101
|
Thorne BC, Bailey AM, DeSimone DW, Peirce SM. Agent-based modeling of multicell morphogenic processes during development. ACTA ACUST UNITED AC 2008; 81:344-53. [DOI: 10.1002/bdrc.20106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
102
|
Newman SA, Christley S, Glimm T, Hentschel HGE, Kazmierczak B, Zhang YT, Zhu J, Alber M. Multiscale models for vertebrate limb development. Curr Top Dev Biol 2008; 81:311-40. [PMID: 18023733 DOI: 10.1016/s0070-2153(07)81011-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamical systems in which geometrically extended model cells produce and interact with diffusible (morphogen) and nondiffusible (extracellular matrix) chemical fields have proved very useful as models for developmental processes. The embryonic vertebrate limb is an apt system for such mathematical and computational modeling since it has been the subject of hundreds of experimental studies, and its normal and variant morphologies and spatiotemporal organization of expressed genes are well known. Because of its stereotypical proximodistally generated increase in the number of parallel skeletal elements, the limb lends itself to being modeled by Turing-type systems which are capable of producing periodic, or quasiperiodic, arrangements of spot- and stripe-like elements. This chapter describes several such models, including, (i) a system of partial differential equations in which changing cell density enters into the dynamics explicitly, (ii) a model for morphogen dynamics alone, derived from the latter system in the "morphostatic limit" where cell movement relaxes on a much slower time-scale than cell differentiation, (iii) a discrete stochastic model for the simplified pattern formation that occurs when limb cells are placed in planar culture, and (iv) several hybrid models in which continuum morphogen systems interact with cells represented as energy-minimizing mesoscopic entities. Progress in devising computational methods for handling 3D, multiscale, multimodel simulations of organogenesis is discussed, as well as for simulating reaction-diffusion dynamics in domains of irregular shape.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Reiser KM, Bratton C, Yankelevich DR, Knoesen A, Rocha-Mendoza I, Lotz J. Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: comparison with morphometric analysis. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:064019. [PMID: 18163835 DOI: 10.1117/1.2812631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel signal processing algorithm for quantifying structural disorder in biological tissue using second harmonic generation (SHG) imaging is described. Both the magnitude and the pattern of disorder in collagenous tissues can be determined with this method. Mathematical models are used to determine the range of disordered states over which the algorithm can be used, because highly disordered biological samples do not generate second harmonic signals. The method is validated by measuring disorder in heated fascicles using SHG and showing that results are significantly correlated with morphometric determination. Applicability of the method to tissue pathology is demonstrated by analysis of a mouse model of intervertebral disk injury. Disks were subjected to tensile or compressive forces in vivo for one week. Structural disorder in the annulus fibrosus was measured by SHG scanning and by standard morphometric analysis. Values for disorder obtained by SHG scanning were significantly correlated with values obtained by morphometry (p<0.001). Quantitation of disorder using SHG offers significant advantages over morphometric determination. Data obtained in this study suggest that this method can be used to discriminate between reversible and irreversible tissue damage.
