: 37823450 DOI: 10.1111/imr.13279] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Xu Sun
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanpeng Yang
- Cardiac Care Unit, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaona Meng
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
106
|
Schlefman J, Brenin C, Millard T, Dillon P. Estrogen receptor positive breast cancer: contemporary nuances to sequencing therapy. Med Oncol 2023; 41:19. [PMID: 38103078 DOI: 10.1007/s12032-023-02255-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
The treatment landscape of hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer has evolved dramatically in recent years. While the combination of endocrine therapy and a cyclin-dependent kinase 4/6 inhibitor is accepted as standard first-line treatment in most settings without visceral crisis, newer therapies have challenged traditional treatment models where cytotoxic chemotherapy was previously felt to be the only second-line option at time of progression. The incorporation of next-generation sequencing has led to the identification of molecular targets for therapeutic agents, including phosphatidylinositol 3-kinase and ESR1, though similar pathways can be targeted even in the absence of a mutation, such as with use of inhibitors of mammalian target of rapamycin. Current data also supports the use of cyclin-dependent kinase inhibitors beyond progression, even prior to the patient's first introduction to chemotherapy. The abundance of therapeutic options not only delay time to cytotoxic chemotherapy and antibody-drug conjugate initiation, but has resulted in improvement in breast cancer survivorship. Many unanswered questions remain, however, as to the most efficacious way to sequence these novel agents. To assist in this decision-making, we will review the existing data on systemic therapy and propose a treatment paradigm.
Collapse
Affiliation(s)
- Jenna Schlefman
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA
| | - Christiana Brenin
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA
| | - Trish Millard
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA
| | - Patrick Dillon
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA.
| |
Collapse
|
107
|
Evens AM. Hodgkin lymphoma treatment for older persons in the modern era. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:483-499. [PMID: 38066840 PMCID: PMC10727079 DOI: 10.1182/hematology.2023000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There has been a renewed effort globally in the study of older Hodgkin lymphoma (HL) patients, generating a multitude of new data. For prognostication, advancing age, comorbidities, altered functional status, Hispanic ethnicity, and lack of dose intensity (especially without anthracycline) portend inferior survival. Geriatric assessments (GA), including activities of daily living (ADL) and comorbidities, should be objectively measured in all patients. In addition, proactive multidisciplinary medical management is recommended (eg, geriatrics, cardiology, primary care), and pre-phase therapy should be considered for most patients. Treatment for fit older HL patients should be given with curative intent, including anthracyclines, and bleomycin should be minimized (or avoided). Brentuximab vedotin given sequentially before and after doxorubicin, vinblastine, dacarbazine (AVD) chemotherapy for untreated patients is tolerable and effective, and frontline checkpoint inhibitor/AVD platforms are rapidly emerging. Therapy for patients who are unfit or frail, whether due to comorbidities and/or ADL loss, is less clear and should be individualized with consideration of attenuated anthracycline-based therapy versus lower-intensity regimens with inclusion of brentuximab vedotin +/- checkpoint inhibitors. For all patients, there should be clinical vigilance with close monitoring for treatment-related toxicities, including neurotoxicity, cardiopulmonary, and infectious complications. Finally, active surveillance for "postacute" complications 1 to 10 years post therapy, especially cardiac disease, is needed for cured patients. Altogether, therapy for older HL patients should include anthracycline-based therapy in most cases, and novel targeted agents should continue to be integrated into treatment paradigms, with more research needed on how best to utilize GAs for treatment decisions.
Collapse
Affiliation(s)
- Andrew M. Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| |
Collapse
|
108
|
Qin M, Xia H, Xu W, Chen B, Wang Y. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Adv Drug Deliv Rev 2023; 203:115137. [PMID: 37949414 DOI: 10.1016/j.addr.2023.115137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The rapid development of nanomedicines is revolutionizing the landscape of cancer treatment, while effectively delivering them into solid tumors remains a formidable challenge. Currently, there is a huge disconnect on therapeutic response between regulatory approved nanomedicines and laboratory reported nanoparticles. The discrepancy is mainly resulted from the failure of using the classic overall pharmacokinetics behaviors of nanomedicines in tumors to predict the antitumor efficacy. Increasing evidence has revealed that the therapeutic efficacy predominantly relies on the intratumoral spatiotemporal distribution of nanomedicines. This review focuses on the spatiotemporal distribution of systemically administered chemotherapeutic nanomedicines in solid tumor. Firstly, the intratumoral biological barriers that regulate the spatiotemporal distribution of nanomedicines are described in detail. Next, the influences on antitumor efficacy caused by the spatial distribution and temporal drug release of nanomedicines are emphatically analyzed. Then, current methodologies for evaluating the spatiotemporal distribution of nanomedicines are summarized. Finally, the advanced strategies to positively modulate the spatiotemporal distribution of nanomedicines for an optimal tumor therapy are comprehensively reviewed.
Collapse
Affiliation(s)
- Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhao Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
109
|
Mo Z, Deng Y, Bao Y, Liu J, Jiang Y. Evaluation of cardiotoxicity of anthracycline-containing chemotherapy regimens in patients with bone and soft tissue sarcomas: A study of the FDA adverse event reporting system joint single-center real-world experience. Cancer Med 2023; 12:21709-21724. [PMID: 38054208 PMCID: PMC10757145 DOI: 10.1002/cam4.6730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES To assess the occurrence of cardiotoxicity in patients with tumors receiving anthracycline-based chemotherapy, especially for sarcomas. METHODS This study summarized the types and frequency of adverse events (AEs) for three anthracyclines from the FDA adverse event reporting system (FAERS) database. FAERS data from January 2004 to June 2022 were collected and analyzed. Disproportionality analyses, logistic regression, and descriptive analysis were used to compare the differences in cardiac disorders. A retrospective cohort study was conducted in a single center between December 2008 and May 2022. Our hospital-treated patients with bone and soft tissue sarcomas (BSTSs) with anthracycline-containing chemotherapy were analyzed. Serum markers, echocardiography, and electrocardiography have been used to evaluate cardiotoxic events. RESULTS One hundred thousand and seventy-five AE reports were obtained for doxorubicin (ADM), epirubicin (EPI), and liposome doxorubicin (L-ADM) from the FAERS database. ADM (OR = 3.1, p < 0.001), EPI (OR = 1.5, p < 0.001), and sarcomas (OR = 1.8, p < 0.001) may increase the probability of cardiac disorders. Cardiac failure, cardiotoxicity, and cardiomyopathy were anthracyclines' top 3 frequent AEs. Among patients receiving ADM-containing therapy, those with ADM applied at doses ≥75 mg/m2 /cycle were more likely to develop cardiac disorders than the other subgroups (OR = 3.5, p < 0.001). Patients younger than 18 are more likely to benefit from dexrazoxane prevention of cardiac failure. Six hundred and eighty-three patients with BSTSs receiving anthracycline-based chemotherapy were analyzed in our center. Patients receiving ADM-containing chemotherapy were likelier to experience abnormalities in serum troponin-T and left ventricular ejection fraction (p < 0.05). 2.0% (6/300) of patients receiving ADM-containing chemotherapy required adjustment of the chemotherapy regimen because of cardiotoxicity, whereas none were in the EPI or L-ADM groups. CONCLUSIONS AND RELEVANCE Among patients receiving anthracycline-containing therapy, patients with BSTSs were more likely to develop cardiac disorders than other tumors. In addition, patients with BSTSs receiving ADM chemotherapy had a higher likelihood of cardiotoxic events than those receiving EPI or L-ADM.
Collapse
Affiliation(s)
- Zeming Mo
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yaotiao Deng
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yiwen Bao
- Department of OncologyThe People's Hospital of QiannanDuyunGuizhouChina
| | - Jie Liu
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yu Jiang
- Division of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
110
|
Shimoyama S, Okada K, Kimura T, Morohashi Y, Nakayama S, Kemmochi S, Makita-Suzuki K, Matulonis UA, Mori M. FF-10850, a Novel Liposomal Topotecan Achieves Superior Antitumor Activity via Macrophage- and Ammonia-Mediated Payload Release in the Tumor Microenvironment. Mol Cancer Ther 2023; 22:1454-1464. [PMID: 37683276 PMCID: PMC10690090 DOI: 10.1158/1535-7163.mct-23-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Topotecan, an approved treatment for refractory or recurrent ovarian cancer, has clinical limitations such as rapid clearance and hematologic toxicity. To overcome these limitations and maximize clinical benefit, we designed FF-10850, a dihydrosphingomyelin-based liposomal topotecan. FF-10850 demonstrated superior antitumor activity to topotecan in ovarian cancer cell line-based xenograft models, as well as in a clinically relevant DF181 platinum-refractory ovarian cancer patient-derived xenograft model. The safety profile was also improved with mitigation of hematologic toxicity. The improved antitumor activity and safety profile are achieved via its preferential accumulation and payload release triggered in the tumor microenvironment. Our data indicate that tumor-associated macrophages internalize FF-10850, resulting in complete payload release. The release mechanism also appears to be mediated by high ammonia concentration resulting from glutaminolysis, which is activated by tumor metabolic reprogramming. In ammonia-rich conditions, FF-10850 released payload more rapidly and to a greater extent than liposomal doxorubicin, a currently approved treatment for ovarian cancer. FF-10850 significantly enhanced antitumor activity in combination with carboplatin or PARP inhibitor without detrimental effects on body weight in murine xenograft models, and demonstrated synergistic antitumor activity combined with anti-PD-1 antibody with the development of tumor antigen-specific immunity. These results support phase I investigation of FF-10850 for the treatment of solid tumors including ovarian cancer (NCT04047251), and further evaluation in combination settings.
