101
|
Pol S, Sveinsson M, Sudyn M, Babek N, Siebert D, Bertolino N, Modica CM, Preda M, Schweser F, Zivadinov R. Teriflunomide's Effect on Glia in Experimental Demyelinating Disease: A Neuroimaging and Histologic Study. J Neuroimaging 2018; 29:52-61. [PMID: 30232810 DOI: 10.1111/jon.12561] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Teriflunomide reduces disability progression and brain atrophy in multiple sclerosis patients. The exact mechanism of action by which teriflunomide exerts these effects is currently unknown. We assessed the effect of teriflunomide on brain glial cells in the Theiler's murine encephalomyelitis virus (TMEV) by using a histological approach in combination with neuroimaging. METHODS Forty-eight SJL female mice received an intracerebral injection of TMEV at 6-8 weeks of age and were then treated with teriflunomide (n = 24) or placebo (n = 24) for 9 months. They were examined with MRI and behavioral testing at 2, 6, and 9 months postinduction (mPI). Of those, 18 teriflunomide-treated and 17 controls mice were analyzed histologically at 9 mPI to sample from different brain regions for myelination status, microglial density, and oligodendroglial lineage. The histological and MRI outcomes were correlated. RESULTS Corpus callosum microglial density was numerically lower in the teriflunomide-treated mice compared to the control group (141.1 ± 21.7 SEM vs. 214.74 ± 34.79 SEM, Iba1+ cells/mm2 , P = .087). Basal ganglia (BG) microglial density in the teriflunomide group exhibited a negative correlation with fractional anisotropy (P = .021) and a positive correlation with mean diffusivity (P = .034), indicating less inflammation and axonal damage. Oligodendroglial lineage cell and myelin density were not significantly different between treatment groups. However, a significant positive correlation between BG oligodendrocytes and BG volume (P = .027), and with N-acetyl aspartate concentration (P = .008), was found in the teriflunomide group, indicating less axonal loss. CONCLUSION Teriflunomide altered microglia density and oligodendrocytes differentiation, which was associated with less evident microstructural damage on MRI.
Collapse
Affiliation(s)
- Suyog Pol
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Michele Sveinsson
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Michelle Sudyn
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Natan Babek
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Danielle Siebert
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Nicola Bertolino
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Claire M Modica
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
102
|
Paternò R, Chillon JM. Potentially Common Therapeutic Targets for Multiple Sclerosis and Ischemic Stroke. Front Physiol 2018; 9:855. [PMID: 30057552 PMCID: PMC6053536 DOI: 10.3389/fphys.2018.00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke (IS) and multiple sclerosis (MS) are two pathologies of the central nervous system (CNS). At the first look, this appears to be the only similarity between the two diseases, as they seem quite different. Indeed IS has an acute onset compared to MS which develops chronically; IS is consecutive to blood clot migrating to cerebral blood vessels or decrease in cerebral blood flow following atherosclerosis or decreases in cardiac output, whereas MS is an immune disease associated with neurodegeneration. However, both pathologies share similar pathologic pathways and treatments used in MS have been the object of studies in IS. In this mini-review we will discuss similarities between IS and MS on astrocytes and neuroinflammation hallmarks emphasizing the potential for treatments.
Collapse
Affiliation(s)
- Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Jean-Marc Chillon
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (EA 7517), Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France.,Direction de la Recherche Clinique et de l'Innovation, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
103
|
Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiol Dis 2018; 117:161-169. [PMID: 29859874 DOI: 10.1016/j.nbd.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Although N-acetylaspartate (NAA) has long been recognized as the most abundant amino acid in neurons by far, its primary role has remained a mystery. Based on its unique tertiary structure, we explored the potential of NAA to modulate aggregation of amyloid-beta (Aβ) peptide 1-42 via multiple corroborating aggregation assays along with electron microscopy. Thioflavin-T fluorescence assay demonstrated that at physiological concentrations, NAA substantially inhibited the initiation of Aβ fibril formation. In addition, NAA added after 25 min of Aβ aggregation was shown to break up preformed fibrils. Electron microscopy analysis confirmed the absence of mature fibrils following NAA treatment. Furthermore, fluorescence correlation spectroscopy and dynamic light scattering measurements confirmed significant reductions in Aβ fibril hydrodynamic radius following treatment with NAA. These results suggest that physiological levels of NAA could play an important role in controlling Aβ aggregation in vivo where they are both found in the same neuronal compartments.
Collapse
|
104
|
Marshall I, Thrippleton MJ, Bastin ME, Mollison D, Dickie DA, Chappell FM, Semple SIK, Cooper A, Pavitt S, Giovannoni G, Wheeler-Kingshott CAMG, Solanky BS, Weir CJ, Stallard N, Hawkins C, Sharrack B, Chataway J, Connick P, Chandran S. Characterisation of tissue-type metabolic content in secondary progressive multiple sclerosis: a magnetic resonance spectroscopic imaging study. J Neurol 2018; 265:1795-1802. [PMID: 29846780 PMCID: PMC6060762 DOI: 10.1007/s00415-018-8903-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Proton magnetic resonance spectroscopy yields metabolic information and has proved to be a useful addition to structural imaging in neurological diseases. We applied short-echo time Spectroscopic Imaging in a cohort of 42 patients with secondary progressive multiple sclerosis (SPMS). Linear modelling with respect to brain tissue type yielded metabolite levels that were significantly different in white matter lesions compared with normal-appearing white matter, suggestive of higher myelin turnover (higher choline), higher metabolic rate (higher creatine) and increased glial activity (higher myo-inositol) within the lesions. These findings suggest that the lesions have ongoing cellular activity that is not consistent with the usual assumption of ‘chronic’ lesions in SPMS, and may represent a target for repair therapies.
Collapse
Affiliation(s)
- Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | | | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daisy Mollison
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David A Dickie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Scott I K Semple
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Annette Cooper
- Edinburgh Imaging QMRI Facility, University of Edinburgh, Edinburgh, UK
| | - Sue Pavitt
- Dental Translational and Clinical Research Unit, School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Gavin Giovannoni
- Department of Neurology, Barts and the London NHS Trust, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- UCL Institute of Neurology, Queen Square MS Centre, University College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Bhavana S Solanky
- UCL Institute of Neurology, Queen Square MS Centre, University College London, London, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nigel Stallard
- Division of Health Sciences, University of Warwick, Warwick, UK
| | - Clive Hawkins
- Institute for Science and Technology in Medicine, Keele University, Newcastle, UK
| | - Basil Sharrack
- Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
105
|
Abstract
Since its technical development in the early 1980s, magnetic resonance imaging (MRI) has quickly been adopted as an essential tool in supporting the diagnosis, longitudinal monitoring, evaluation of therapeutic response, and scientific investigations in multiple sclerosis (MS). The clinical usage of MRI has increased in parallel with technical innovations in the technique itself; the widespread adoption of clinically routine MRI at 1.5T has allowed sensitive qualitative and quantitative assessments of macroscopic central nervous system (CNS) inflammatory demyelinating lesions and tissue atrophy. However, conventional MRI lesion measures lack specificity for the underlying MS pathology and only weakly correlate with clinical status. Higher field strength units and newer, advanced MRI techniques offer increased sensitivity and specificity in the detection of disease activity and disease severity. This review summarizes the current status and future prospects regarding the role of MRI in the characterization of MS-related brain and spinal cord involvement.
Collapse
Affiliation(s)
- Christopher C Hemond
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
106
|
Abstract
Multiple sclerosis is a multifactorial disease with heterogeneous pathogenetic mechanisms, which deserve to be studied to evaluate new possible targets for treatments and improve patient management. MR spectroscopy and PET allow assessing in vivo the molecular and metabolic mechanisms underlying the pathogenesis of multiple sclerosis. This article focuses on the relationship between these imaging techniques and the biologic and chemical pathways leading to multiple sclerosis pathology and its clinical features. Future directions of research are also presented.