Collapse
Affiliation(s)
- Karen M Reiser
- University of California, Davis, Department of Neurological Surgery, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
104
|
Podgorski GJ, Bansal M, Flann NS. Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theor Biol Med Model 2007; 4:43. [PMID: 17974031 PMCID: PMC2203995 DOI: 10.1186/1742-4682-4-43] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022] Open
Abstract
Background A significant body of literature is devoted to modeling developmental mechanisms that create patterns within groups of initially equivalent embryonic cells. Although it is clear that these mechanisms do not function in isolation, the timing of and interactions between these mechanisms during embryogenesis is not well known. In this work, a computational approach was taken to understand how lateral inhibition, differential adhesion and programmed cell death can interact to create a mosaic pattern of biologically realistic primary and secondary cells, such as that formed by sensory (primary) and supporting (secondary) cells of the developing chick inner ear epithelium. Results Four different models that interlaced cellular patterning mechanisms in a variety of ways were examined and their output compared to the mosaic of sensory and supporting cells that develops in the chick inner ear sensory epithelium. The results show that: 1) no single patterning mechanism can create a 2-dimensional mosaic pattern of the regularity seen in the chick inner ear; 2) cell death was essential to generate the most regular mosaics, even through extensive cell death has not been reported for the developing basilar papilla; 3) a model that includes an iterative loop of lateral inhibition, programmed cell death and cell rearrangements driven by differential adhesion created mosaics of primary and secondary cells that are more regular than the basilar papilla; 4) this same model was much more robust to changes in homo- and heterotypic cell-cell adhesive differences than models that considered either fewer patterning mechanisms or single rather than iterative use of each mechanism. Conclusion Patterning the embryo requires collaboration between multiple mechanisms that operate iteratively. Interlacing these mechanisms into feedback loops not only refines the output patterns, but also increases the robustness of patterning to varying initial cell states.
Collapse
Affiliation(s)
- Gregory J Podgorski
- Biology Department and Center for Integrated Biosystems, Utah State University, Logan UT, USA.
| | | | | |
Collapse
|
105
|
Alber M, Glimm T, Hentschel HGE, Kazmierczak B, Zhang YT, Zhu J, Newman SA. The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb. Bull Math Biol 2007; 70:460-83. [DOI: 10.1007/s11538-007-9264-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
|
106
|
Robertson SH, Smith CK, Langhans AL, McLinden SE, Oberhardt MA, Jakab KR, Dzamba B, DeSimone DW, Papin JA, Peirce SM. Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior. BMC SYSTEMS BIOLOGY 2007; 1:46. [PMID: 17953751 PMCID: PMC2190763 DOI: 10.1186/1752-0509-1-46] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/22/2007] [Indexed: 11/25/2022]
Abstract
Background Tissue morphogenesis is a complex process whereby tissue structures self-assemble by the aggregate behaviors of independently acting cells responding to both intracellular and extracellular cues in their environment. During embryonic development, morphogenesis is particularly important for organizing cells into tissues, and although key regulatory events of this process are well studied in isolation, a number of important systems-level questions remain unanswered. This is due, in part, to a lack of integrative tools that enable the coupling of biological phenomena across spatial and temporal scales. Here, we present a new computational framework that integrates intracellular signaling information with multi-cell behaviors in the context of a spatially heterogeneous tissue environment. Results We have developed a computational simulation of mesendoderm migration in the Xenopus laevis explant model, which is a well studied biological model of tissue morphogenesis that recapitulates many features of this process during development in humans. The simulation couples, via a JAVA interface, an ordinary differential equation-based mass action kinetics model to compute intracellular Wnt/β-catenin signaling with an agent-based model of mesendoderm migration across a fibronectin extracellular matrix substrate. The emergent cell behaviors in the simulation suggest the following properties of the system: maintaining the integrity of cell-to-cell contact signals is necessary for preventing fractionation of cells as they move, contact with the Fn substrate and the existence of a Fn gradient provides an extracellular feedback loop that governs migration speed, the incorporation of polarity signals is required for cells to migrate in the same direction, and a delicate balance of integrin and cadherin interactions is needed to reproduce experimentally observed migratory behaviors. Conclusion Our computational framework couples two different spatial scales in biology: intracellular with multicellular. In our simulation, events at one scale have quantitative and dynamic impact on events at the other scale. This integration enables the testing and identification of key systems-level hypotheses regarding how signaling proteins affect overall tissue-level behavior during morphogenesis in an experimentally verifiable system. Applications of this approach extend to the study of tissue patterning processes that occur during adulthood and disease, such as tumorgenesis and atherogenesis.