Collapse
Affiliation(s)
| | - Ken Okada
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Toshifumi Kimura
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Yasushi Morohashi
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Shinji Nakayama
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Sayaka Kemmochi
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Keiko Makita-Suzuki
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mikinaga Mori
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| |
Collapse
|
111
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
112
|
Chen HJ, Cheng YA, Chen YT, Li CC, Huang BC, Hong ST, Chen IJ, Ho KW, Chen CY, Chen FM, Wang JY, Roffler SR, Cheng TL, Wu TH. Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20). Cancer Nanotechnol 2023; 14:78. [DOI: 10.1186/s12645-023-00230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/15/2023] [Indexed: 01/12/2025] Open
Abstract
Abstract
Background
PEGylated nanoparticles (PEG-NPs) are not effective for hematologic malignancies as they lack the enhanced permeability and retention effect (EPR effect). Tumor-targeted PEG-NPs can systemically track lymphoma and actively internalize into cancer cells to enhance therapeutic efficacy. We generated an anti-PEG bispecific antibody (BsAb; mPEG × CD20) which was able to simultaneously bind to methoxy PEG on liposomes and CD20 to form multivalent αCD20-armed liposomes. This αCD20-armed liposome was able to crosslink CD20 on lymphoma cells to enhance cellular internalization and the anti-cancer efficacy of the liposomes to lymphoma. We generated mPEG × CD20 and used this bispecific antibody to modify PEGylated liposomal doxorubicin (PLD) through a one-step formulation.
Results
αCD20-armed PLD (αCD20/PLD) specifically targeted CD20+ Raji cells and enhanced PLD internalization 56-fold after 24 h. αCD20/PLD also increased cytotoxicity to Raji cells by 15.2-fold in comparison with PLD and control mPEG × DNS-modified PLD (αDNS/PLD). mPEG × CD20 significantly enhanced the tumor accumulation 2.8-fold in comparison with mPEG × DNS-conjugated PEGylated liposomal DiD in Raji tumors. Moreover, αCD20/PLD had significantly greater therapeutic efficacy as compared to αDNS/PLD (P < 0.0001) and PLD(P < 0.0001), and αCD20/PLD-treated mice had a 90% survival rate at 100-day post-treatment.
Conclusions
Modification of mPEG × CD20 can confer PLD with CD20 specificity to enhance the internalization and the anti-cancer efficacy of PEG-NPs. This therapeutic strategy can conveniently be used to modify various PEG-NPs with anti-PEG BsAb to overcome the lack of EPR effect of hematologic malignancies and improve therapeutic efficacy.
Collapse
|
113
|
Fortin MC, LaCroix AS, Grammatopoulos TN, Tan L, Wang Q, Manca D. Lower cardiotoxicity of CPX-351 relative to daunorubicin plus cytarabine free-drug combination in hiPSC-derived cardiomyocytes in vitro. Sci Rep 2023; 13:21054. [PMID: 38030645 PMCID: PMC10686991 DOI: 10.1038/s41598-023-47293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Liposomal formulations are hypothesized to alleviate anthracycline cardiotoxicity, although this has only been documented clinically for doxorubicin. We developed an in vitro multiparametric model using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to assess the relative toxicity of anthracyclines across formulations. Proof of concept was established by treating hiPSC-CM with equivalent concentrations of free and liposomal doxorubicin. The study was then repeated with free daunorubicin plus cytarabine and CPX-351, a dual-drug liposomal encapsulation of daunorubicin/cytarabine. hiPSC-CM were treated with free-drug or liposomal formulations for 24 h on Days 1, 3, and 5 at equivalent concentrations ranging from 0 to 1000 ng/mL and assessed on subsequent days. Free-drug treatment resulted in concentration-dependent cumulative cytotoxicity (microscopy), more profound decrease in ATP levels, and significant time- and concentration-dependent decreases in oxygen consumption versus liposomal formulations (p < 0.01). Repeated free-drug exposure also resulted in greater release of biomarkers (cardiac troponin I, FABP3) and lactate dehydrogenase, as well as in a biphasic rhythmicity response (initial increase followed by slowing/quiescence of beating) indicating significant injury, which was not observed after repeated exposure to liposomal formulations. Overall, liposomal formulations were considerably less toxic to hiPSC-CM than their free-drug counterparts. Clinical data will be needed to confirm findings for CPX-351.
Collapse
Affiliation(s)
- Marie C Fortin
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA.
| | | | | | - Lei Tan
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA
| | - Qi Wang
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA
| | - Dino Manca
- Jazz Pharmaceuticals, 2005 Market Street, 21St Floor, Philadelphia, PA, 19103, USA
| |
Collapse
|
114
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
115
|
Xu J, Karra V, Large DE, Auguste DT, Hung FR. Understanding the Mechanical Properties of Ultradeformable Liposomes Using Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9496-9512. [PMID: 37879075 PMCID: PMC10641833 DOI: 10.1021/acs.jpcb.3c04386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Improving drug delivery efficiency to solid tumor sites is a central challenge in anticancer therapeutic research. Our previous experimental study (Guo et al., Nat. Commun. 2018, 9, 130) showed that soft, elastic liposomes had increased uptake and accumulation in cancer cells and tumors in vitro and in vivo respectively, relative to rigid particles. As a first step toward understanding how liposomes' molecular structure and composition modulates their elasticity, we performed all-atom and coarse-grained classical molecular dynamics (MD) simulations of lipid bilayers formed by mixing a long-tailed unsaturated phospholipid with a short-tailed saturated lipid with the same headgroup. The former types of phospholipids considered were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (termed here DPMPC). The shorter saturated lipids examined were 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Several lipid concentrations and surface tensions were considered. Our results show that DOPC or DPMPC systems having 25-35 mol % of the shortest lipids DHPC or DDPC are the least rigid, having area compressibility moduli KA that are ∼10% smaller than the values observed in pure DOPC or DPMPC bilayers. These results agree with experimental measurements of the stretching modulus and lysis tension in liposomes with the same compositions. These mixed systems also have lower areas per lipid and form more uneven x-y interfaces with water, the tails of both primary and secondary lipids are more disordered, and the terminal methyl groups in the tails of the long lipid DOPC or DPMPC wriggle more in the vertical direction, compared to pure DOPC or DPMPC bilayers or their mixtures with the longer saturated lipid DLPC or DMPC. These observations confirm our hypothesis that adding increasing concentrations of the short unsaturated lipid DHPC or DDPC to DOPC or DPMPC bilayers alters lipid packing and thus makes the resulting liposomes more elastic and less rigid. No formation of lipid nanodomains was noted in our simulations, and no clear trends were observed in the lateral diffusivities of the lipids as the concentration, type of secondary lipid, and surface tension were varied.
