101
|
Karaś MA, Turska-Szewczuk A, Trapska D, Urbanik-Sypniewska T. Growth and Survival of Mesorhizobium loti Inside Acanthamoeba Enhanced Its Ability to Develop More Nodules on Lotus corniculatus. MICROBIAL ECOLOGY 2015; 70:566-75. [PMID: 25779926 PMCID: PMC4494150 DOI: 10.1007/s00248-015-0587-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/16/2015] [Indexed: 05/12/2023]
Abstract
The importance of protozoa as environmental reservoirs of pathogens is well recognized, while their impact on survival and symbiotic properties of rhizobia has not been explored. The possible survival of free-living rhizobia inside amoebae could influence bacterial abundance in the rhizosphere of legume plants and the nodulation competitiveness of microsymbionts. Two well-characterized strains of Mesorhizobium: Mesorhizobium loti NZP2213 and Mesorhizobium huakuii symbiovar loti MAFF303099 were assayed for their growth ability within the Neff strain of Acanthamoeba castellanii. Although the association ability and the initial uptake rate of both strains were similar, recovery of viable M. huakuii MAFF303099 after 4 h postinfection decreased markedly and that of M. loti NZP2213 increased. The latter strain was also able to survive prolonged co-incubation within amoebae and to self-release from the amoeba cell. The temperature 28 °C and PBS were established as optimal for the uptake of Mesorhizobium by amoebae. The internalization of mesorhizobia was mediated by the mannose-dependent receptor. M. loti NZP2213 bacteria released from amoebae developed 1.5 times more nodules on Lotus corniculatus than bacteria cultivated in an amoebae-free medium.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland,
| | | | | | | |
Collapse
|
102
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
103
|
Nambu M, Tatsukami Y, Morisaka H, Kuroda K, Ueda M. Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation. J Proteomics 2015; 125:112-20. [DOI: 10.1016/j.jprot.2015.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
|
104
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
105
|
Moscatiello R, Zaccarin M, Ercolin F, Damiani E, Squartini A, Roveri A, Navazio L. Identification of ferredoxin II as a major calcium binding protein in the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. BMC Microbiol 2015; 15:16. [PMID: 25648224 PMCID: PMC4322793 DOI: 10.1186/s12866-015-0352-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legumes establish with rhizobial bacteria a nitrogen-fixing symbiosis which is of the utmost importance for both plant nutrition and a sustainable agriculture. Calcium is known to act as a key intracellular messenger in the perception of symbiotic signals by both the host plant and the microbial partner. Regulation of intracellular free Ca(2+) concentration, which is a fundamental prerequisite for any Ca(2+)-based signalling system, is accomplished by complex mechanisms including Ca(2+) binding proteins acting as Ca(2+) buffers. In this work we investigated the occurrence of Ca(2+) binding proteins in Mesorhizobium loti, the specific symbiotic partner of the model legume Lotus japonicus. RESULTS A soluble, low molecular weight protein was found to share several biochemical features with the eukaryotic Ca(2+)-binding proteins calsequestrin and calreticulin, such as Stains-all blue staining on SDS-PAGE, an acidic isoelectric point and a Ca(2+)-dependent shift of electrophoretic mobility. The protein was purified to homogeneity by an ammonium sulfate precipitation procedure followed by anion-exchange chromatography on DEAE-Cellulose and electroendosmotic preparative electrophoresis. The Ca(2+) binding ability of the M. loti protein was demonstrated by (45)Ca(2+)-overlay assays. ESI-Q-TOF MS/MS analyses of the peptides generated after digestion with either trypsin or endoproteinase AspN identified the rhizobial protein as ferredoxin II and confirmed the presence of Ca(2+) adducts. CONCLUSIONS The present data indicate that ferredoxin II is a major Ca(2+) binding protein in M. loti that may participate in Ca(2+) homeostasis and suggest an evolutionarily ancient origin for protein-based Ca(2+) regulatory systems.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Mattia Zaccarin
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Flavia Ercolin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Ernesto Damiani
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy.
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
106
|
Mercante V, Duarte CM, Sánchez CM, Zalguizuri A, Caetano-Anollés G, Lepek VC. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes. FRONTIERS IN PLANT SCIENCE 2015; 6:12. [PMID: 25688250 PMCID: PMC4311626 DOI: 10.3389/fpls.2015.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.