Collapse
Affiliation(s)
- Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, University College London, Institute of Neurology, 10-12 Russell Square, London WC1B 5EH, UK; MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Via Sergio Pansini 5, Naples 80131, Italy
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, University College London, Institute of Neurology, 10-12 Russell Square, London WC1B 5EH, UK; NIHR University College London Hospitals, Biomedical Research Centre, Maple House Suite A 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.
| |
Collapse
|
107
|
Barclay W, Shinohara ML. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathol 2018; 27:213-219. [PMID: 27997058 DOI: 10.1111/bpa.12477] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
The aptly named inflammasomes are powerful signaling complexes that sense inflammatory signals under a myriad of conditions, including those from infections and endogenous sources. The inflammasomes promote inflammation by maturation and release of the pro-inflammatory cytokines, IL-1β and IL-18. Several inflammasomes have been identified so far, but this review focuses mainly on the NLRP3 inflammasome. By still ill-defined activation mechanisms, a sensor molecule, NLRP3 (NACHT, LRR and PYD domains-containing protein 3), responds to danger signals and rapidly recruits ASC (apoptosis-associated speck-like protein containing a CARD) and pro-caspase-1 to form a large oligomeric signaling platform-the inflammasome. Involvement of the NLRP3 inflammasome in infections, metabolic disorders, autoinflammation, and autoimmunity, underscores its position as a central player in sensing microbial and damage signals and coordinating pro-inflammatory immune responses. Indeed, evidence in patients with multiple sclerosis (MS) suggests inflammasome activation occurs during disease. Experiments with the mouse model of MS, experimental autoimmune encephalomyelitis (EAE), specifically describe the NLRP3 inflammasome as critical and necessary to disease development. This review discusses recent studies in EAE and MS which describe associations of inflammasome activation with promotion of T cell pathogenicity, infiltration of cells into the central nervous system (CNS) and direct neurodegeneration during EAE and MS.
Collapse
Affiliation(s)
- William Barclay
- Department of Immunology, Duke University Medical School, Durham, NC
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical School, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, NC
| |
Collapse
|
108
|
Abstract
The role traditionally assigned to astrocytes in the pathogenesis of multiple sclerosis (MS) lesions has been the formation of the glial scar once inflammation has subsided. Astrocytes are now recognized to be early and highly active players during lesion formation and key for providing peripheral immune cells access to the central nervous system. Here, we review the role of astrocytes in the formation and evolution of MS lesions, including the recently described functional polarization of astrocytes, discuss prototypical pathways for astrocyte activation, and summarize mechanisms by which MS treatments affect astrocyte function.
Collapse
Affiliation(s)
- Gerald Ponath
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Calvin Park
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
109
|
Coe S, Collett J, Izadi H, Wade DT, Clegg M, Harrison JM, Buckingham E, Cavey A, DeLuca GC, Palace J, Dawes H. A protocol for a randomised double-blind placebo-controlled feasibility study to determine whether the daily consumption of flavonoid-rich pure cocoa has the potential to reduce fatigue in people with relapsing and remitting multiple sclerosis (RRMS). Pilot Feasibility Stud 2018; 4:35. [PMID: 29403649 PMCID: PMC5778802 DOI: 10.1186/s40814-018-0230-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
Background Dietary interventions including consumption of flavonoids, plant compounds found in certain foods, may have the ability to improve fatigue. However, to date, no well-designed intervention studies assessing the role of flavonoid consumption for fatigue management in people with MS (pwMS) have been performed. The hypothesis is that the consumption of a flavonoid-rich pure cocoa beverage will reduce fatigue in pwMS. The aim of this study is to determine the feasibility and potential outcome of running a trial to evaluate this hypothesis. Methods Using a randomised (1:1) double-blind placebo-controlled feasibility study, 40 men and women (20 in each trial arm) with a recent diagnosis (< 10 years) of relapsing and remitting MS (RRMS) and who are over 18 years of age will be recruited from neurology clinics and throughout the Thames Valley community. During a 6-week nutrition intervention period, participants will consume the cocoa beverage, high flavonoid or low flavonoid content, at breakfast daily. At baseline, demographic factors and disease-related factors will be assessed. Fatigue, activity and quality of life, in addition to other measures, will be taken at three visits (baseline, week 3 and week 6) in a university setting by a researcher blinded to group membership. Feasibility and fidelity will be assessed through recruitment and retention, adherence and a quantitative process evaluation at the end of the trial. We will describe demographic factors (age, gender, level of education) as well as disease-related factors (disease burden scores, length of time diagnosed with MS) and cognitive assessment, depression and quality of life and general physical activity in order to characterise participants and determine possible mediators to identify the processes by which the intervention may bring about change. Feasibility (recruitment, safety, feasibility of implementation of the intervention and evaluation, protocol adherence and data completion) and potential for benefit (estimates of effect size and variability) will be determined to inform future planned studies. Results will be presented using point estimates, 95% confidence intervals and p values. Primary statistical analysis will be on an intention-to-treat basis and will use the complete case data set. Discussion We propose that a flavonoid-enriched cocoa beverage for the management of fatigue will be well received by participants. Further, if it is implemented early in the disease course of people diagnosed with RRMS, it will improve mobility and functioning by modifying fatigue. Trial registration Registered with ISRCTN Registry. Trial registration No: ISRCTN69897291; Date April 2016
Collapse
Affiliation(s)
- S Coe
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK
| | - J Collett
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK
| | - H Izadi
- 3School of Engineering, Computing and Mathematics, Faculty of Technology, Design and Environment, Oxford Brookes University, Wheatley Campus, Room R2.32, Oxford, OX33 1HX UK
| | - D T Wade
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK
| | - M Clegg
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK
| | - J M Harrison
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK
| | - E Buckingham
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK
| | - A Cavey
- 2Department of Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, OX3 9DU UK
| | - G C DeLuca
- 2Department of Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, OX3 9DU UK
| | - J Palace
- 2Department of Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, OX3 9DU UK
| | - H Dawes
- 1Centre for Movement and Occupational Rehabilitation Sciences, Oxford Institute of Midwifery, Nursing and Allied Health Research, and Oxford Brookes Centre for Nutrition and Health, Oxford Brookes University, Oxford, OX30BP UK.,2Department of Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
110
|
Donadieu M, Le Fur Y, Maarouf A, Gherib S, Ridley B, Pini L, Rapacchi S, Confort-Gouny S, Guye M, Schad LR, Maudsley AA, Pelletier J, Audoin B, Zaaraoui W, Ranjeva JP. Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain 23Na-MRI and fast 1H-MRSI study. Mult Scler 2017; 25:39-47. [DOI: 10.1177/1352458517736146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. Objective: To determine in vivo the metabolic counterpart of brain sodium accumulation. Materials/methods: Whole brain 23Na-MR imaging and 3D-1H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T2 lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. Results: MS patients showed significant 23Na accumulations with lower choline and glutamate–glutamine (Glx) levels in GM; 23Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher 23Na, m-Ins levels with lower NAA in WM T2 lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T2 lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T2 lesions. GM Glx levels were associated with clinical scores. Conclusion: Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.