Collapse
Affiliation(s)
- Jiaming Xu
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vyshnavi Karra
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Danielle E. Large
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Debra T. Auguste
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Francisco R. Hung
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
116
|
Lin X, Wu G, Wang S, Huang J. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity. Front Pharmacol 2023; 14:1255158. [PMID: 38026961 PMCID: PMC10665513 DOI: 10.3389/fphar.2023.1255158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Doxorubicin-induced cardiotoxicity represents a prevalent adverse effect encountered in patients undergoing treatment with doxorubicin. To date, there has been no bibliometric study to summarize the field of doxorubicin-induced cardiotoxicity. In our study, we aim to determine the current status and frontiers of doxorubicin-induced cardiotoxicity by bibliometric analysis. Methods: The documents concerning doxorubicin-induced cardiotoxicity are obtained from the Web of Science Core Collection database (WOSCC), and VOSviewer 1.6.16, CiteSpace 5.1.3 and the WOSCC's literature analysis wire were used to conduct the bibliometric analysis. Results: In total, 7,021 publications were encompassed, which are produced by 37,152 authors and 6,659 organizations, 1,323 journals, and 101 countries/regions. The most productive author, institution, country and journal were Bonnie Ky with 35 publications, University of Texas with 190 documents, the United States with 1,912 publications, and PLOS ONE with 120 documents. The first high-cited article was published in the NEJM with 8,134 citations authored by DJ Slamon et al., in 2001. For keyword analysis, there are four clusters depicted in distinct directions. The keywords in the red cluster are oxidative stress, apoptosis, and cardiomyopathy. The keywords in the green cluster are cardiotoxicity, heart failure, and anthracycline. The keywords in the blue cluster are chemotherapy, trastuzumab, and paclitaxel. The keywords in the purple cluster are doxorubicin, adriamycin, and cancer. Most of the documents were derived from the United States, China and Italy (4,080/7,021, 58.1%). The number of studies from other countries should be increased. Conclusion: In conclusion, the main research hotspots and frontiers in the field of doxorubicin-induced cardiotoxicity include the role of doxorubicin in cardiotoxicity, the mechanisms underlying doxorubicin-induced cardiotoxicity, and the development of treatment strategies for doxorubicin-induced cardiotoxicity. More studies are needed to explore the mechanisms and treatment of doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Shuai Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
117
|
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep 2023; 50:9663-9676. [PMID: 37828275 DOI: 10.1007/s11033-023-08809-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
As far as health issues are concerned, cancer causes one out of every six deaths around the globe. As potent therapeutics are still awaited for the successful treatment of cancer, some unconventional treatments like radiotherapy, surgery, and chemotherapy and some advanced technologies like gene therapy, stem cell therapy, natural antioxidants, targeted therapy, photodynamic therapy, nanoparticles, and precision medicine are available to diagnose and treat cancer. In the present scenario, the prime focus is on developing efficient nanomedicines to treat cancer. Although stem cell therapy has the capability to target primary as well as metastatic cancer foci, it also has the ability to repair and regenerate injured tissues. However, nanoparticles are designed to have such novel therapeutic capabilities. Targeted therapy is also now available to arrest the growth and development of cancer cells without damaging healthy tissues. Another alternative approach in this direction is photodynamic therapy (PDT), which has more potential to treat cancer as it does minimal damage and does not limit other technologies, as in the case of chemotherapy and radiotherapy. The best possible way to treat cancer is by developing novel therapeutics through translational research. In the present scenario, an important event in modern oncology therapy is the shift from an organ-centric paradigm guiding therapy to complete molecular investigations. The lacunae in anticancer therapy may be addressed through the creation of contemporary and pertinent cancer therapeutic techniques. In the meantime, the growth of nanotechnology, material sciences, and biomedical sciences has revealed a wide range of contemporary therapies with intelligent features, adaptable functions, and modification potential. The development of numerous therapeutic techniques for the treatment of cancer is summarized in this article. Additionally, it can serve as a resource for oncology and immunology researchers.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| |
Collapse
|
118
|
Ashwani PV, Gopika G, Arun Krishna KV, Jose J, John F, George J. Stimuli-Responsive and Multifunctional Nanogels in Drug Delivery. Chem Biodivers 2023; 20:e202301009. [PMID: 37718283 DOI: 10.1002/cbdv.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
Nanogels represent promising drug delivery systems in the biomedical field, designed to overcome challenges associated with standard treatment approaches. Stimuli-responsive nanogels, often referred to as intelligent materials, have garnered significant attention for their potential to enhance control over properties such as drug release and targeting. Furthermore, researchers have recently explored the application of nanogels in diverse sectors beyond biomedicine including sensing materials, catalysts, or adsorbents for environmental applications. However, to fully harness their potential as practical delivery systems, further research is required to better understand their pharmacokinetic behaviour, interactions between nanogels and bio distributions, as well as toxicities. One promising future application of stimuli-responsive multifunctional nanogels is their use as delivery agents in cancer treatment, offering an alternative to overcome the challenges with conventional approaches. This review discusses various synthetic methods employed in developing nanogels as efficient carriers for drug delivery in cancer treatment. The investigations explore, the key aspects of nanogels, including their multifunctionality and stimuli-responsive properties, as well as associated toxicity concerns. The discussions presented herein aim to provide the readers a comprehensive understanding of the potential of nanogels as smart drug delivery systems in the context of cancer therapy.
Collapse
Affiliation(s)
- P V Ashwani
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - G Gopika
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - K V Arun Krishna
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Josena Jose
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
119
|
Rastegar G, Salman MM, Sirsi SR. Remote Loading: The Missing Piece for Achieving High Drug Payload and Rapid Release in Polymeric Microbubbles. Pharmaceutics 2023; 15:2550. [PMID: 38004529 PMCID: PMC10675060 DOI: 10.3390/pharmaceutics15112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The use of drug-loaded microbubbles for targeted drug delivery, particularly in cancer treatment, has been extensively studied in recent years. However, the loading capacity of microbubbles has been limited due to their surface area. Typically, drug molecules are loaded on or within the shell, or drug-loaded nanoparticles are coated on the surfaces of microbubbles. To address this significant limitation, we have introduced a novel approach. For the first time, we employed a transmembrane ammonium sulfate and pH gradient to load doxorubicin in a crystallized form in the core of polymeric microcapsules. Subsequently, we created remotely loaded microbubbles (RLMBs) through the sublimation of the liquid core of the microcapsules. Remotely loaded microcapsules exhibited an 18-fold increase in drug payload compared with physically loaded microcapsules. Furthermore, we investigated the drug release of RLMBs when exposed to an ultrasound field. After 120 s, an impressive 82.4 ± 5.5% of the loaded doxorubicin was released, demonstrating the remarkable capability of remotely loaded microbubbles for on-demand drug release. This study is the first to report such microbubbles that enable rapid drug release from the core. This innovative technique holds great promise in enhancing drug loading capacity and advancing targeted drug delivery.
Collapse
Affiliation(s)
| | | | - Shashank R. Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (G.R.); (M.M.S.)
| |
Collapse
|
120
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
121
|
Buonadonna A, Scalone S, Lombardi D, Fumagalli A, Guglielmi A, Lestuzzi C, Polesel J, Canzonieri V, Lamon S, Giovanis P, Gagno S, Corona G, Mascarin M, Belluco C, De Paoli A, Fasola G, Puglisi F, Miolo G. Prospective, Multicenter Phase II Trial of Non-Pegylated Liposomal Doxorubicin Combined with Ifosfamide in First-Line Treatment of Advanced/Metastatic Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5036. [PMID: 37894403 PMCID: PMC10605752 DOI: 10.3390/cancers15205036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Doxorubicin is a widely used anticancer agent as a first-line treatment for various tumor types, including sarcomas. Its use is hampered by adverse events, among which is the risk of dose dependence. The potential cardiotoxicity, which increases with higher doses, poses a significant challenge to its safe and effective application. To try to overcome these undesired effects, encapsulation of doxorubicin in liposomes has been proposed. Caelyx and Myocet are different formulations of pegylated (PLD) and non-pegylated liposomal doxorubicin (NPLD), respectively. Both PLD and NPLD have shown similar activity compared with free drugs but with reduced cardiotoxicity. While the hand-foot syndrome exhibits a high occurrence among patients treated with PLD, its frequency is notably reduced in those receiving NPLD. In this prospective, multicenter, one-stage, single-arm phase II trial, we assessed the combination of NPLD and ifosfamide as first-line treatment for advanced/metastatic soft tissue sarcoma (STS). Patients received six cycles of NPLD (50 mg/m2) on day 1 along with ifosfamide (3000 mg/m2 on days 1, 2, and 3 with equidose MESNA) administered every 3 weeks. The overall response rate, yielding 40% (95% CI: 0.29-0.51), resulted in statistical significance; the disease control rate stood at 81% (95% CI: 0.73-0.90), while only 16% (95% CI: 0.08-0.24) of patients experienced a progressive disease. These findings indicate that the combination of NPLD and ifosfamide yields a statistically significant response rate in advanced/metastatic STS with limited toxicity.
Collapse
Affiliation(s)
- Angela Buonadonna
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di RiferimentoOncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (S.S.); (D.L.); (A.F.); or (F.P.)
| | - Simona Scalone
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di RiferimentoOncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (S.S.); (D.L.); (A.F.); or (F.P.)
| | - Davide Lombardi
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di RiferimentoOncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (S.S.); (D.L.); (A.F.); or (F.P.)
| | - Arianna Fumagalli
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di RiferimentoOncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (S.S.); (D.L.); (A.F.); or (F.P.)
| | - Alessandra Guglielmi
- Oncology Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), 34100 Trieste, Italy;
| | - Chiara Lestuzzi
- Department of Cardiology, Azienda Sanitaria Friuli Occidentale (ASFO), Cardiology Unit at Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Stefano Lamon
- Unit of Oncology, Oderzo Hospital, Azienda ULSS 2 Marca Trevigiana, 31046 Oderzo, Italy;
| | - Petros Giovanis
- Department of Oncology, Unit of Oncology, Santa Maria del Prato Hospital, Azienda ULSS 1 Dolomiti, 32032 Feltre, Italy;
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Claudio Belluco
- Department of Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Antonino De Paoli
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Gianpiero Fasola
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy;
| | - Fabio Puglisi
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di RiferimentoOncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (S.S.); (D.L.); (A.F.); or (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianmaria Miolo
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di RiferimentoOncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (S.S.); (D.L.); (A.F.); or (F.P.)