Collapse
Affiliation(s)
- Scott H Robertson
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Akberdin IR, Ozonov EA, Mironova VV, Omelyanchuk NA, Likhoshvai VA, Gorpinchenko DN, Kolchanov NA. A cellular automaton to model the development of primary shoot meristems of Arabidopsis thaliana. J Bioinform Comput Biol 2007; 5:641-50. [PMID: 17636867 DOI: 10.1142/s0219720007002862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
Development of organisms is a very complex process in which a lot of gene networks of different cell types are integrated. Development of a cellular automaton (Ermentrout and Edelshtein-Keshet, J Theor Biol 160:97-133, 1993) that models the morphodynamics of different cell types is the first step in understanding and analysis of the regulatory mechanisms underlying the functioning of developmental gene networks. A model of a cellular automaton has been developed, which simulates the embryonic development of shoot meristem in Arabidopsis thaliana. The model adequately describes the basic stages in development of this organ in wild and mutant types.
Collapse
Affiliation(s)
- Ilya R Akberdin
- Institute of Cytology and Genetics SB RAS, Lavrentieva ave. 10 Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|
108
|
Qiao L, Erban R, Kelley CT, Kevrekidis IG. Spatially distributed stochastic systems: Equation-free and equation-assisted preconditioned computations. J Chem Phys 2007; 125:204108. [PMID: 17144691 DOI: 10.1063/1.2372492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spatially distributed problems are often approximately modeled in terms of partial differential equations (PDEs) for appropriate coarse-grained quantities (e.g., concentrations). The derivation of accurate such PDEs starting from finer scale, atomistic models, and using suitable averaging is often a challenging task; approximate PDEs are typically obtained through mathematical closure procedures (e.g., mean field approximations). In this paper, we show how such approximate macroscopic PDEs can be exploited in constructing preconditioners to accelerate stochastic computations for spatially distributed particle-based process models. We illustrate how such preconditioning can improve the convergence of equation-free coarse-grained methods based on coarse timesteppers. Our model problem is a stochastic reaction-diffusion model capable of exhibiting Turing instabilities.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
109
|
Popławski NJ, Swat M, Gens JS, Glazier JA. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. PHYSICA A 2007; 373:521-532. [PMID: 18167520 PMCID: PMC2168394 DOI: 10.1016/j.physa.2006.05.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A central question in developmental biology is how cells interact to organize into tissues? In this paper, we study the role of mesenchyme-ectoderm interaction in the growing chick limb bud using Glazier and Graner's cellular Potts model, a grid-based stochastic framework designed to simulate cell interactions and movement. We simulate cellular mechanisms including cell adhesion, growth, and division and diffusion of morphogens, to show that differential adhesion between the cells, diffusion of growth factors through the extracellular matrix, and the elastic properties of the apical ectodermal ridge together can produce the proper shape of the limb bud.
Collapse
Affiliation(s)
- Nikodem J Popławski
- Biocomplexity Institute and Department of Physics, Indiana University, 727 East Third Street, Swain Hall West 117, Bloomington, IN 47405-7105, USA
| | | | | | | |
Collapse
|
110
|
Chaturvedi R, Huang C, Kazmierczak B, Schneider T, Izaguirre J, Glimm T, Hentschel H, Glazier J, Newman S, Alber M. On multiscale approaches to three-dimensional modelling of morphogenesis. J R Soc Interface 2006; 2:237-53. [PMID: 16849182 PMCID: PMC1629079 DOI: 10.1098/rsif.2005.0033] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper we present the foundation of a unified, object-oriented, three-dimensional biomodelling environment, which allows us to integrate multiple submodels at scales from subcellular to those of tissues and organs. Our current implementation combines a modified discrete model from statistical mechanics, the Cellular Potts Model, with a continuum reaction-diffusion model and a state automaton with well-defined conditions for cell differentiation transitions to model genetic regulation. This environment allows us to rapidly and compactly create computational models of a class of complex-developmental phenomena. To illustrate model development, we simulate a simplified version of the formation of the skeletal pattern in a growing embryonic vertebrate limb.