Collapse
Affiliation(s)
- Maxime Donadieu
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/Siemens Healthineers, Saint-Denis, France
| | - Yann Le Fur
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Adil Maarouf
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Soraya Gherib
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Lauriane Pini
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Stanislas Rapacchi
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Jean Pelletier
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| |
Collapse
|
111
|
Kocevar G, Stamile C, Hannoun S, Roch JA, Durand-Dubief F, Vukusic S, Cotton F, Sappey-Marinier D. Weekly follow up of acute lesions in three early multiple sclerosis patients using MR spectroscopy and diffusion. J Neuroradiol 2017; 45:108-113. [PMID: 29032126 DOI: 10.1016/j.neurad.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 01/06/2017] [Accepted: 06/24/2017] [Indexed: 11/19/2022]
Abstract
OBJECT Pathophysiological mechanisms underlying multiple sclerosis (MS) lesion formation, including inflammation, demyelination/remyelination and axonal damage, and their temporal evolution are still not clearly understood. To this end, three acute white matter lesions were monitored using a weekly multimodal magnetic resonance (MR) protocol. MATERIALS AND METHODS Three untreated patients with early relapsing-remitting MS and one healthy control subject were followed weekly for two months. MR protocol included conventional MR imaging (MRI), diffusion tensor imaging (DTI), and localized MR spectroscopy (MRS), performed on the largest gadolinium-enhancing lesion, selected at the first exam. RESULTS Mean diffusivity increased and fractional anisotropy decreased in lesions compared to healthy control. Cho/Cr ratios remained elevated in lesions throughout the follow-up. In contrast, temporal profiles of mI/Cr ratios varied between patients' lesions. For patient 1, mI/Cr ratios were already elevated at the beginning of the follow-up. Patients 2 and 3 ratios increase was delayed by two and five weeks. Blood-brain barrier (BBB) recovery occurred after three weeks. CONCLUSION This multimodal MR follow-up highlighted the complementary role of DTI and MRS in identifying temporal relationships between BBB disruption, inflammation, and demyelination. Diffusion metrics showed high sensitivity to detect inflammatory processes. The different temporal profiles of mI suggested a potential better specificity to monitor pathological mechanisms occurring after lesion formation, such as glial proliferation and remyelination.
Collapse
Affiliation(s)
- Gabriel Kocevar
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France
| | - Claudio Stamile
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon
| | - Jean-Amédée Roch
- Service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
| | - Françoise Durand-Dubief
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; Service de neurologie A, hôpital neurologique de Lyon, hospices civils de Lyon, 69677 Lyon, France
| | - Sandra Vukusic
- Service de neurologie A, hôpital neurologique de Lyon, hospices civils de Lyon, 69677 Lyon, France
| | - François Cotton
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; Service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
| | - Dominique Sappey-Marinier
- CREATIS, UMR5520, U1206 Inserm, université Claude-Bernard-Lyon1, 69621 Lyon, France; CERMEP, Imagerie-du-Vivant, université de Lyon, 69677 Lyon, France.
| |
Collapse
|
112
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
113
|
Modica CM, Schweser F, Sudyn ML, Bertolino N, Preda M, Polak P, Siebert DM, Krawiecki JC, Sveinsson M, Hagemeier J, Dwyer MG, Pol S, Zivadinov R. Effect of teriflunomide on cortex-basal ganglia-thalamus (CxBGTh) circuit glutamatergic dysregulation in the Theiler's Murine Encephalomyelitis Virus mouse model of multiple sclerosis. PLoS One 2017; 12:e0182729. [PMID: 28796815 PMCID: PMC5552032 DOI: 10.1371/journal.pone.0182729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathology of gray matter is associated with development of physical and cognitive disability in patients with multiple sclerosis. In particular, glutamatergic dysregulation in the cortex-basal ganglia-thalamus (CxBGTh) circuit could be associated with decline in these behaviors. OBJECTIVES To investigate the effect of an immunomodulatory therapy (teriflunomide, Aubagio®) on changes of the CxBGTh loop in the Theiler's Murine Encephalomyelitis Virus, (TMEV) mouse model of MS. METHODS Forty-eight (48) mice were infected with TMEV, treated with teriflunomide (24) or control vehicle (24) and followed for 39 weeks. Mice were examined with MRS and volumetric MRI scans (0, 8, 26, and 39 weeks) in the cortex, basal ganglia and thalamus, using a 9.4T scanner, and with behavioral tests (0, 4, 8, 12, 17, 26, and 39 weeks). Within conditions, MRI measures were compared between two time points by paired samples t-test and across multiple time points by repeated measures ANOVA (rmANOVA), and between conditions by independent samples t-test and rmANOVA, respectively. Data were considered as significant at the p<0.01 level and as a trend at p<0.05 level. RESULTS In the thalamus, the teriflunomide arm exhibited trends toward decreased glutamate levels at 8 and 26 weeks compared to the control arm (p = 0.039 and p = 0.026), while the control arm exhibited a trend toward increased glutamate between 0 to 8 weeks (p = 0.045). In the basal ganglia, the teriflunomide arm exhibited a trend toward decreased glutamate earlier than the control arm, from 0 to 8 weeks (p = 0.011), resulting in decreased glutamate compared to the control arm at 8 weeks (p = 0.016). CONCLUSIONS Teriflunomide may reduce possible excitotoxicity in the thalamus and basal ganglia by lowering glutamate levels.
Collapse
Affiliation(s)
- Claire M Modica
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, Buffalo, New York, United States of America
| | - Michelle L Sudyn
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Nicola Bertolino
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Marilena Preda
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, Buffalo, New York, United States of America
| | - Paul Polak
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Danielle M Siebert
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Exercise Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, United States of America
| | - Jacqueline C Krawiecki
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Department of Geology, University at Buffalo, Buffalo, New York, United States of America
| | - Michele Sveinsson
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Suyog Pol
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
114
|
Nantes JC, Proulx S, Zhong J, Holmes SA, Narayanan S, Brown RA, Hoge RD, Koski L. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis. Neuroimage 2017; 157:705-715. [DOI: 10.1016/j.neuroimage.2017.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 01/04/2023] Open
|
115
|
miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. J Neurosci 2017; 37:546-561. [PMID: 28100738 DOI: 10.1523/jneurosci.0851-16.2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in post-transcriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter (WM) pathology. However, little is known about their role in gray matter pathology. Here, we explored miRNA involvement in the inflammation-driven alterations of synaptic structure and function, collectively known as synaptopathy, a neuropathological process contributing to excitotoxic neurodegeneration in MS/EAE. Particularly, we observed that miR-142-3p is increased in the CSF of patients with active MS and in EAE brains. We propose miR-142-3p as a molecular mediator of the IL-1β-dependent downregulation of the glial glutamate-aspartate transporter (GLAST), which causes an enhancement of the glutamatergic transmission in the EAE cerebellum. The synaptic abnormalities mediated by IL-1β and the clinical and neuropathological manifestations of EAE disappeared in miR-142 knock-out mice. Furthermore, we observed that in vivo miR-142-3p inhibition, either by a preventive and local treatment or by a therapeutic and systemic strategy, abolished IL-1β- and GLAST-dependent synaptopathy in EAE wild-type mice. Consistently, miR-142-3p was responsible for the glutamatergic synaptic alterations caused by CSF of patients with MS, and CSF levels of miR-142-3p correlated with prospective MS disease progression. Our findings highlight miR-142-3p as key molecular player in IL-1β-mediated synaptic dysfunction, possibly leading to excitotoxic damage in both EAE and MS diseases. Inhibition of miR-142-3p could be neuroprotective in MS. SIGNIFICANCE STATEMENT Current studies suggest the role of glutamate excitotoxicity in the development and progression of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE). The molecular mechanisms linking inflammation and synaptic alterations in MS/EAE are still unknown. Here, we identified miR-142-3p as a determinant molecular actor in inflammation-dependent synaptopathy typical of both MS and EAE. miR-142-3p was upregulated in the CSF of MS patients and in EAE cerebellum. Inhibition of miR-142-3p, locally in EAE brain and in a MS chimeric ex vivo model, recovered glutamatergic synaptic enhancement typical of EAE/MS. We proved that miR-142-3p promoted the IL-1β-dependent glutamate dysfunction by targeting glutamate-aspartate transporter (GLAST), a crucial glial transporter involved in glutamate homeostasis. Finally, we suggest miR-142-3p as a negative prognostic factor in patients with relapsing-remitting multiple sclerosis.