| |
Collapse
|
122
|
Wallrabenstein T, Oseledchyk A, Daetwyler E, Rochlitz C, Vetter M. Upfront Taxane Could Be Superior to Pegylated Liposomal Doxorubicin (PLD): A Retrospective Real-World Analysis of Treatment Sequence Taxane-PLD versus PLD-Taxane in Patients with Metastatic Breast Cancer. Cancers (Basel) 2023; 15:4953. [PMID: 37894320 PMCID: PMC10605604 DOI: 10.3390/cancers15204953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Patients with endocrine-resistant metastatic breast cancer (MBC) require cytostatic therapy. Single-agent taxanes and anthracyclines, including pegylated liposomal doxorubicin (PLD), are standard treatment options. There are no prospective data regarding optimal treatment sequences, and real-world data regarding both treatment options are limited. Methods: We analyzed electronic records of all patients with Her2-negative MBC treated with either first-line PLD or first-line taxane and subsequent crossover at the University Hospital Basel between 2003 and 2021. The primary endpoint was time to next chemotherapy or death (TTNC). Secondary endpoints were overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). We used the Kaplan-Meyer method and logrank test to compare time-to-event endpoints and the Fisher exact test to compare discrete variables. Results: We retrospectively identified 42 patients with Her2-negative MBC who have received either single-agent PLD or single-agent taxane as first-line chemotherapy with subsequent crossover, including 23 patients who received first-line PLD and 19 patients who received first-line taxane. Baseline characteristics were similar between treatment groups. Treatment sequence PLD-taxane was significantly inferior to taxane-PLD regarding all endpoints: median TTNC 4.9 vs. 9.9 months (p = 0.006), median OS 17.8 vs. 24.6 months (p = 0.05), median PFS 4.4 vs. 9.0 months (p = 0.005), and ORR 13% vs. 53% (p = 0.01). Conclusions: Here, we report a first retrospective head-to-head comparison of the treatment sequence PLD-taxane versus taxane-PLD in patients with MBC, showing a substantial advantage of using taxanes first, followed by PLD. An inherent treatment bias in favor of first-line taxanes cannot be excluded, thus calling for prospective validation.
Collapse
Affiliation(s)
- Till Wallrabenstein
- University Hospital Basel, Medical Oncology, Petersgraben 4, 4031 Basel, Switzerland (M.V.)
- University Medical Center Freiburg, Hematology and Oncology, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Anton Oseledchyk
- University Hospital Basel, Medical Oncology, Petersgraben 4, 4031 Basel, Switzerland (M.V.)
| | - Eveline Daetwyler
- University Hospital Basel, Medical Oncology, Petersgraben 4, 4031 Basel, Switzerland (M.V.)
| | - Christoph Rochlitz
- University Hospital Basel, Medical Oncology, Petersgraben 4, 4031 Basel, Switzerland (M.V.)
| | - Marcus Vetter
- University Hospital Basel, Medical Oncology, Petersgraben 4, 4031 Basel, Switzerland (M.V.)
- Zentrum Onkologie & Hämatologie, Tumorzentrum, Kantonsspital Baselland, Rheinstrasse 26, 4410 Liestal, Switzerland
- Medical Faculty, University Basel, 4031 Basel, Switzerland
| |
Collapse
|
123
|
Liu H, Zhang H, Nie J, Yu Y, Li Q, Lv C, Lu J. Systematic analysis of the material basis and mechanism of total saponins of mountain cultivated ginseng against doxorubicin-induced cardiotoxicity based on integrating network pharmacology and in vivo substance profiling. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:755-771. [PMID: 36529443 DOI: 10.1002/pca.3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Doxorubicin-induced cardiotoxicity (DIC) is a serious obstacle to oncologic treatment. Mountain cultivated ginseng (MCG) exhibits stronger pharmacological effects than cultivated ginseng (CG) mainly due to the differences in ginsenosides. However, the material basis and the underlying mechanism of the protective effects of total saponins of MCG (TSMCG) against DIC are unclear. OBJECTIVES We aimed to elucidate the material basis and the pharmacodynamic effects of TSMCG on DIC as well as the underlying mechanisms. METHODS To comprehensively analyze the effective substances, the chemical components of TSMCG and their prototypes or metabolites in vivo were characterized through UHPLC/Q-TOF-MS. Then, an absorbed component-target-disease network was established to explore the mechanisms underlying the protective effects of TSMCG against DIC. H9c2 cells were employed for pharmacodynamic assays. The mechanism was verified by Western blot and molecular docking simulations. RESULTS A total of 56 main ginsenosides were identified in TSMCG, including 27 ginsenosides of PPD type, 15 ginsenosides of PPT type, two ginsenosides of OA types, and 12 ginsenosides of other types. Moreover, 55 ginsenoside prototypes or metabolites in vivo were tentatively characterized. Ginsenoside Ra1 , a differential compound between MCG and CG, could be metabolized by oxidation and deglycosylation. Network pharmacology showed that AKT1, p53, and STAT3 are core targets of 62 intersecting genes. Molecular docking results indicated that most of the ginsenosides have favorable affinity with these core targets. After doxorubicin exposure, TSMCG could increase cell viability and inhibit apoptosis in a dose-dependent manner. CONCLUSION Our work reveals a novel comprehensive strategy to study the material basis of the protective effects of TSMCG against DIC and the underlying mechanisms through integrating in vivo substance identification, metabolic profiling, network pharmacology, pharmacodynamic evaluation, and mechanism verification.
Collapse
Affiliation(s)
- Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Haiqiang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianing Nie
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiao Li
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
124
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
125
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
126
|
Pan M, Liu Y, Sang T, Xie J, Lin H, Wei J, Shao S, Zheng Y, Zhang J. Enhanced antitumor and anti-metastasis by VEGFR2-targeted doxorubicin immunoliposome synergy with NK cell activation. Invest New Drugs 2023; 41:664-676. [PMID: 37542666 DOI: 10.1007/s10637-023-01372-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/08/2023] [Indexed: 08/07/2023]
Abstract
Liposomal doxorubicin exhibits stronger drug accumulation at the tumor site due to the Enhanced Permeability and Retention (EPR) effect. However, the prognosis for the patient is poor due to this drug's lack of targeting and tumor metastasis during treatment. Vascular epidermal growth factor receptor (VEGFR2) plays an important role in angiogenesis and cancer metastasis. To enhance antitumor efficacy of PEGylated liposomal doxorubicin, we constructed a VEGFR2-targeted and doxorubicin-loaded immunoliposome (Lipo-DOX-C00) by conjugating a VEGFR2-specific, single chain antibody fragment to DSPE-PEG2000-MAL, and then we inserted the antibody-conjugated polymer into liposomal doxorubicin (Lipo-DOX). The immunoliposome was formed uniformly with high affinity for VEGFR2. In vitro, Lipo-DOX-C00 enhanced doxorubicin internalization into LLC and 4T1 cells compared with non-conjugated, liposomal doxorubicin. In vivo, Lipo-DOX-C00 delivered DOX to tumor tissues effectively, which exhibited an improved antitumor and anti-metastasis efficacy in both LLC subcutaneous tumor models and 4T1 tumor models. In addition, the combined therapy of a VEGFR2-MICA bispecific antibody (JZC01) and Lipo-DOX-C00 achieved enhanced inhibition of cancer growth and metastasis due to activation of the immune system. Our study provides a promising approach to clinical application of liposomal doxorubicin.
Collapse
Affiliation(s)
- Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yali Liu
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Sang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiajun Xie
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Huishu Lin
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianpeng Wei
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuai Shao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanying Zheng
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
127
|
Park JH, Lee BC, Seo YC, Kim JH, Kim DJ, Lee HJ, Moon H, Lee S. Drug delivery by sonosensitive liposome and microbubble with acoustic-lens attached ultrasound: an in vivo feasibility study in a murine melanoma model. Sci Rep 2023; 13:15798. [PMID: 37737248 PMCID: PMC10517155 DOI: 10.1038/s41598-023-42786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Conventional chemotherapy methods have adverse off-target effects and low therapeutic efficiencies of drug release in target tumors. In this study, we proposed a combination therapy of doxorubicin (DOX)-loaded ultrasound (US)-sensitive liposomal nanocarriers (IMP301), microbubbles (MBs) under focused US exposure using convex acoustic lens-attached US (LENS) to tumor treatment. The therapeutic effects of each treatment in a murine melanoma model were evaluated using contrast-enhanced US (CEUS) and micro-computed tomography (micro-CT) imaging, bioluminescence and confocal microscopy imaging, and liquid chromatography-mass spectroscopy (LC/MS) analysis. Tumor-bearing mice were randomly assigned to one of the following groups: (1) G1: IMP301 only (n = 9); (2) G2: IMP301 + LENS (n = 9); (3) G3: IMP301 + MB + LENS (n = 9); (4) G4: DOXIL only (n = 9); and (5) G5: IMP301 without DOXIL group as a control group (n = 4). Ten days after tumor injection, tumor-bearing mice were treated according to each treatment strategy on 10th, 12th, and 14th days from the day of tumor injection. The CEUS images of the tumors in the murine melanoma model clearly showed increased echo signal intensity from MBs as resonant US scattering. The relative tumor volume of the G2 and G3 groups on the micro-CT imaging showed inhibited tumor growth than the reference baseline of the G5 group. DOX signals on bioluminescence and confocal microscopy imaging were mainly located at the tumor sites. LC/MS showed prominently higher intratumoral DOX concentration in the G3 group than in other treated groups. Therefore, this study effectively demonstrates the feasibility of the synergistic combination of IMP301, MBs, and LENS-application for tumor-targeted treatment. Thus, this study can enable efficient tumor-targeted treatment by combining therapy such as IMP301 + MBs + LENS-application.