Collapse
Affiliation(s)
- R Chaturvedi
- Department of Mathematics, Department of Physics and Center for the Study of Biocomplexity, University of Notre DameNotre Dame, IN 46556-5670, USA
| | - C Huang
- Department of Computer Science and Engineering, University of Notre DameNotre Dame, IN 46556-5670, USA
| | - B Kazmierczak
- Department of Mathematics, Department of Physics and Center for the Study of Biocomplexity, University of Notre DameNotre Dame, IN 46556-5670, USA
| | - T Schneider
- Department of Computer Science and Engineering, University of Notre DameNotre Dame, IN 46556-5670, USA
| | - J.A Izaguirre
- Department of Computer Science and Engineering, University of Notre DameNotre Dame, IN 46556-5670, USA
| | - T Glimm
- Department of Physics, Emory UniversityAtlanta, GA 30322, USA
| | - H.G.E Hentschel
- Department of Physics, Emory UniversityAtlanta, GA 30322, USA
| | - J.A Glazier
- Biocomplexity Institute and Department of Physics, Indiana University727 East 3rd Street, Swain Hall West 159, Bloomington, IN 47405-7105, USA
| | - S.A Newman
- Department of Cell Biology & Anatomy, New York Medical CollegeBasic Science Building, Valhalla, NY 10595, USA
- Authors for correspondence. () ()
| | - M.S Alber
- Department of Mathematics, Department of Physics and Center for the Study of Biocomplexity, University of Notre DameNotre Dame, IN 46556-5670, USA
- Authors for correspondence. () ()
| |
Collapse
|
111
|
Cickovski TM, Huang C, Chaturvedi R, Glimm T, Hentschel HGE, Alber MS, Glazier JA, Newman SA, Izaguirre JA. A framework for three-dimensional simulation of morphogenesis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2005; 2:273-88. [PMID: 17044166 DOI: 10.1109/tcbb.2005.46] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present COMPUCELL3D, a software framework for three-dimensional simulation of morphogenesis in different organisms. COMPUCELL3D employs biologically relevant models for cell clustering, growth, and interaction with chemical fields. COMPUCELL3D uses design patterns for speed, efficient memory management, extensibility, and flexibility to allow an almost unlimited variety of simulations. We have verified COMPUCELL3D by building a model of growth and skeletal pattern formation in the avian (chicken) limb bud. Binaries and source code are available, along with documentation and input files for sample simulations, at http:// compucell.sourceforge.net.
Collapse
Affiliation(s)
- Trevor M Cickovski
- Laboratory for Computational Life Sciences, Department of Computer Science and Engineering, University of Notre Dame, 325 Cushing Hall, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
The desire to understand tumor complexity has given rise to mathematical models to describe the tumor microenvironment. We present a new mathematical model for avascular tumor growth and development that spans three distinct scales. At the cellular level, a lattice Monte Carlo model describes cellular dynamics (proliferation, adhesion, and viability). At the subcellular level, a Boolean network regulates the expression of proteins that control the cell cycle. At the extracellular level, reaction-diffusion equations describe the chemical dynamics (nutrient, waste, growth promoter, and inhibitor concentrations). Data from experiments with multicellular spheroids were used to determine the parameters of the simulations. Starting with a single tumor cell, this model produces an avascular tumor that quantitatively mimics experimental measurements in multicellular spheroids. Based on the simulations, we predict: 1), the microenvironmental conditions required for tumor cell survival; and 2), growth promoters and inhibitors have diffusion coefficients in the range between 10(-6) and 10(-7) cm2/h, corresponding to molecules of size 80-90 kDa. Using the same parameters, the model also accurately predicts spheroid growth curves under different external nutrient supply conditions.