Collapse
|
116
|
Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis. Int J Biochem Cell Biol 2017; 93:148-155. [PMID: 28720279 DOI: 10.1016/j.biocel.2017.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic, demyelinating disease that affects the central nervous system and is characterized by a complex pathogenesis and difficult management. The identification of new biomarkers would be clinically useful for more accurate diagnoses and disease monitoring. Metabolomics, the identification of small endogenous molecules, offers an instantaneous molecular snapshot of the MS phenotype. Here the metabolomic profiles (utilizing plasma from patients with MS) were characterized with a Gas cromatography-mass spectrometry-based platform followed by a multivariate statistical analysis and comparison with a healthy control (HC) population. The obtained partial least square discriminant analysis (PLS-DA) model identified and validated significant metabolic differences between individuals with MS and HC (R2X=0.223, R2Y=0.82, Q2=0.562; p<0.001). Among discriminant metabolites phosphate, fructose, myo-inositol, pyroglutamate, threonate, l-leucine, l-asparagine, l-ornithine, l-glutamine, and l-glutamate were correctly identified, and some resulted as unknown. A receiver operating characteristic (ROC) curve with AUC 0.84 (p=0.01; CI: 0.75-1) generated with the concentrations of the discriminant metabolites, supported the strength of the model. Pathway analysis indicated asparagine and citrulline biosynthesis as the main canonical pathways involved in MS. Changes in the citrulline biosynthesis pathway suggests the involvement of oxidative stress during neuronal damage. The results confirmed metabolomics as a useful approach to better understand the pathogenesis of MS and to provide new biomarkers for the disease to be used together with clinical data.
Collapse
|
117
|
Stampanoni Bassi M, Mori F, Buttari F, Marfia GA, Sancesario A, Centonze D, Iezzi E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 2017; 128:1148-1157. [DOI: 10.1016/j.clinph.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/16/2023]
|
118
|
Hippocampus Glutamate and N-Acetyl Aspartate Markers of Excitotoxic Neuronal Compromise in Posttraumatic Stress Disorder. Neuropsychopharmacology 2017; 42:1698-1705. [PMID: 28195577 PMCID: PMC5518902 DOI: 10.1038/npp.2017.32] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
Hippocampus atrophy is implicated in posttraumatic stress disorder (PTSD), and may partly reflect stress-induced glutamate excitotoxicity that culminates in neuron injury and manifests as re-experiencing symptoms and other memory abnormalities. This study used high-field proton magnetic resonance spectroscopy (MRS) to determine whether PTSD is associated with lower hippocampus levels of the neuron marker N-acetyl aspartate (NAA), along with higher levels of glutamate (Glu) and Glu/NAA. We also predicted that metabolite levels would correlate with re-experiencing symptoms and lifetime trauma load. Twenty-four adult PTSD patients and 23 trauma-exposed normal controls (TENC) underwent 4T MRS of the left and right hippocampus. Participants received psychiatric interviews, and completed the Traumatic Life Events Questionnaire to define lifetime trauma load. Relative to TENC participants, PTSD patients exhibited significantly lower NAA in right and left hippocampi, and significantly higher Glu and Glu/NAA in the right hippocampus. Re-experiencing symptoms were negatively correlated with left and right NAA, and positively correlated with right Glu and right Glu/NAA. Trauma load was positively correlated with right Glu/NAA in PTSD patients. When re-experiencing symptoms and trauma load were examined together in relation to right Glu/NAA, only re-experiencing symptoms remained a significant correlate. This represents the first report that PTSD is associated with MRS markers of hippocampus Glu excess, together with indices of compromised neuron integrity. Their robust associations with re-experiencing symptoms affirm that MRS indices of hippocampus neuron integrity and glutamate metabolism may reflect biomarkers of clinically significant disease variation in PTSD.
Collapse
|
119
|
Brandão LA, Castillo M. Adult Brain Tumors: Clinical Applications of Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 2017; 24:781-809. [PMID: 27742117 DOI: 10.1016/j.mric.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proton magnetic resonance spectroscopy (H-MRS) may be helpful in suggesting tumor histology and tumor grade and may better define tumor extension and the ideal site for biopsy compared with conventional magnetic resonance (MR) imaging. A multifunctional approach with diffusion-weighted imaging, perfusion-weighted imaging, and permeability maps, along with H-MRS, may enhance the accuracy of the diagnosis and characterization of brain tumors and estimation of therapeutic response. Integration of advanced imaging techniques with conventional MR imaging and the clinical history help to improve the accuracy, sensitivity, and specificity in differentiating tumors and nonneoplastic lesions.
Collapse
Affiliation(s)
- Lara A Brandão
- Clínica Felippe Mattoso, Av. Das Américas 700, sala 320, Barra da Tijuca, Rio de Janeiro 30112011, Brazil; Clínica IRM- Ressonância Magnética, Rua Capitão Salomão 44 Humaitá, Rio de Janeiro 22271040, Brazil.
| | - Mauricio Castillo
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, Room 3326, Old Infirmary Building, Manning Drive, Chapel Hill, NC 27599-7510, USA
| |
Collapse
|
120
|
Kirov II, Liu S, Tal A, Wu WE, Davitz MS, Babb JS, Rusinek H, Herbert J, Gonen O. Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steady-state metabolism and its relationship to conventional imaging. Hum Brain Mapp 2017; 38:4047-4063. [PMID: 28523763 DOI: 10.1002/hbm.23647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/17/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivan I Kirov
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Shu Liu
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Assaf Tal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - William E Wu
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Matthew S Davitz
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - James S Babb
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Henry Rusinek
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Joseph Herbert
- Multiple Sclerosis Comprehensive Care Center, New York University Langone Medical Center, New York, New York
| | - Oded Gonen
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
121
|
Klauser AM, Wiebenga OT, Eijlers AJC, Schoonheim MM, Uitdehaag BMJ, Barkhof F, Pouwels PJW, Geurts JJG. Metabolites predict lesion formation and severity in relapsing-remitting multiple sclerosis. Mult Scler 2017; 24:491-500. [DOI: 10.1177/1352458517702534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Multiple sclerosis is characterized by white matter lesions, which are visualized with conventional T2-weighted magnetic resonance imaging (MRI). Little is known about local metabolic processes preceding the appearance and during the pathological development of new lesions. Objective: To identify metabolite changes preceding white matter (WM) lesions and pathological severity of lesions over time. Methods: A total of 59 relapsing-remitting multiple sclerosis (MS) patients were scanned four times, with 6-month intervals. Imaging included short-TE magnetic resonance spectroscopic imaging (MRSI) and diffusion tensor imaging (DTI). Results: A total of 16 new lesions appeared within the MRSI slab in 12 patients. Glutamate increased (+1.0 mM (+19%), p = 0.039) 12 and 6 months before new lesions appeared. In these areas, the increase in creatine and choline 6 months before until lesion appearance was negatively correlated with radial diffusivity (ρ = −0.73, p = 0.002 and ρ = −0.72, p = 0.002). Increase in creatine also correlated with the increase of axial diffusivity in the same period (ρ = −0.53, p = 0.034). When splitting the lesions into “mild” and “severe” based on radial diffusivity, only mild lesions showed an increase in creatine and choline during lesion formation ( p = 0.039 and p = 0.008, respectively). Conclusion: Increased glutamate heralded the appearance of new T2-visible WM lesions. In pathologically “mild” lesions, an increase in creatine and choline was found during lesion formation.