Collapse
Affiliation(s)
- Jun Hong Park
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young Chan Seo
- Department of Medical Device Development, Seould National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-Ro 173, Bundang-Gu, Seongnam, 13620, Republic of Korea
- R&D Center, IMGT Co. Ltd., 172, Dolma-Ro, Bundang-Gu, Seongnam, 13605, Republic of Korea
| | - Hyungwon Moon
- R&D Center, IMGT Co. Ltd., 172, Dolma-Ro, Bundang-Gu, Seongnam, 13605, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Innovative Medical Technology Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
128
|
Rodriguez R, Joseph H, Macrito R, Lee TA, Sweiss K. Risk prediction models for antineoplastic-associated cardiotoxicity in treatment of breast cancer: A systematic review. Am J Health Syst Pharm 2023; 80:1315-1325. [PMID: 37368407 DOI: 10.1093/ajhp/zxad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE The objective of this systematic review is to assess methodology of published models to predict the risk of antineoplastic-associated cardiotoxicity in patients with breast cancer. METHODS We searched PubMed and Embase for studies that developed or validated a multivariable risk prediction model. Data extraction and quality assessments were performed according to the Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS We identified 2,816 unique publications and included 8 eligible studies (7 new risk models and 1 validation of a risk stratification tool) that modeled risk with trastuzumab (n = 5), anthracyclines (n = 2), and anthracyclines with or without trastuzumab (n = 1). The most common final predictors were previous or concomitant chemotherapy (n = 5) and age (n = 4). Three studies incorporated measures of myocardial mechanics that may not be frequently available. Model discrimination was reported in 7 studies (range of area under the receiver operating characteristic curve, 0.56-0.88), while calibration was reported in 1 study. Internal and external validation were performed in 4 studies and 1 study, respectively. Using the PROBAST methodology, we rated the overall risk of bias as high for 7 of 8 studies and unclear for 1 study. Concerns for applicability were low for all studies. CONCLUSION Among 8 models to predict the risk of cardiotoxicity of antineoplastic agents for breast cancer, 7 were rated as having a high risk of bias and all had low concerns for clinical applicability. Most evaluated studies reported positive measures of model performance but did not perform external validation. Efforts to improve development and reporting of these models to facilitate their use in practice are warranted.
Collapse
Affiliation(s)
- Ryan Rodriguez
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Honey Joseph
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Rosa Macrito
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Todd A Lee
- Department of Pharmacy Systems, Outcomes, and Policy, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Karen Sweiss
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
129
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
130
|
Alhaja M, Chen S, Chin AC, Schulte B, Legasto CS. Cardiac Safety of Pegylated Liposomal Doxorubicin After Conventional Doxorubicin Exposure in Patients With Sarcoma and Breast Cancer. Cureus 2023; 15:e44837. [PMID: 37809186 PMCID: PMC10559758 DOI: 10.7759/cureus.44837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Lifetime cumulative doses of conventional doxorubicin (>450 mg/m2) are associated with dose-dependent cardiotoxicity. In sarcoma and breast cancer, conventional doxorubicin is often utilized in the adjuvant setting, whereas pegylated liposomal doxorubicin (PLD) is typically reserved for recurrent and metastatic disease. PLD is believed to be associated with reduced cardiotoxicity compared to conventional doxorubicin. Limited data exists evaluating the cardiotoxicity associated with PLD treatment after conventional doxorubicin, especially when doxorubicin lifetime doses approach the established cumulative total lifetime dose of 450-550 mg/m2. This study aims to further qualify the cardiac safety of PLD use in patients who have had prior exposure to conventional doxorubicin. METHODS This was a single-center, observational, retrospective cohort study conducted in patients ≥18 years with sarcoma or breast cancer who were exposed to conventional doxorubicin from an earlier line of treatment before PLD between January 2010 to May 2022. Patients were evaluated for the presence of cardiac toxicity at any point in their treatment course. Cardiac toxicity was defined as ≥ 10% decrease in left ventricle ejection fraction (LVEF) or a new diagnosis of heart failure within six months after PLD cessation. The time interval between the last conventional doxorubicin exposure and PLD initiation and the time interval between PLD initiation and LVEF monitoring were also analyzed. RESULTS 494 patients were screened, and 50 met inclusion criteria: eight with sarcoma and 42 with breast cancer. The median lifetime cumulative conventional doxorubicin dose in patients with sarcoma was 450 mg/m2 with a maximum dose of 825 mg/m2 and 240 mg/m2 with a maximum dose of 300 mg/m2 in breast cancer patients. The median lifetime cumulative PLD dose was 105 mg/m2 (range: 35-150 mg/m2) in the sarcoma group and 105 mg/m2 (range: 35-510 mg/m2) in the breast cancer group. A decrease of ≥ 10% in LVEF was not observed in the sarcoma group. Patients with breast cancer had available LVEF data on PLD, and three of these patients experienced ≥ 10% in LVEF drop, with one of these patients diagnosed with heart failure. The average cumulative dose of PLD administered in patients with > 10% decrease in LVEF was 177 mg/m2 and had an average of 3.5 cycles. Five sarcoma patients initiated PLD treatment within two years after conventional doxorubicin exposure, while most breast patients initiated PLD treatment at least 10 years following conventional doxorubicin exposure. The average time from PLD initiation to first and second available LVEF monitoring was one and five months in the sarcoma group and three and eight months in the breast cancer group, respectively. CONCLUSION PLD administration in patients with prior exposure to conventional doxorubicin appears to be safe, with limited cardiotoxicity in patients with sarcoma and breast cancer. Future research is needed to determine if and how often routine cardiac monitoring is needed for patients on PLD without existing cardiac risk.
Collapse
Affiliation(s)
- Maher Alhaja
- Oncology, Department of Pharmaceutical Services, University of California San Francisco, San Francisco, USA
| | - Sherry Chen
- Oncology, Department of Pharmaceutical Services, University of California San Francisco, San Francisco, USA
| | - Alan C Chin
- Oncology, Department of Pharmaceutical Services, University of California San Francisco, San Francisco, USA
| | - Brian Schulte
- Oncology, Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Carlo S Legasto
- Oncology, Department of Pharmaceutical Services, University of California San Francisco, San Francisco, USA
| |
Collapse
|
131
|
Huppert LA, Gumusay O, Idossa D, Rugo HS. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J Clin 2023; 73:480-515. [PMID: 36939293 DOI: 10.3322/caac.21777] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/21/2023] Open
Abstract
Hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer is defined by the presence of the estrogen receptor and/or the progesterone receptor and the absence of HER2 gene amplification. HR-positive/HER2-negative breast cancer accounts for 65%-70% of all breast cancers, and incidence increases with increasing age. Treatment varies by stage, and endocrine therapy is the mainstay of treatment in both early stage and late-stage disease. Combinations with cyclin-dependent kinase 4/6 inhibitors have reduced distant recurrence in the early stage setting and improved overall survival in the metastatic setting. Chemotherapy is used based on stage and tumor biology in the early stage setting and after endocrine resistance for advanced disease. New therapies, including novel endocrine agents and antibody-drug conjugates, are now changing the treatment landscape. With the availability of new treatment options, it is important to define the optimal sequence of treatment to maximize clinical benefit while minimizing toxicity. In this review, the authors first discuss the pathologic and molecular features of HR-positive/HER2-negative breast cancer and mechanisms of endocrine resistance. Then, they discuss current and emerging therapies for both early stage and metastatic HR-positive/HER2-negative breast cancer, including treatment algorithms based on current data.