Collapse
Affiliation(s)
- Yi Jiang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | |
Collapse
|
113
|
Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P. AgentCell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics 2005; 21:2714-21. [PMID: 15774553 DOI: 10.1093/bioinformatics/bti391] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION In recent years, single-cell biology has focused on the relationship between the stochastic nature of molecular interactions and variability of cellular behavior. To describe this relationship, it is necessary to develop new computational approaches at the single-cell level. RESULTS We have developed AgentCell, a model using agent-based technology to study the relationship between stochastic intracellular processes and behavior of individual cells. As a test-bed for our approach we use bacterial chemotaxis, one of the best characterized biological systems. In this model, each bacterium is an agent equipped with its own chemotaxis network, motors and flagella. Swimming cells are free to move in a 3D environment. Digital chemotaxis assays reproduce experimental data obtained from both single cells and bacterial populations.
Collapse
Affiliation(s)
- Thierry Emonet
- The Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
114
|
Biological Development of Cell Patterns: Characterizing the Space of Cell Chemistry Genetic Regulatory Networks. ADVANCES IN ARTIFICIAL LIFE 2005. [DOI: 10.1007/11553090_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
115
|
Nishimura SI, Sasai M. Inertia of amoebic cell locomotion as an emergent collective property of the cellular dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:010902. [PMID: 15697573 DOI: 10.1103/physreve.71.010902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 05/24/2023]
Abstract
Amoebic cells are ubiquitous in many species and have been used as model systems to study the eukaryotic cellular locomotion. We construct a model of amoebic cells on two-dimensional grids, which describes sensing, cell status, and locomotion in a unified way. We show that the averaged position of simulated cells is described by a second-order differential equation of motion and that the mechanical pushing at the initial moment boosts the cell movement, which continues after the cell is released from the pushing. These "inertialike" features suggest the possibility of Newtonian-type motions in chemical distributions of the signaling molecule. We show, as an example, the possibility of rotating motion in a "centripetal" distribution. The observed inertial motion is an emergent collective dynamics, which is controlled by diffusive and chemical processes in the cell.
Collapse
Affiliation(s)
- Shin I Nishimura
- Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
116
|
Knewitz MA, Mombach JCM. Computer simulation of the influence of cellular adhesion on the morphology of the interface between tissues of proliferating and quiescent cells. Comput Biol Med 2004; 36:59-69. [PMID: 16324909 DOI: 10.1016/j.compbiomed.2004.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 06/04/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022]
Abstract
We investigate the influence of cellular adhesion on the morphology of the interface between a tissue of proliferating and quiescent cells using the cellular Potts model. We show that a decrease in surface tension changes the morphology of the interface and that only for negative surface tensions cell detachment from the proliferative tissue occurs suggesting that this might be a necessary condition for metastatization in malignant neoplasies.
Collapse
Affiliation(s)
- Marcos A Knewitz
- Laboratório de Bioinformática e Biologia Computacional, Centro de Ciências Exatas e Tecnológicas, Universidade doVale do Rio dos Sinos, 93022-000 São Leopoldo, RS, Brazil
| | | |
Collapse
|
117
|
Hentschel HGE, Glimm T, Glazier JA, Newman SA. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc Biol Sci 2004; 271:1713-22. [PMID: 15306292 PMCID: PMC1691788 DOI: 10.1098/rspb.2004.2772] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud.
Collapse
Affiliation(s)
- H G E Hentschel
- Department of Physics, Emory University, Maths/Science Center, 400 Dowman Drive, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
118
|
Kiskowski MA, Alber MS, Thomas GL, Glazier JA, Bronstein NB, Pu J, Newman SA. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev Biol 2004; 271:372-87. [PMID: 15223341 DOI: 10.1016/j.ydbio.2004.03.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 03/18/2004] [Accepted: 03/25/2004] [Indexed: 02/02/2023]
Abstract
We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.
Collapse
Affiliation(s)
- Maria A Kiskowski
- Department of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447475 DOI: 10.1002/cfg.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
120
|
|
121
|
Merks RMH, Newman SA, Glazier JA. Cell-Oriented Modeling of In Vitro Capillary Development. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/978-3-540-30479-1_44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|