Collapse
Affiliation(s)
- Antoine M Klauser
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands/Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Oliver T Wiebenga
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands/Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Anand JC Eijlers
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Bernard MJ Uitdehaag
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra JW Pouwels
- Department of Physics and Medical Technology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen JG Geurts
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
122
|
Ayache SS, Chalah MA. Fatigue in multiple sclerosis – Insights into evaluation and management. Neurophysiol Clin 2017; 47:139-171. [PMID: 28416274 DOI: 10.1016/j.neucli.2017.02.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
|
123
|
Al-Iedani O, Lechner-Scott J, Ribbons K, Ramadan S. Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis. J Biomed Sci 2017; 24:17. [PMID: 28245815 PMCID: PMC5331701 DOI: 10.1186/s12929-017-0323-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/08/2017] [Indexed: 01/04/2023] Open
Abstract
Multi voxel magnetic resonance spectroscopic imaging (MRSI) is an important imaging tool that combines imaging and spectroscopic techniques. MRSI of the human brain has been beneficially applied to different clinical applications in neurology, particularly in neurooncology but also in multiple sclerosis, stroke and epilepsy. However, a major challenge in conventional MRSI is the longer acquisition time required for adequate signal to be collected. Fast MRSI of the brain in vivo is an alternative approach to reduce scanning time and make MRSI more clinically suitable.Fast MRSI can be categorised into spiral, echo-planar, parallel and turbo imaging techniques, each with its own strengths. After a brief introduction on the basics of non-invasive examination (1H-MRS) and localization techniques principles, different fast MRSI techniques will be discussed from their initial development to the recent innovations with particular emphasis on their capacity to record neurochemical changes in the brain in a variety of pathologies.The clinical applications of whole brain fast spectroscopic techniques, can assist in the assessment of neurochemical changes in the human brain and help in understanding the roles they play in disease. To give a good example of the utilities of these techniques in clinical context, MRSI application in multiple sclerosis was chosen. The available up to date and relevant literature is discussed and an outline of future research is presented.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton, NSW 2305, Australia
| | - Karen Ribbons
- Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
124
|
Kantorová E, Poláček H, Bittšanský M, Baranovičová E, Hnilicová P, Čierny D, Sivák Š, Nosáľ V, Zeleňák K, Kurča E. Hypothalamic damage in multiple sclerosis correlates with disease activity, disability, depression, and fatigue. Neurol Res 2017; 39:323-330. [DOI: 10.1080/01616412.2016.1275460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- E. Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Slovakia
| | - H. Poláček
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Bratislava, Slovakia
| | - M. Bittšanský
- BioMed Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Bratislava, Slovakia
| | - E. Baranovičová
- BioMed Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Bratislava, Slovakia
| | - P. Hnilicová
- BioMed Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Bratislava, Slovakia
| | - D. Čierny
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Bratislava, Slovakia
| | - Š. Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Slovakia
| | - V. Nosáľ
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Slovakia
| | - K. Zeleňák
- Clinic of Radiodiagnostics, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Bratislava, Slovakia
| | - E. Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Slovakia
| |
Collapse
|
125
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
126
|
Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, Van Liefferinge J, Bentea E, Verbruggen L, Demuyser T, Deneyer L, Lewerenz J, van Loo G, De Keyser J, Sato H, Maher P, Methner A, Massie A. Absence of system x c- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation 2017; 14:9. [PMID: 28086920 PMCID: PMC5237180 DOI: 10.1186/s12974-016-0787-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System xc- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. METHODS Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system xc-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT-/-) mice and irradiated mice reconstituted in xCT-/- bone marrow (BM), to their proper wild type (xCT+/+) controls. RESULTS xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT+/+ mice, xCT-/- mice were equally susceptible to EAE, whereas mice transplanted with xCT-/- BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. CONCLUSIONS Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system xc- on immune cells invading the CNS participates to EAE. Since a total loss of system xc- had no net beneficial effects, these results have important implications for targeting system xc- for treatment of MS.
Collapse
Affiliation(s)
- Ellen Merckx
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Giulia Albertini
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Paterka
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Cathy Jensen
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Joeri Van Liefferinge
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduard Bentea
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lise Verbruggen
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Geert van Loo
- Inflammation Research Center, VIB and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N), Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Axel Methner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ann Massie
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
127
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Magnetic resonance imaging (MRI) is sensitive to lesion formation both in the brain and spinal cord. Imaging plays a prominent role in the diagnosis and monitoring of MS. Over a dozen anti-inflammatory therapies are approved for MS and the development of many of these medications was made possible through the use of contrast-enhancing lesions on MRI as a phase II outcome. A similar phase II outcome method for the neurodegeneration that underlies progressive courses of the disease is still unavailable. Although magnetic resonance is an invaluable tool for the diagnosis and monitoring of treatment effects in MS, several imaging barriers still exist. In general, MRI is less sensitive to gray matter lesions, lacks pathological specificity, and does not provide quantitative data easily. Several advanced imaging methods including diffusion tensor imaging, magnetization transfer, functional MRI, myelin water fraction imaging, ultra-high field MRI, positron emission tomography, and optical coherence tomography of the retina study promising ways of overcoming the difficulties in MS imaging.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
128
|
Garden GA, Campbell BM. Glial biomarkers in human central nervous system disease. Glia 2016; 64:1755-71. [PMID: 27228454 PMCID: PMC5575821 DOI: 10.1002/glia.22998] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771.
Collapse
Affiliation(s)
- Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, Washington
| | | |
Collapse
|
129
|
Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 2016; 15:1089-102. [PMID: 27571160 DOI: 10.1016/s1474-4422(16)30165-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs.
Collapse
Affiliation(s)
| | - Peter K Stys
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Denis Vivien
- INSERM U919, University of Caen Normandy, Caen, France
| | - Stuart A Lipton
- Scintillon Institute San Diego, CA, USA; Scripps Research Institute, La Jolla, CA, USA; School of Mecicine, University of California, San Diego, CA, USA
| | | |
Collapse
|
130
|
Bou Fakhredin R, Saade C, Kerek R, El-Jamal L, Khoury SJ, El-Merhi F. Imaging in multiple sclerosis: A new spin on lesions. J Med Imaging Radiat Oncol 2016; 60:577-586. [DOI: 10.1111/1754-9485.12498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Rayan Bou Fakhredin
- Diagnostic Radiology Department; American University of Beirut Medical Center; Beirut Lebanon
| | - Charbel Saade
- Diagnostic Radiology Department; American University of Beirut Medical Center; Beirut Lebanon
| | - Racha Kerek
- Diagnostic Radiology Department; American University of Beirut Medical Center; Beirut Lebanon
| | - Lara El-Jamal
- Diagnostic Radiology Department; American University of Beirut Medical Center; Beirut Lebanon
| | - Samia J Khoury
- Department of Neurology; American University of Beirut Medical Center; Beirut Lebanon
| | - Fadi El-Merhi
- Diagnostic Radiology Department; American University of Beirut Medical Center; Beirut Lebanon
| |
Collapse
|
131
|
Christensen PC, Samadi-Bahrami Z, Pavlov V, Stys PK, Moore GRW. Ionotropic glutamate receptor expression in human white matter. Neurosci Lett 2016; 630:1-8. [PMID: 27443784 DOI: 10.1016/j.neulet.2016.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 01/01/2023]
Abstract
Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders.