Collapse
Affiliation(s)
- Virginia Mercante
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Cecilia M. Duarte
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Cintia M. Sánchez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Andrés Zalguizuri
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of IllinoisUrbana-Champaign, USA
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| |
Collapse
|
107
|
García-Fraile P, Menéndez E, Rivas R. Role of bacterial biofertilizers in agriculture and forestry. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.183] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
108
|
Kelly S, Sullivan J, Ronson C, Tian R, Bräu L, Munk C, Goodwin L, Han C, Woyke T, Reddy T, Huntemann M, Pati A, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. Stand Genomic Sci 2014; 9:6. [PMID: 25780499 PMCID: PMC4334631 DOI: 10.1186/1944-3277-9-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R7A). M. loti is the microsymbiont of the model legume Lotus japonicus and strain R7A has been used extensively in studies of the plant-microbe interaction. This report reveals that the genome of M. loti strain R7A does not harbor any plasmids and contains a single scaffold of size 6,529,530 bp which encodes 6,323 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Clive Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Perth, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | - Christine Munk
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Cliff Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Konstantinos Mavromatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA ; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Perth, Australia
| |
Collapse
|
109
|
Accumulation of novel glycolipids and ornithine lipids in Mesorhizobium loti under phosphate deprivation. J Bacteriol 2014; 197:497-509. [PMID: 25404698 DOI: 10.1128/jb.02004-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria.
Collapse
|
110
|
Teamtisong K, Songwattana P, Noisangiam R, Piromyou P, Boonkerd N, Tittabutr P, Minamisawa K, Nantagij A, Okazaki S, Abe M, Uchiumi T, Teaumroong N. Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range. Microbes Environ 2014; 29:370-6. [PMID: 25283477 PMCID: PMC4262360 DOI: 10.1264/jsme2.me14065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons.
Collapse
Affiliation(s)
- Kamonluck Teamtisong
- Center for Scientific and Technological Equipment, Suranaree University of Technology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Valdespino-Castillo PM, Alcántara-Hernández RJ, Alcocer J, Merino-Ibarra M, Macek M, Falcón LI. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol Ecol 2014; 90:504-19. [PMID: 25112496 DOI: 10.1111/1574-6941.12411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022] Open
Abstract
Dissolved organic phosphorus utilization by different members of natural communities has been closely linked to microbial alkaline phosphatases whose affiliation and diversity is largely unknown. Here we assessed genetic diversity of bacterial alkaline phosphatases phoX and phoD, using highly diverse microbial consortia (microbialites and bacterioplankton) as study models. These microbial consortia are found in an oligo-mesotrophic soda lake with a particular geochemistry, exhibiting a low calcium concentration and a high Mg : Ca ratio relative to seawater. In spite of the relative low calcium concentration in the studied system, our results highlight the diversity of calcium-based metallophosphatases phoX and phoD-like in heterotrophic bacteria of microbialites and bacterioplankton, where phoX was the most abundant alkaline phosphatase found. phoX and phoD-like phylotypes were more numerous in microbialites than in bacterioplankton. A larger potential community for DOP utilization in microbialites was consistent with the TN : TP ratio, suggesting P limitation within these assemblages. A cross-system comparison indicated that diversity of phoX in Lake Alchichica was similar to that of other aquatic systems with a naturally contrasting ionic composition and trophic state, although no phylotypes were shared among systems.
Collapse
Affiliation(s)
- Patricia M Valdespino-Castillo
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Mexico; Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | | | | | | | | | | |
Collapse
|
112
|
Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P. Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 2014; 9:e108522. [PMID: 25268993 PMCID: PMC4182475 DOI: 10.1371/journal.pone.0108522] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/22/2014] [Indexed: 12/03/2022] Open
Abstract
Endophytic microorganisms live inside plants for at least part of their life cycle. According to their life strategies, bacterial endophytes can be classified as “obligate” or “facultative”. Reports that members of the genus Micromonospora, Gram-positive Actinobacteria, are normal occupants of nitrogen-fixing nodules has opened up a question as to what is the ecological role of these bacteria in interactions with nitrogen-fixing plants and whether it is in a process of adaptation from a terrestrial to a facultative endophytic life. The aim of this work was to analyse the genome sequence of Micromonospora lupini Lupac 08 isolated from a nitrogen fixing nodule of the legume Lupinus angustifolius and to identify genomic traits that provide information on this new plant-microbe interaction. The genome of M. lupini contains a diverse array of genes that may help its survival in soil or in plant tissues, while the high number of putative plant degrading enzyme genes identified is quite surprising since this bacterium is not considered a plant-pathogen. Functionality of several of these genes was demonstrated in vitro, showing that Lupac 08 degraded carboxymethylcellulose, starch and xylan. In addition, the production of chitinases detected in vitro, indicates that strain Lupac 08 may also confer protection to the plant. Micromonospora species appears as new candidates in plant-microbe interactions with an important potential in agriculture and biotechnology. The current data strongly suggests that a beneficial effect is produced on the host-plant.