Collapse
Affiliation(s)
- Laura A Huppert
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Ozge Gumusay
- Department of Medical Oncology, Acibadem University, School of Medicine, Istanbul, Turkey
| | - Dame Idossa
- Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|
132
|
Jin KZ, Wu Y, Zheng XX, Li TJ, Liao ZY, Fei QL, Zhang HR, Shi SM, Sha X, Yu XJ, Chen W, Ye LY, Wu WD. Inhibition of epithelial-to-mesenchymal transition augments antitumor efficacy of nanotherapeutics in pancreatic ductal adenocarcinoma. FEBS J 2023; 290:4577-4590. [PMID: 37245155 DOI: 10.1111/febs.16879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
Intrinsic drug resistance mechanisms of tumor cells often reduce intracellular drug concentration to suboptimal levels. Epithelial-to-mesenchymal transition (EMT) is a pivotal process in tumor progression and metastasis that confers an aggressive phenotype as well as resistance to chemotherapeutics. Therefore, it is imperative to develop novel strategies and identify new targets to improve the overall efficacy of cancer treatment. We developed SN38 (active metabolite of irinotecan)-assembled glycol chitosan nanoparticles (cSN38) for the treatment of pancreatic ductal adenocarcinoma (PDAC). Furthermore, cSN38 and the TGF-β1 inhibitor LY364947 formed composite nanoparticles upon self-assembly (cSN38 + LY), which obviated the poor aqueous solubility of LY364947 and enhanced drug sensitivity. The therapeutic efficacy of cSN38 + LY nanotherapeutics was studied in vitro and in vivo using suitable models. The cSN38 nanoparticles exhibited an antitumor effect that was significantly attenuated by TGF-β-induced EMT. The cellular uptake of SN38 was impeded during EMT, which affected the therapeutic efficacy. The combination of LY364947 and cSN38 markedly enhanced the cellular uptake of SN38, increased cytotoxic effects, and inhibited EMT in PDAC cells in vitro. Furthermore, cSN38 + LY significantly inhibited PDAC xenograft growth in vivo. The cSN38 + LY nanoparticles increased the therapeutic efficacy of cSN38 via repressing the EMT of PDAC cells. Our findings provide a rationale for designing nanoscale therapeutics to combat PDAC.
Collapse
Affiliation(s)
- Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ying Wu
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Xiao-Xiao Zheng
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhen-Yu Liao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Lin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Sai-Meng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Sha
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
133
|
Rihackova E, Rihacek M, Vyskocilova M, Valik D, Elbl L. Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma-a review and prospects for the future. Front Cardiovasc Med 2023; 10:1243531. [PMID: 37711551 PMCID: PMC10499183 DOI: 10.3389/fcvm.2023.1243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Treatment of malignant lymphoma has for years been represented by many cardiotoxic agents especially anthracyclines, cyclophosphamide, and thoracic irradiation. Although they are in clinical practice for decades, the precise mechanism of cardiotoxicity and effective prevention is still part of the research. At this article we discuss most routinely used anti-cancer drugs in chemotherapeutic regiments for malignant lymphoma with the focus on novel insight on molecular mechanisms of cardiotoxicity. Understanding toxicity at molecular levels may unveil possible targets of cardioprotective supportive therapy or optimization of current therapeutic protocols. Additionally, we review novel specific targeted therapy and its challenges in cardio-oncology.
Collapse
Affiliation(s)
- Eva Rihackova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Michal Rihacek
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Vyskocilova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Dalibor Valik
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubomir Elbl
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| |
Collapse
|
134
|
Tan KF, In LLA, Vijayaraj Kumar P. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:2944-2981. [PMID: 37435615 DOI: 10.1021/acsabm.3c00202] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
135
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
136
|
Desai P, Dasgupta A, Sofias AM, Peña Q, Göstl R, Slabu I, Schwaneberg U, Stiehl T, Wagner W, Jockenhövel S, Stingl J, Kramann R, Trautwein C, Brümmendorf TH, Kiessling F, Herrmann A, Lammers T. Transformative Materials for Interfacial Drug Delivery. Adv Healthc Mater 2023; 12:e2301062. [PMID: 37282805 PMCID: PMC11468550 DOI: 10.1002/adhm.202301062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Drug delivery systems (DDS) are designed to temporally and spatially control drug availability and activity. They assist in improving the balance between on-target therapeutic efficacy and off-target toxic side effects. DDS aid in overcoming biological barriers encountered by drug molecules upon applying them via various routes of administration. They are furthermore increasingly explored for modulating the interface between implanted (bio)medical materials and host tissue. Herein, an overview of the biological barriers and host-material interfaces encountered by DDS upon oral, intravenous, and local administration is provided, and material engineering advances at different time and space scales to exemplify how current and future DDS can contribute to improved disease treatment are highlighted.
Collapse
Affiliation(s)
- Prachi Desai
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
| | - Quim Peña
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen University52074AachenGermany
| | | | - Thomas Stiehl
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Institute for Computational Biomedicine – Disease ModelingRWTH Aachen University52074AachenGermany
| | - Wolfgang Wagner
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Helmholtz‐Institute for Biomedical EngineeringMedical Faculty of RWTH Aachen University52074AachenGermany
- Institute for Stem Cell BiologyUniversity Hospital of RWTH Aachen52074AachenGermany
| | - Stefan Jockenhövel
- Department of Biohybrid & Medical Textiles (BioTex)AME – Institute of Applied Medical EngineeringHelmholtz Institute AachenRWTH Aachen University52074AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH Aachen52074AachenGermany
| | - Rafael Kramann
- Division of Nephrology and Clinical ImmunologyRWTH Aachen University52074AachenGermany
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen University52074AachenGermany
| | - Christian Trautwein
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Department of Medicine III (GastroenterologyMetabolic diseases and Intensive Care)University Hospital RWTH Aachen52074AachenGermany
| | - Tim H. Brümmendorf
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Department of HematologyOncologyHemostaseology and Stem Cell TransplantationRWTH Aachen University Medical School52074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Helmholtz‐Institute for Biomedical EngineeringMedical Faculty of RWTH Aachen University52074AachenGermany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Twan Lammers
- Institute for Experimental Molecular ImagingRWTH Aachen University Hospital52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO)52074AachenGermany
- Helmholtz‐Institute for Biomedical EngineeringMedical Faculty of RWTH Aachen University52074AachenGermany
| |
Collapse
|
137
|
Chaurasia M, Singh R, Sur S, Flora SJS. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 2023; 14:1184472. [PMID: 37576816 PMCID: PMC10416257 DOI: 10.3389/fphar.2023.1184472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed solid cancers globally. Extensive research has been going on for decades to meet the challenges of treating solid tumors with selective compounds. This article aims to summarize the therapeutic agents which are either being used or are currently under approval for use in the treatment or mitigation of breast cancer by the US FDA, to date. A structured search of bibliographic databases for previously published peer-reviewed research papers on registered molecules was explored and data was sorted in terms of various categories of drugs used in first line/adjuvant therapy for different stages of breast cancer. We included more than 300 peer-reviewed papers, including both research and reviews articles, in order to provide readers an useful comprehensive information. A list of 39 drugs are discussed along with their current status, dose protocols, mechanism of action, pharmacokinetics, possible side effects, and marketed formulations. Another interesting aspect of the article included focusing on novel formulations of these drugs which are currently in clinical trials or in the process of approval. This exhaustive review thus shall be a one-stop solution for researchers who are working in the areas of formulation development for these drugs.
Collapse
Affiliation(s)
| | | | | | - S. J. S. Flora
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
138
|
Halalsheh H, Abu-Hijlih R, Ismael T, Shehadeh A, Salaymeh KJ, Boheisi M, Sultan I. Doxorubicin Dose Deintensification in Pediatric Osteosarcoma, Is Less Better? South Asian J Cancer 2023; 12:290-296. [PMID: 38047045 PMCID: PMC10691917 DOI: 10.1055/s-0042-1760203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Hadeel HalalshehIntroduction We implemented new clinical practice guidelines (CPG) for patients with osteosarcoma starting in January 2009. These guidelines were based on standard European and American Osteosarcoma Study regimen, which includes six cycles of doxorubicin with a cumulative dose of 450 mg/m 2 . Aiming to reduce cardiac toxicity at our center, we opted to reduce the cumulative dose of doxorubicin to 375 mg/m 2 . Materials and Methods This is a retrospective cohort of osteosarcoma patients aged <18 years, treated at our center between 2009 and 2018. Patients were treated with unified CPG and were prospectively followed. Disease and treatment characteristics were depicted, and survival rates were calculated. When needed, comparison of survival of different groups were conducted using log-rank test. Results After a median follow-up of 43.3 months (range, 2-153 months), 79 patients were diagnosed with osteosarcoma and treated with dose-reduced doxorubicin. Median age at diagnosis was 12.8 years. At diagnosis, 58 patients (73%) had localized disease. The 5-year event-free survival (EFS) for the whole group was 50 ± 5.9%, and overall survival (OS) was 64 ± 5.7%. For patients with extremity nonmetastatic tumors ( N = 56), 5-year EFS and OS were 60 ± 6.9% and 70 ± 6.8%, respectively, and for this group of patients, response to chemotherapy was associated with better EFS ( p = 0.0048) and OS ( p = 0.013). Only two patients suffered transient cardiac dysfunction, which was resolved after treatment. Conclusion Our findings suggest that deintensification of doxorubicin may provide adequate control for pediatric osteosarcoma. In the absence of large randomized clinical trials addressing this issue, developing countries with less resources to treat patients with heart failure may consider using the lower dose.