Collapse
Affiliation(s)
- Pia Crone Christensen
- Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, T2 N 4N1, Canada
| | - Zahra Samadi-Bahrami
- ICORD, (International Collaboration on Repair Discoveries), Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | - Vlady Pavlov
- ICORD, (International Collaboration on Repair Discoveries), Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, T2 N 4N1, Canada.
| | - G R Wayne Moore
- ICORD, (International Collaboration on Repair Discoveries), Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| |
Collapse
|
132
|
Nantes JC, Zhong J, Holmes SA, Narayanan S, Lapierre Y, Koski L. Cortical Damage and Disability in Multiple Sclerosis: Relation to Intracortical Inhibition and Facilitation. Brain Stimul 2016; 9:566-73. [DOI: 10.1016/j.brs.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022] Open
|
133
|
Henstridge CM, Pickett E, Spires-Jones TL. Synaptic pathology: A shared mechanism in neurological disease. Ageing Res Rev 2016; 28:72-84. [PMID: 27108053 DOI: 10.1016/j.arr.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Synaptic proteomes have evolved a rich and complex diversity to allow the exquisite control of neuronal communication and information transfer. It is therefore not surprising that many neurological disorders are associated with alterations in synaptic function. As technology has advanced, our ability to study the anatomical and physiological function of synapses in greater detail has revealed a critical role for both central and peripheral synapses in neurodegenerative disease. Synapse loss has a devastating effect on cellular communication, leading to wide ranging effects such as network disruption within central neural systems and muscle wastage in the periphery. These devastating effects link synaptic pathology to a diverse range of neurological disorders, spanning Alzheimer's disease to multiple sclerosis. This review will highlight some of the current literature on synaptic integrity in animal models of disease and human post-mortem studies. Synaptic changes in normal brain ageing will also be discussed and finally the current and prospective treatments for neurodegenerative disorders will be summarised.
Collapse
Affiliation(s)
| | - Eleanor Pickett
- Centre for Cognitive and Neural Systems, 1 George Square, University of Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, 1 George Square, University of Edinburgh, EH8 9JZ, UK; Euan MacDonald Centre for Motor Neurone Disease Research, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, EH16 4SB, UK; Centre for Dementia Prevention, University of Edinburgh Kennedy Tower, Royal Edinburgh Hospital, EH10 5HF, UK.
| |
Collapse
|
134
|
Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology 2016; 110:574-585. [PMID: 27346208 DOI: 10.1016/j.neuropharm.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Myelin is essential for the mammalian brain to function efficiently. Whilst many factors have been associated with regulating the differentiation of oligodendroglia and myelination, glutamate signalling might be particularly important for learning-dependent myelination. The majority of myelinated projection neurons are glutamatergic. Oligodendrocyte precursor cells receive glutamatergic synaptic inputs from unmyelinated axons and oligodendrocyte lineage cells express glutamate receptors which enable them to monitor and respond to changes in neuronal activity. Yet, what role glutamate plays for oligodendroglia is not fully understood. Here, we review glutamate signalling and its effects on oligodendrocyte lineage cells, and myelination in health and disease. Furthermore, we discuss whether glutamate signalling between neurons and oligodendroglia might lay the foundation to activity-dependent white matter plasticity. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
135
|
Fleischer V, Kolb R, Groppa S, Zipp F, Klose U, Gröger A. Metabolic Patterns in Chronic Multiple Sclerosis Lesions and Normal-appearing White Matter: Intraindividual Comparison by Using 2D MR Spectroscopic Imaging. Radiology 2016; 281:536-543. [PMID: 27243371 DOI: 10.1148/radiol.2016151654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To perform a direct metabolic comparison of chronic lesions and diffusely injured normal-appearing white matter (NAWM) in multiple sclerosis (MS). Materials and Methods In this institutional review board-approved study, with the written informed consent of all patients, two-dimensional magnetic resonance spectroscopic imaging data in 46 patients with relapsing-remitting MS (median disease duration, 0.8 year) were analyzed by using the spectral quantification tool LCModel. Metabolic patterns were evaluated for non-gadolinium-enhancing chronic lesions and the corresponding contralateral NAWM. The sensitivity of the method was assessed by reproducing the known metabolic differences between cortical gray matter (GM) and NAWM. In addition to individual spectra, averaged spectra were calculated by accumulating free induction decays over all subjects to yield an increased signal-to-noise ratio (SNR), and in turn, to allow improved curve fitting as demonstrated by lower error bounds for low-concentration metabolites. Metabolite concentrations were statistically tested for intraindividual differences (paired t tests) to avoid effects resulting from variations in disease severity or treatment. Results Differences between the metabolite concentrations in the NAWM and the cortical GM were highly significant (P < .001), demonstrating the reliability of the spectral analysis used here. The spectral patterns of the individual and averaged spectra of chronic lesions and NAWM were qualitatively very similar at visual inspection. Furthermore, in the quantitative comparison, the estimated metabolite concentrations showed only slight differences (P > .07). Owing to increased SNRs in the averaged spectra compared with individual spectra (eg, for chronic lesions, 63 vs 28.4 ± 4.1), it was possible to reliably (Cramér-Rao lower bound [CRLB], <20%) estimate scyllo-inositol levels with a CRLB of 14%. Conclusion These findings revealed that NAWM exhibits the same metabolic changes as chronic white matter lesions, even very early in the disease course, further supporting the view that such lesions may not be as relevant as widely assumed. © RSNA, 2016.
Collapse
Affiliation(s)
- Vinzenz Fleischer
- From the Department of Neurology and Neuroimaging Center of Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany (V.F., S.G., F.Z., A.G.); and Department of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Research Group, University Hospital Tübingen, Tübingen, Germany (R.K., U.K.)
| | - Rupert Kolb
- From the Department of Neurology and Neuroimaging Center of Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany (V.F., S.G., F.Z., A.G.); and Department of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Research Group, University Hospital Tübingen, Tübingen, Germany (R.K., U.K.)
| | - Sergiu Groppa
- From the Department of Neurology and Neuroimaging Center of Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany (V.F., S.G., F.Z., A.G.); and Department of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Research Group, University Hospital Tübingen, Tübingen, Germany (R.K., U.K.)
| | - Frauke Zipp
- From the Department of Neurology and Neuroimaging Center of Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany (V.F., S.G., F.Z., A.G.); and Department of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Research Group, University Hospital Tübingen, Tübingen, Germany (R.K., U.K.)
| | - Uwe Klose
- From the Department of Neurology and Neuroimaging Center of Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany (V.F., S.G., F.Z., A.G.); and Department of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Research Group, University Hospital Tübingen, Tübingen, Germany (R.K., U.K.)
| | - Adriane Gröger
- From the Department of Neurology and Neuroimaging Center of Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany (V.F., S.G., F.Z., A.G.); and Department of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Research Group, University Hospital Tübingen, Tübingen, Germany (R.K., U.K.)
| |
Collapse
|
136
|
Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54:260-277. [PMID: 26851553 DOI: 10.1016/j.bbi.2016.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Eric J Downer
- School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
137
|
Peyro Saint Paul L, Creveuil C, Heinzlef O, De Seze J, Vermersch P, Castelnovo G, Cabre P, Debouverie M, Brochet B, Dupuy B, Lebiez P, Sartori É, Clavelou P, Brassat D, Lebrun-Frenay C, Daplaud D, Pelletier J, Coman I, Hautecoeur P, Tourbah A, Defer G. Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: A randomized, placebo-controlled study. J Neurol Sci 2016; 363:69-76. [DOI: 10.1016/j.jns.2016.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
|
138
|
Iqbal Z, Wilson NE, Thomas MA. 3D spatially encoded and accelerated TE-averaged echo planar spectroscopic imaging in healthy human brain. NMR IN BIOMEDICINE 2016; 29:329-339. [PMID: 26748673 DOI: 10.1002/nbm.3469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Radiological Sciences, University of California Los Angeles, USA
| | - Neil E Wilson
- Department of Radiological Sciences, University of California Los Angeles, USA
| | - M Albert Thomas
- Department of Radiological Sciences, University of California Los Angeles, USA
| |
Collapse
|
139
|
MR Spectroscopy evaluation of white matter signal abnormalities of different non-neoplastic brain lesions. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
140
|
Nantes JC, Zhong J, Holmes SA, Whatley B, Narayanan S, Lapierre Y, Arnold DL, Koski L. Intracortical inhibition abnormality during the remission phase of multiple sclerosis is related to upper limb dexterity and lesions. Clin Neurophysiol 2016; 127:1503-1511. [DOI: 10.1016/j.clinph.2015.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/24/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022]
|
141
|
Zhong N, Zhao M, Li Y. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring. BIOMEDICAL OPTICS EXPRESS 2016; 7:335-351. [PMID: 26977344 PMCID: PMC4771453 DOI: 10.1364/boe.7.000335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 05/31/2023]
Abstract
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.