Collapse
Affiliation(s)
- Martha E. Trujillo
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| | - Rodrigo Bacigalupe
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | - Petar Pujic
- Université Lyon 1, Université de Lyon, CNRS-UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Patricia Benito
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | - Claudine Médigue
- Genoscope, CNRS-UMR 8030, Atelier de Génomique Comparative, Evry, France
| | - Philippe Normand
- Université Lyon 1, Université de Lyon, CNRS-UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
113
|
Saeki K, Ronson CW. Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-662-44270-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
114
|
Differing courses of genetic evolution of Bradyrhizobium inoculants as revealed by long-term molecular tracing in Acacia mangium plantations. Appl Environ Microbiol 2014; 80:5709-16. [PMID: 25002434 DOI: 10.1128/aem.02007-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices.
Collapse
|
115
|
Liu WJ, Dong H, Peng XW, Wu QM. The Cyclic AMP-binding protein CbpB in Brucella melitensis and its role in cell envelope integrity, resistance to detergent and virulence. FEMS Microbiol Lett 2014; 356:79-88. [PMID: 24850100 DOI: 10.1111/1574-6968.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022] Open
Abstract
Brucella melitensis possesses an operon with two components: the response regulator OtpR and a putative cAMP-dependent protein kinase regulatory subunit encoded by the BMEI0067 gene. In the previous study, the function of OtpR has been studied, while little is known about the function of the BMEI0067 gene. Using a bioinformatics approach, we showed that the BMEI0067 gene encodes an additional putative cAMP-binding protein, which we refer to as CbpB. Structural modeling predicted that CbpB has a cAMP-binding protein (CAP) domain and is structurally similar to eukaryotic protein kinase A regulatory subunits. Here, we report the characterization of CbpB, a cAMP-binding protein in Brucella melitensis, showed to be involved in mouse persistent infections. ∆cbpB::km possessed cell elongation, bubble-like protrusions on cell surface and its resistance to environmental stresses (temperature, osmotic stress and detergent). Interestingly, comparative real-time qPCR assays, the cbpB mutation resulted in significantly different expression of aqpX and several penicillin-binding proteins and cell division proteins in Brucella. Combined, these results demonstrated characterization of CbpB in B. melitensis and its key role for intracellular multiplication.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
116
|
Carlos C, Torres TT, Ottoboni LMM. Bacterial communities and species-specific associations with the mucus of Brazilian coral species. Sci Rep 2014; 3:1624. [PMID: 23567936 PMCID: PMC3620669 DOI: 10.1038/srep01624] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
We investigated the existence of species-specific associations between Brazilian coral species and bacteria. Pyrosequencing of the V3 region of the 16S rDNA was used to analyze the taxonomic composition of bacterial communities associated with the mucus of four coral species (Madracis decactis, Mussismilia hispida, Palythoa caribaeorum, and Tubastraea coccinea) in two seasons (winter and summer), which were compared with the surrounding water and sediment. The microbial communities found in samples of mucus, water, and sediment differed according to the composition and relative frequency of OTUs. The coral mucus community seemed to be more stable and resistant to seasonal variations, compared to the water and sediment communities. There was no influence of geographic location on the composition of the communities. The sediment community was extremely diverse and might act as a "seed bank" for the entire environment. Species-specific OTUs were found in P. caribaeorum, T. coccinea, and M. hispida.
Collapse
Affiliation(s)
- Camila Carlos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
117
|
Genes commonly involved in acid tolerance are not overexpressed in the plant microsymbiont Mesorhizobium loti MAFF303099 upon acidic shock. Appl Microbiol Biotechnol 2014; 98:7137-47. [DOI: 10.1007/s00253-014-5875-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/11/2023]
|
118
|
Wang S, Hao B, Li J, Gu H, Peng J, Xie F, Zhao X, Frech C, Chen N, Ma B, Li Y. Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics 2014; 15:440. [PMID: 24906389 PMCID: PMC4072884 DOI: 10.1186/1471-2164-15-440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general. Results In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species. Conclusions Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-440) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nansheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P, R, China.
| | | | | |
Collapse
|
119
|
Kajiwara H, Kaneko T, Ishizaka M, Tajima S, Kouchi H. Protein Profile of Symbiotic BacteriaMesorhizobium lotiMAFF303099 in Mid-growth Phase. Biosci Biotechnol Biochem 2014; 67:2668-73. [PMID: 14730152 DOI: 10.1271/bbb.67.2668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expressed proteins in cultured symbiotic bacteria (Mesorhizobium loti MAFF303099) in the mid-growth phase were proteomically analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and capillary high-performance liquid chromatography coupled with an ion-trap mass spectrometry (MS). The genome sequence data of M. loti were used to identify the analyzed proteins. We identified 114 of the 127 proteins analyzed on 2D-PAGE gel with some microheterogenities which were caused by post-translational modifications.