Collapse
Affiliation(s)
- Hadeel Halalsheh
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
- Department of Pediatric, Jordan University, Amman, Jordan
| | - Ramiz Abu-Hijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Taleb Ismael
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Ahmad Shehadeh
- Department of Surgery, King Hussein Cancer Center, Amman, Jordan
| | - K. J. Salaymeh
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Mohammad Boheisi
- Department of Nursing, King Hussein Cancer Center, Amman, Jordan
| | - Iyad Sultan
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
- Department of Pediatric, Jordan University, Amman, Jordan
| |
Collapse
|
139
|
Lin G, Zhou J, Cheng H, Liu G. Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207973. [PMID: 36971279 DOI: 10.1002/smll.202207973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The development of smart nanosystems, which could overcome diverse biological barriers of nanomedicine transport, has received intense scientific interest in improving the therapeutic efficacies of traditional nanomedicines. However, the reported nanosystems generally hold disparate structures and functions, and the knowledge of involved biological barriers is usually scattered. There is an imperative need for a summary of biological barriers and how these smart nanosystems conquer biological barriers, to guide the rational design of the new-generation nanomedicines. This review starts from the discussion of major biological barriers existing in nanomedicine transport, including blood circulation, tumoral accumulation and penetration, cellular uptake, drug release, and response. Design principles and recent progress of smart nanosystems in overcoming the biological barriers are overviewed. The designated physicochemical properties of nanosystems can dictate their functions in biological environments, such as protein absorption inhibition, tumor accumulation, penetration, cellular internalization, endosomal escape, and controlled release, as well as modulation of tumor cells and their resident tumor microenvironment. The challenges facing smart nanosystems on the road heading to clinical approval are discussed, followed by the proposals that could further advance the nanomedicine field. It is expected that this review will provide guidelines for the rational design of the new-generation nanomedicines for clinical use.
Collapse
Affiliation(s)
- Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Chemistry, the University of Chicago, Chicago, IL, 60637, USA
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
140
|
Bertorello N, Luksch R, Bisogno G, Haupt R, Spallarossa P, Cenna R, Fagioli F. Cardiotoxicity in children with cancer treated with anthracyclines: A position statement on dexrazoxane. Pediatr Blood Cancer 2023; 70:e30515. [PMID: 37355856 DOI: 10.1002/pbc.30515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Cardiovascular disease is the leading cause of non-malignant morbidity and mortality in childhood cancer survivors (CCSs). Anthracyclines are included in many treatment regimens for paediatric cancer, but unfortunately, these compounds are cardiotoxic. One in 10 CCSs who has received an anthracycline will develop a symptomatic cardiac event over time. Given the crucial need to mitigate anthracycline-related cardiotoxicity (ARC), the authors critically examined published data to identify effective cardioprotective strategies. Based on their expert analysis of contemporary literature data, it was concluded that consideration should be given for routine use of dexrazoxane in children with cancer who are at risk of ARC.
Collapse
Affiliation(s)
- Nicoletta Bertorello
- Paediatric Oncology Division, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza, Turin, Italy
| | - Roberto Luksch
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianni Bisogno
- Hematology and Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Riccardo Haupt
- Epidemiology and Biostatistics Unit and DOPO clinic, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rosita Cenna
- Paediatric Oncology Division, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza, Turin, Italy
| | - Franca Fagioli
- Paediatric Oncology Division, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza, Turin, Italy
- University of Turin, Turin, Italy
| |
Collapse
|
141
|
Ambrosio N, Gagliardi A, Voci S, Salvatici MC, Fresta M, Cosco D. Strategies of stabilization of zein nanoparticles containing doxorubicin hydrochloride. Int J Biol Macromol 2023:125222. [PMID: 37285879 DOI: 10.1016/j.ijbiomac.2023.125222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Hybrid nanoparticles made up of zein and various stabilizers were developed and characterized. In detail, a zein concentration of 2 mg/ml was blended with various amounts of different phospholipids or PEG-derivatives in order to obtain formulations with suitable physico-chemical properties for drug delivery purposes. Doxorubicin hydrochloride (DOX) was used as a model of a hydrophilic compound and its entrapment efficiency, release profile and cytotoxic activity were investigated. Photon correlation spectroscopy showed that the best formulations were obtained using DMPG, DOTAP and DSPE-mPEG2000 as stabilizers of zein nanoparticles, which were characterized by an average diameter of ~100 nm, a narrow size distribution and a significant time- and temperature-dependent stability. The interaction between protein and stabilizers was confirmed through FT-IR analysis, while TEM analysis showed the presence of a shell-like structure around the zein core. The release profiles of the drug from the zein/DSPE-mPEG2000 nanosystems, evaluated at two pHs (5.5 and 7.4), showed a prolonged and constant leakage of the drug. The encapsulation of DOX within zein/DSPE-mPEG2000 nanosystems did not compromise its biological efficacy, demonstrating the potential application of these hybrid nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Nicola Ambrosio
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Silvia Voci
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S Venuta", I-88100 Catanzaro, Italy.
| |
Collapse
|
142
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
143
|
Kitsios K, Sharifi S, Mahmoudi M. Nanomedicine Technologies for Diagnosis and Treatment of Breast Cancer. ACS Pharmacol Transl Sci 2023; 6:671-682. [PMID: 37200812 PMCID: PMC10186357 DOI: 10.1021/acsptsci.3c00044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 05/20/2023]
Abstract
Breast cancer is one of the most common cancers in women worldwide, yet conventional treatments have several shortcomings, including low specificity, systemic toxicity, and drug resistance. Nanomedicine technologies provide a promising alternative while also overcoming the limitations posed by conventional therapies. This mini-Review highlights important signaling pathways related to occurrence and development of breast cancer and current breast cancer therapies, followed by an analysis of various nanomedicine technologies developed for diagnosis and treatment of breast cancers.
Collapse
Affiliation(s)
- Katerina Kitsios
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Shahriar Sharifi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
144
|
Lini L, Rong X, Wei H, Xia G, Huayan X, Linjun X, Hongding Z, Gao J, Chao L, Yingkun G. Characteristics and research status among clinical trials in cardio-oncology by bibliometric and visualized analysis. Cancer Med 2023. [PMID: 37148538 DOI: 10.1002/cam4.6045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND We aim to establish the characteristics of published cardio-oncology research of clinical trials by bibliometric analysis and to talk about the prospects and difficulties facing the development of cardio-oncology. METHODS Search of data related to clinical trials in cardiac oncology from 1990 to 2022 from the Web of Science core collection. Using CiteSpace to perform co-citation analysis of authors, countries (regions) and institutions, journals and cited journals, cited authors and cited literature, and keywords. RESULTS Of the 607 clinical trial studies, the number of papers published per year has increased over time. The regions with the greatest influence were North America (especially the United States) and Europe. Multicenter research has always been the focus of cardio-oncology research, but cross-regional cooperation was still lacking. Myocardial toxicity caused by anthracyclines has received the earliest attention and has been studied for the longest time. Meanwhile, the efficacy and cardiotoxicity of new anticancer drugs always came into focus, but at a slow pace. Few studies on myocardial toxicity were related to the treatment of tumors except breast cancer. Risk factors, heart disease, adverse outcomes, follow-up, and intervention protection were the major hotspots revealed by co-citation cluster. CONCLUSIONS There is great potential for the development of clinical trials in cardio-oncology, especially in multicenter cooperation across different regions. Expansion of tumor types, myocardial toxicity of different drugs, and effective interventions in the research direction and design of clinical trials are necessary.
Collapse
Affiliation(s)
- Liu Lini
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xu Rong
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huang Wei
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guo Xia
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xu Huayan
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xie Linjun
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhang Hongding
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ju Gao
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Chao
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guo Yingkun
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
145
|
Wallrabenstein T, Daetwyler E, Oseledchyk A, Rochlitz C, Vetter M. Pegylated liposomal doxorubicin (PLD) in daily practice-A single center experience of treatment with PLD in patients with comorbidities and older patients with metastatic breast cancer. Cancer Med 2023. [PMID: 37148541 DOI: 10.1002/cam4.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023] Open
Abstract
PURPOSE Real-world data about pegylated liposomal doxorubicin (PLD) in patients with metastatic breast cancer (MBC) are limited. We have aimed to highlight the role of PLD in daily practice focusing on older patients and patients with comorbidities with MBC. METHODS We analyzed electronic records of all patients with advanced/metastatic breast cancer treated with single-agent PLD at the University Hospital Basel between 2003 and 2021. Primary endpoint was time to next chemotherapy or death (TTNC). Secondary endpoints were overall survival (OS), progression-free survival (PFS), and overall response rate (ORR). We performed univariate and multivariate analysis for clinical variables. RESULTS 112 patients with MBC having received single-agent PLD in any treatment line were analyzed, including 34 patient who were older than 70 years and 61 patients with relevant comorbidities. Median TTNC, OS, and PFS for treatment with PLD were 4.6, 11.9, and 4.4 months, respectively. ORR was 13.6%. Age >70 years predicted shorter OS (median 11.2 months) in multivariate analysis (hazard ratio [HR] 1.83, 95% CI 1.07-3.11, p = 0.026). Age and comorbidities did not significantly affect other endpoints. Unexpectedly, hypertension predicted longer TTNC (8.3 months, p = 0.04) in univariate analysis, maintained in multivariate analysis as a trend for both TTNC (HR 0.62, p = 0.07) and OS (HR 0.63, p = 0.1). CONCLUSION Age predicted shorter OS significantly but median OS was not relevantly shorter in older patients. PLD remains a treatment option in patients with comorbidities and older patients with MBC. However, our real-world results of PLD appear underwhelming compared to relevant phase II trials through all age groups, pointing to an efficacy-effectiveness gap, possibly due to sampling bias.