Collapse
Affiliation(s)
- Nianbing Zhong
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing University of Technology, Chongqing 400054, China;
| | - Mingfu Zhao
- Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing University of Technology, Chongqing 400054, China;
| | - Yishan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
| |
Collapse
|
142
|
Donadieu M, Le Fur Y, Lecocq A, Maudsley AA, Gherib S, Soulier E, Confort-Gouny S, Pariollaud F, Ranjeva MP, Pelletier J, Guye M, Zaaraoui W, Audoin B, Ranjeva JP. Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: Proof of concept in multiple sclerosis. J Magn Reson Imaging 2016; 44:411-9. [PMID: 26756662 DOI: 10.1002/jmri.25139] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To detect local metabolic abnormalities over the complete human brain in multiple sclerosis (MS) patients, we used optimized fast volumic echo planar spectroscopic imaging (3D-EPSI). MATERIALS AND METHODS Weighted mean combination of two 3D-EPSI covering the whole brain acquired at 3T in AC-PC and AC-PC+15° axial planes was performed to obtain high-quality metabolite maps for five metabolites: N-acetyl aspartate (NAA), glutamate+glutamine (Glx), choline (Cho), myo-inositol (m-Ins), and creatine+phosphocreatine (tCr). After spatial normalization, maps from 19 patients suffering from relapsing-remitting MS were compared to 19 matched controls using statistical mapping analyses to determine the topography of metabolic abnormalities. Probabilistic white matter (WM) T2 lesion maps and gray matter (GM) atrophy maps were also generated. RESULTS Two-group analysis of variance (ANOVA) (SPM8, P < 0.005, false discovery rate [FDR]-corrected P < 0.05 at the cluster level with age and sex as confounding covariates) comparing patients and controls matched for age and sex showed clusters of abnormal metabolite levels with 1) decreased NAA (around -15%) and Glx (around 20%) predominantly in GM within prefrontal cortices, motor cortices, bilateral thalami, and mesial temporal cortices in line with neuronal/neuro-astrocytic dysfunction; 2) increased m-Ins (around + 20%) inside WM T2 lesions and in the normal-appearing WM of temporal-occipital lobes, suggesting glial activation. CONCLUSION We demonstrate the ability to noninvasively map over the complete brain-from vertex to cerebellum-with a validated sequence, the metabolic abnormalities associated with MS, for characterizing the topography of pathological processes affecting widespread areas of WM and GM and its functional impact. J. Magn. Reson. Imaging 2016;44:411-419.
Collapse
Affiliation(s)
- Maxime Donadieu
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Yann Le Fur
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Angèle Lecocq
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Andrew A Maudsley
- Miller School of Medicine, University of Miami, Department of Radiology, Miami, Florida, USA
| | - Soraya Gherib
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Elisabeth Soulier
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Fanelly Pariollaud
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Marie-Pierre Ranjeva
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Jean Pelletier
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Maxime Guye
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie, CEMEREM, Marseille, France
| | - Bertrand Audoin
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Medical School of Marseille, Marseille, France
| |
Collapse
|
143
|
Lally N, An L, Banerjee D, Niciu MJ, Luckenbaugh DA, Richards EM, Roiser JP, Shen J, Zarate CA, Nugent AC. Reliability of 7T (1) H-MRS measured human prefrontal cortex glutamate, glutamine, and glutathione signals using an adapted echo time optimized PRESS sequence: A between- and within-sessions investigation. J Magn Reson Imaging 2016; 43:88-98. [PMID: 26059603 PMCID: PMC4671833 DOI: 10.1002/jmri.24970] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To ascertain the mechanisms of neuropsychiatric illnesses and their treatment, accurate and reliable imaging techniques are required; proton magnetic resonance spectroscopy ((1) H-MRS) can noninvasively measure glutamatergic function. Evidence suggests that aberrant glutamatergic signaling plays a role in numerous psychopathologies. Until recently, overlapping glutamatergic signals (glutamate, glutamine, and glutathione) could not easily be separated. However, the advent of novel pulse sequences and higher field magnetic resonance imaging (MRI) allows more precise resolution of overlapping glutamatergic signals, although the question of signal reliability remains undetermined. MATERIALS AND METHODS At 7T MR, we acquired (1) H-MRS data from the medial pregenual anterior cingulate cortex of healthy volunteers (n = 26) twice on two separate days. An adapted echo time optimized point-resolved spectroscopy sequence, modified with the addition of a J-suppression pulse to attenuate N-acetyl-aspartate multiplet signals at 2.49 ppm, was used to excite and acquire the spectra. In-house software was used to model glutamate, glutamine, and glutathione, among other metabolites, referenced to creatine. Intraclass correlation coefficients (ICCs) were computed for within- and between-session measurements. RESULTS Within-session measurements of glutamate, glutamine, and glutathione were on average reliable (ICCs ≥0.7). As anticipated, ICCs for between-session values of glutamate, glutamine, and glutathione were slightly lower but nevertheless reliable (ICC >0.62). A negative correlation was observed between glutathione concentration and age (r(24) = -0.37; P < 0.05), and a gender effect was noted on glutamine and glutathione. CONCLUSION The adapted sequence provides good reliability to measure glutamate, glutamine, and glutathione signals.
Collapse
Affiliation(s)
- Níall Lally
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK
| | - Li An
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Dipavo Banerjee
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark J. Niciu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - David A. Luckenbaugh
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Erica M. Richards
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK
| | - Jun Shen
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison C. Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
144
|
Martín A, Vázquez-Villoldo N, Gómez-Vallejo V, Padro D, Soria FN, Szczupak B, Plaza-García S, Arrieta A, Reese T, Llop J, Domercq M, Matute C. In vivo imaging of system xc- as a novel approach to monitor multiple sclerosis. Eur J Nucl Med Mol Imaging 2015; 43:1124-38. [PMID: 26659901 DOI: 10.1007/s00259-015-3275-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/27/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE Glutamate excitotoxicity contributes to oligodendroglial and axonal damage in multiple sclerosis pathology. Extracellular glutamate concentration in the brain is controlled by cystine/glutamate antiporter (system xc-), a membrane antiporter that imports cystine and releases glutamate. Despite this, the system xc(-) activity and its connection to the inflammatory reaction in multiple sclerosis (MS) is largely unknown. METHODS Longitudinal in vivo magnetic resonance (MRI) and positron emission tomography (PET) imaging studies with 2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG), [(11)C]-(R)-(1-(2-chlorophenyl)-N-methyl-N-1(1-methylpropyl)-3-isoquinolinecarboxamide ([(11)C]PK11195) and (4S)-4-(3-(18)F-fluoropropyl)-L-glutamate ([(18)F]FSPG) were carried out during the course of experimental autoimmune encephalomyelitis (EAE) induction in rats. RESULTS [(18)F]FSPG showed a significant increase of system xc(-) function in the lumbar section of the spinal cord at 14 days post immunization (dpi) that stands in agreement with the neurological symptoms and ventricle edema formation at this time point. Likewise, [(18)F]FDG did not show significant changes in glucose metabolism throughout central nervous system and [(11)C]PK11195 evidenced a significant increase of microglial/macrophage activation in spinal cord and cerebellum 2 weeks after EAE induction. Therefore, [(18)F]FSPG showed a major capacity to discriminate regions of the central nervous system affected by the MS in comparison to [(18)F]FDG and [(11)C]PK11195. Additionally, clodronate-treated rats showed a depletion in microglial population and [(18)F]FSPG PET signal in spinal cord confirming a link between neuroinflammatory reaction and cystine/glutamate antiporter activity in EAE rats. CONCLUSIONS Altogether, these results suggest that in vivo PET imaging of system xc(-) could become a valuable tool for the diagnosis and treatment evaluation of MS.