Collapse
Affiliation(s)
- Hideyuki Kajiwara
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
120
|
Biswas B, Gresshoff PM. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int J Mol Sci 2014; 15:7380-97. [PMID: 24786096 PMCID: PMC4057678 DOI: 10.3390/ijms15057380] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022] Open
Abstract
With the ever-increasing population of the world (expected to reach 9.6 billion by 2050), and altered life style, comes an increased demand for food, fuel and fiber. However, scarcity of land, water and energy accompanied by climate change means that to produce enough to meet the demands is getting increasingly challenging. Today we must use every avenue from science and technology available to address these challenges. The natural process of symbiotic nitrogen fixation, whereby plants such as legumes fix atmospheric nitrogen gas to ammonia, usable by plants can have a substantial impact as it is found in nature, has low environmental and economic costs and is broadly established. Here we look at the importance of symbiotic nitrogen fixation in the production of biofuel feedstocks; how this process can address major challenges, how improving nitrogen fixation is essential, and what we can do about it.
Collapse
Affiliation(s)
- Bandana Biswas
- Centre for Integrative Legume Research (CILR), the University of Queensland, St Lucia Brisbane, QLD 4072, Australia.
| | - Peter M Gresshoff
- Centre for Integrative Legume Research (CILR), the University of Queensland, St Lucia Brisbane, QLD 4072, Australia.
| |
Collapse
|
121
|
Sevellec M, Pavey SA, Boutin S, Filteau M, Derome N, Bernatchez L. Microbiome investigation in the ecological speciation context of lake whitefish (Coregonus clupeaformis
) using next-generation sequencing. J Evol Biol 2014; 27:1029-46. [DOI: 10.1111/jeb.12374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Affiliation(s)
- M. Sevellec
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - S. A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - S. Boutin
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - M. Filteau
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - N. Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - L. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
122
|
Huyop F, Cooper R. Degradation of Millimolar Concentration of the Herbicide Dalapon (2,2-Dichloropropionic Acid) byRhizobiumSp. Isolated from Soil. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
123
|
Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 2014; 10:e1004231. [PMID: 24651173 PMCID: PMC3961195 DOI: 10.1371/journal.pgen.1004231] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/26/2014] [Indexed: 11/18/2022] Open
Abstract
We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70)-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.
Collapse
Affiliation(s)
- Jian-Bo Xie
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lanqing Bai
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Changfu Tian
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Yunzhi Zhang
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Jiu-Yan Xie
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Tianshu Wang
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Xiaomeng Liu
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Xi Chen
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (QC); (SC)
| | - Sanfeng Chen
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
- * E-mail: (QC); (SC)
| | - Jilun Li
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
124
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|
125
|
Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176-97. [PMID: 24600043 PMCID: PMC3957732 DOI: 10.1128/mmbr.00040-13] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.
Collapse
|
126
|
Armas-Capote N, Pérez-Yépez J, Martínez-Hidalgo P, Garzón-Machado V, del Arco-Aguilar M, Velázquez E, León-Barrios M. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst Appl Microbiol 2014; 37:140-8. [DOI: 10.1016/j.syapm.2013.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 11/16/2022]
|
127
|
Ampomah OY, Jensen JB. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp. World J Microbiol Biotechnol 2014; 30:1129-34. [DOI: 10.1007/s11274-013-1527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022]
|
128
|
Kakoi K, Yamaura M, Kamiharai T, Tamari D, Abe M, Uchiumi T, Kucho KI. Isolation of mutants of the nitrogen-fixing actinomycete Frankia. Microbes Environ 2014; 29:31-7. [PMID: 24389412 PMCID: PMC4041240 DOI: 10.1264/jsme2.me13126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5′-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia.