Collapse
Affiliation(s)
- T Wallrabenstein
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - E Daetwyler
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - A Oseledchyk
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - C Rochlitz
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - M Vetter
- Medical Oncology, University Hospital Basel, Basel, Switzerland
- Medical Oncology, Kantonsspital Baselland, Liestal, Switzerland
| |
Collapse
|
146
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
147
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
148
|
Upshaw JN, Nelson J, Rodday AM, Kumar AJ, Klein AK, Konstam MA, Wong JB, Jaffe IZ, Ky B, Friedberg JW, Maurer M, Kent DM, Parsons SK. Association of Preexisting Heart Failure With Outcomes in Older Patients With Diffuse Large B-Cell Lymphoma. JAMA Cardiol 2023; 8:453-461. [PMID: 36988926 PMCID: PMC10061311 DOI: 10.1001/jamacardio.2023.0303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/22/2022] [Indexed: 03/30/2023]
Abstract
Importance Anthracycline-containing regimens are highly effective for diffuse large B-cell lymphoma (DLBCL); however, patients with preexisting heart failure (HF) may be less likely to receive anthracyclines and may be at higher risk of lymphoma mortality. Objective To assess the prevalence of preexisting HF in older patients with DLBCL and its association with treatment patterns and outcomes. Design, Setting, and Participants This longitudinal cohort study used data from the Surveillance, Epidemiology, and End Results (SEER)-Medicare registry from 1999 to 2016. The SEER registry is a system of population-based cancer registries, capturing more than 25% of the US population. Linkage to Medicare offers additional information from billing claims. This study included individuals 65 years and older with newly diagnosed DLBCL from 2000 to 2015 with Medicare Part A or B continuously in the year prior to lymphoma diagnosis. Data were analyzed from September 2020 to December 2022. Exposures Preexisting HF in the year prior to DLBCL diagnosis ascertained from billing codes required one of the following: (1) 1 primary inpatient discharge diagnosis, (2) 2 outpatient diagnoses, (3) 3 secondary inpatient discharge diagnoses, (4) 3 emergency department diagnoses, or (5) 2 secondary inpatient discharge diagnoses plus 1 outpatient diagnosis. Main Outcomes and Measures The primary outcome was anthracycline-based treatment. The secondary outcomes were (1) cardioprotective medications and (2) cause-specific mortality. The associations between preexisting HF and cancer treatment were estimated using multivariable logistic regression. The associations between preexisting HF and cause-specific mortality were evaluated using cause-specific Cox proportional hazards models with adjustment for comorbidities and cancer treatment. Results Of 30 728 included patients with DLBCL, 15 474 (50.4%) were female, and the mean (SD) age was 77.8 (7.2) years. Preexisting HF at lymphoma diagnosis was present in 4266 patients (13.9%). Patients with preexisting HF were less likely to be treated with an anthracycline (odds ratio, 0.55; 95% CI, 0.49-0.61). Among patients with preexisting HF who received an anthracycline, dexrazoxane or liposomal doxorubicin were used in 78 of 1119 patients (7.0%). One-year lymphoma mortality was 41.8% (95% CI, 40.5-43.2) with preexisting HF and 29.6% (95% CI, 29.0%-30.1%) without preexisting HF. Preexisting HF was associated with higher lymphoma mortality in models adjusting for baseline and time-varying treatment factors (hazard ratio, 1.24; 95% CI, 1.18-1.31). Conclusions and Relevance In this study, preexisting HF in patients with newly diagnosed DLBCL was common and was associated with lower use of anthracyclines and lower use of any chemotherapy. Trials are needed for this high-risk population.
Collapse
Affiliation(s)
- Jenica N. Upshaw
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Jason Nelson
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Angie Mae Rodday
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Anita J. Kumar
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
- Division of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| | - Andreas K. Klein
- Division of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| | | | - John B. Wong
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Iris Z. Jaffe
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jonathan W. Friedberg
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Matthew Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - David M. Kent
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Susan K. Parsons
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
- Division of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
149
|
Nara K, Taguchi A, Yamamoto T, Tsuruga T, Tojima Y, Miyamoto Y, Tanikawa M, Sone K, Mori M, Takada T, Suzuki H, Osuga Y. Efficacy of regional cooling + oral dexamethasone for primary prevention of hand-foot syndrome associated with pegylated liposomal doxorubicin. Support Care Cancer 2023; 31:283. [PMID: 37074471 PMCID: PMC10115730 DOI: 10.1007/s00520-023-07718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Pegylated liposomal doxorubicin (PLD)-induced hand-foot syndrome (HFS) frequently lowers the quality of life of ovarian cancer patients. Wrist and ankle cooling, having a limited preventive effect, has been the commonest supportive HFS care. In this study, we retrospectively assessed the primary preventive effect of a combination of regional cooling and oral dexamethasone therapy (cooling + oral Dex) on HFS. METHODS This study is a single-arm retrospective, observational study. Recurrent ovarian cancer patients were administered PLD ± bevacizumab. We retrospectively examined the efficacy of hands and feet cooling (from the start of PLD to the end) + oral Dex (day 1-5: 8 mg/day, day 6, 7: 4 mg/day) for primary HFS prevention. RESULTS This study included 74 patients. The initial dose of PLD was 50 mg/m2 and 40 mg/m2 for 32 (43.2%) and 42 (56.8%) patients, respectively. HFS of Grade ≥ 2 and Grade ≥ 3 developed in five (6.8%) and one (1.4%) patient(s), respectively. The incidence of ≥ Grade 2 and ≥ Grade 3 HFS was much lower than those reported in previous studies. Dose reduction was required in 13 patients (17.6%) mainly because of neutropenia or mucositis; there was no HFS-induced dose reduction. Meanwhile, PLD therapy was discontinued mainly because of interstitial pneumonia (4 patients) and HFS (one patient). CONCLUSIONS We demonstrated the efficacy of regional cooling and oral Dex for primary prevention of PLD-induced HFS. Although future prospective studies are needed to confirm its efficacy, this combination therapy can be considered for primary prevention of HFS in ovarian cancer patients on PLD.
Collapse
Affiliation(s)
- Katsuhiko Nara
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Takehito Yamamoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- The Education Center for Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yuri Tojima
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
150
|
Rasouli R, Paun RA, Tabrizian M. Sonoprinting nanoparticles on cellular spheroids via surface acoustic waves for enhanced nanotherapeutics delivery. LAB ON A CHIP 2023; 23:2091-2105. [PMID: 36942710 DOI: 10.1039/d2lc00854h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotherapeutics, on their path to the target tissues, face numerous physicochemical hindrances that affect their therapeutic efficacy. Physical barriers become more pronounced in pathological tissues, such as solid tumors, where they limit the penetration of nanocarriers into deeper regions, thereby preventing the efficient delivery of drug cargo. To address this challenge, we introduce a novel approach that employs surface acoustic wave (SAW) technology to sonoprint and enhance the delivery of nanoparticles onto and into cell spheroids. Our SAW platform is designed to generate focused and unidirectional acoustic waves for creating vigorous acoustic streaming while promoting Bjerknes forces. The effect of SAW excitation on cell viability, as well as the accumulation and penetration of nanoparticles on human breast cancer (MCF 7) and mouse melanoma (YUMM 1.7) cell spheroids were investigated. The high frequency, low input voltage, and contact-free nature of the proposed SAW system ensured over 92% cell viability for both cell lines after SAW exposure. SAW sonoprinting enhanced the accumulation of 100 nm polystyrene particles on the periphery of the spheroids to near four-fold, while the penetration of nanoparticles into the core regions of the spheroids was improved up to three times. To demonstrate the effectiveness of our SAW platform on the efficacy of nanotherapeutics, the platform was used to deliver nanoliposomes encapsulated with the anti-cancer metal compound copper diethyldithiocarbamate (CuET) to MCF 7 and YUMM 1.7 cell spheroids. A three-fold increase in the cytotoxic activity of the drug was observed in spheroids under the effect of SAW, compared to controls. The capacity of SAW-based devices to be manufactured as minuscule wearable patches can offer highly controllable, localized, and continuous acoustic waves to enhance drug delivery efficiency to target tissues.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Radu Alexandru Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|