Collapse
Affiliation(s)
- Abraham Martín
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.
| | - Nuria Vázquez-Villoldo
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, UPV/EHU, 48170, Zamudio, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940, Leioa, Spain
| | - Vanessa Gómez-Vallejo
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Radiochemistry and Nuclear Imaging, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Daniel Padro
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Magnetic Resonance Imaging, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Federico N Soria
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, UPV/EHU, 48170, Zamudio, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940, Leioa, Spain
| | - Boguslaw Szczupak
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Sandra Plaza-García
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Magnetic Resonance Imaging, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Ander Arrieta
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Torsten Reese
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Magnetic Resonance Imaging, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Jordi Llop
- Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Radiochemistry and Nuclear Imaging, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Maria Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, UPV/EHU, 48170, Zamudio, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940, Leioa, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940, Leioa, Spain. .,Achucarro Basque Center for Neuroscience, UPV/EHU, 48170, Zamudio, Spain. .,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940, Leioa, Spain.
| |
Collapse
|
145
|
Regier DS, Kwon HJ, Johnston J, Golas G, Yang S, Wiggs E, Latour Y, Thomas S, Portner C, Adams D, Vezina G, Baker EH, Tifft CJ. MRI/MRS as a surrogate marker for clinical progression in GM1 gangliosidosis. Am J Med Genet A 2015; 170:634-44. [PMID: 26646981 DOI: 10.1002/ajmg.a.37468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 01/31/2023]
Abstract
Background GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in GLB1, encoding β-galactosidase. The range of severity is from type I infantile disease, lethal in early childhood, to type III adult onset, resulting in gradually progressive neurological symptoms in adulthood. The intermediate group of patients has been recently classified as having type II late infantile subtype with onset of symptoms at one to three years of age or type II juvenile subtype with symptom onset at 2-10 years. To characterize disease severity and progression, six Late infantile and nine juvenile patients were evaluated using magnetic resonance imaging (MRI), and MR spectroscopy (MRS). Since difficulties with ambulation (gross motor function) and speech (expressive language) are often the first reported symptoms in type II GM1, patients were also scored in these domains. Deterioration of expressive language and ambulation was more rapid in the late infantile patients. Fourteen MRI scans in six Late infantile patients identified progressive atrophy in the cerebrum and cerebellum. Twenty-six MRI scans in nine juvenile patients revealed greater variability in extent and progression of atrophy. Quantitative MRS demonstrated a deficit of N-acetylaspartate in both the late infantile and juvenile patients with greater in the late infantile patients. This correlates with clinical measures of ambulation and expressive language. The two subtypes of type II GM1 gangliosidosis have different clinical trajectories. MRI scoring, quantitative MRS and brain volume correlate with clinical disease progression and may serve as important minimally-invasive outcome measures for clinical trials.
Collapse
Affiliation(s)
- Debra S Regier
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyuk Joon Kwon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jean Johnston
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Gretchen Golas
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Sandra Yang
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Edythe Wiggs
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Latour
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Sarah Thomas
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Cindy Portner
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - David Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Gilbert Vezina
- Department of Radiology, Children's National Health System, Washington, District of Columbia
| | - Eva H Baker
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Cynthia J Tifft
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
146
|
Lee JY, Biemond M, Petratos S. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegener Dis Manag 2015; 5:527-48. [DOI: 10.2217/nmt.15.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Melissa Biemond
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| |
Collapse
|
147
|
Chalah MA, Riachi N, Ahdab R, Créange A, Lefaucheur JP, Ayache SS. Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation. Front Cell Neurosci 2015; 9:460. [PMID: 26648845 PMCID: PMC4663273 DOI: 10.3389/fncel.2015.00460] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic progressive inflammatory disease of the central nervous system (CNS) and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically affects their quality of life. Despite its significant prevalence and impact, the underlying pathophysiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into “primary” fatigue related to the pathological changes of the disease itself, and “secondary” fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Radiological, physiological, and endocrine data have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS) techniques as potential treatments. This will include a presentation of the various NIBS modalities and a suggestion of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation (tDCS) will be addressed.
Collapse
Affiliation(s)
- Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Naji Riachi
- Neurology Division, University Medical Center Rizk Hospital Beirut, Lebanon
| | - Rechdi Ahdab
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Neurology Division, University Medical Center Rizk Hospital Beirut, Lebanon
| | - Alain Créange
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Neurologie, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| |
Collapse
|
148
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
149
|
Zhang Y, Shen J. Simultaneous quantification of glutamate and glutamine by J-modulated spectroscopy at 3 Tesla. Magn Reson Med 2015; 76:725-32. [PMID: 26361892 DOI: 10.1002/mrm.25922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE The echo time (TE) averaged spectrum is the one-dimensional (1D) cross-section of the J-resolved spectrum at J = 0. In multiecho TE-averaged spectroscopy, glutamate (Glu) is differentiated from glutamine (Gln) at 3 Tesla (T). This method, however, almost entirely suppresses Gln resonance lines around 2.35 ppm, leaving Gln undetermined. This study presents a novel method for quantifying both Glu and Gln using multi-echo spectral data. METHODS A 1D cross-section of J-resolved spectroscopy at J = 7.5 Hz-referred to as J-modulated spectroscopy-was developed to simultaneously quantify Glu and Gln levels in the human brain. The transverse relaxation times (T2 s) of metabolites were first determined using conventional TE-averaged spectroscopy with different starting echo time and then incorporated into the spectral model for fitting J-modulated data. RESULTS Simulation and in vivo data showed that the resonance signals of Glu and Gln were clearly separated around 2.35 ppm in J-modulated spectroscopy. In the anterior cingulate cortex, both Glu and Gln levels were found to be significantly higher in gray matter than in white matter in healthy subjects (P < 10(-10) and < 10(-5) , respectively). CONCLUSION Gln resonances can be clearly separated from Glu and N-acetyl-aspartate around 2.35 ppm using J-modulated spectroscopy. This method can be used to quantitatively measure Glu and Gln simultaneously at 3T. Magn Reson Med 76:725-732, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Yan Zhang
- MR Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- MR Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.,Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
150
|
MRI/MRS in neuroinflammation: methodology and applications. Clin Transl Imaging 2015; 3:475-489. [PMID: 26705534 PMCID: PMC4679099 DOI: 10.1007/s40336-015-0142-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/30/2015] [Indexed: 12/11/2022]
Abstract
Neuroinflammation encompasses a wide range of humoral and cellular responses, not only enabling the CNS to fight various noxious events, including infections and trauma, but also playing a critical role in autoimmune as well as in neurodegenerative diseases. The complex interactions of immune, endothelial, and neuronal cells that take place during inflammation require an equivalent complexity of imaging approaches to be appropriately explored in vivo. Magnetic Resonance provides several complementary techniques that allow to study most mechanisms underlying the brain/immune interaction. In this review, we discuss the MR approaches to the study of endothelial activation, blood-brain barrier permeability alterations, intercellular compartment modifications, immune cell trafficking, and of metabolic alterations linked to immune cell activity. The main advantages and limitations of these techniques are assessed, in view of their exploitation in the clinical arena, where the complementarity of the information that can be obtained has the potential to change our way of studying neuroinflammation, with implications for the management of several CNS diseases.
Collapse
|