Collapse
Affiliation(s)
- Kentaro Kakoi
- Graduate School of Science and Engineering, Kagoshima University
| | | | | | | | | | | | | |
Collapse
|
129
|
Dam S, Dyrlund TF, Ussatjuk A, Jochimsen B, Nielsen K, Goffard N, Ventosa M, Lorentzen A, Gupta V, Andersen SU, Enghild JJ, Ronson CW, Roepstorff P, Stougaard J. Proteome reference maps of the Lotus japonicus nodule and root. Proteomics 2014; 14:230-40. [PMID: 24293220 DOI: 10.1002/pmic.201300353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022]
Abstract
Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.
Collapse
Affiliation(s)
- Svend Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:114. [PMID: 24723933 PMCID: PMC3973906 DOI: 10.3389/fpls.2014.00114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 05/19/2023]
Abstract
Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.
Collapse
Affiliation(s)
- Anastasia P. Tampakaki
- *Correspondence: Anastasia P. Tampakaki, Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece e-mail:
| |
Collapse
|
131
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|
132
|
Lo SC, Li B, Hung GC, Lei H, Li T, Zhang J, Nagamine K, Tsai S, Zucker MJ, Olesnicky L. Isolation and characterization of two novel bacteria Afipia cberi and Mesorhizobium hominis from blood of a patient afflicted with fatal pulmonary illness. PLoS One 2013; 8:e82673. [PMID: 24367538 PMCID: PMC3867388 DOI: 10.1371/journal.pone.0082673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
We recently isolated and discovered new Bradyrhizobiaceae microbes from the cryopreserved culture broth of blood samples from 3 patients with poorly defined illnesses using modified SP4 media and culture conditions coupled with genomic sequencing. Using a similar protocol, we studied a previously cryopreserved culture broth of blood sample from a patient who had succumbed to an acute onset of fulminant pulmonary illness. We report that two phases of microbial growth were observed in the re-initiated culture. Biochemical and genomic characterization revealed microbes isolated from the first phase of growth were new Afipia species of Bradyrhizobiaceae, tentatively named A. cberi with a ~ 5 MB chromosome that was different from those of all previously known Afipia microbes including the newly discovered A. septicemium. The microbes isolated from the second phase of growth were prominent sugar assimilators, novel Phyllobacteriaceae, phylogenetically most closely related to Mesorhizobium and tentatively named M. hominis with a ~ 5.5 MB chromosome. All A. cberi isolates carry a circular ~ 140 KB plasmid. Some M. hominis isolates possess a circular ~ 412 KB plasmid that can be lost in prolonged culture or passage. No antibiotics resistant genes could be identified in both of the A. cberi and M. hominis plasmids. Antibiotic susceptibility studies using broth culture systems revealed isolates of A. cberi could be sensitive to some antibiotics, but all isolates of M. hominis were resistant to essentially all tested antibiotics. However, the cell-free antibiotics susceptibility test results may not be applicable to clinical treatment against the microbes that are known to be capable of intracellular growth. It remains to be determined if the 2 previously unknown Rhizobiales were indeed pathogenic and played a role in the pulmonary disease process in this patient. Specific probes and methods will be developed to re-examine the diseased lungs from patient's autopsy.
Collapse
Affiliation(s)
- Shyh-Ching Lo
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| | - Bingjie Li
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Guo-Chiuan Hung
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Haiyan Lei
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Tianwei Li
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Jing Zhang
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Kenjiro Nagamine
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Shien Tsai
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Mark J. Zucker
- Department of Medicine, Newark Beth Israel Medical Center, Newark, New Jersey, United States of America
| | - Ludmilla Olesnicky
- Department of Pathology, Newark Beth Israel Medical Center, Newark, New Jersey, United States of America
| |
Collapse
|
133
|
Fujisawa T, Okamoto S, Katayama T, Nakao M, Yoshimura H, Kajiya-Kanegae H, Yamamoto S, Yano C, Yanaka Y, Maita H, Kaneko T, Tabata S, Nakamura Y. CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucleic Acids Res 2013; 42:D666-70. [PMID: 24275496 PMCID: PMC3965071 DOI: 10.1093/nar/gkt1145] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand newly sequenced genomes of closely related species, comprehensively curated reference genome databases are becoming increasingly important. We have extended CyanoBase (http://genome.microbedb.jp/cyanobase), a genome database for cyanobacteria, and newly developed RhizoBase (http://genome.microbedb.jp/rhizobase), a genome database for rhizobia, nitrogen-fixing bacteria associated with leguminous plants. Both databases focus on the representation and reusability of reference genome annotations, which are continuously updated by manual curation. Domain experts have extracted names, products and functions of each gene reported in the literature. To ensure effectiveness of this procedure, we developed the TogoAnnotation system offering a web-based user interface and a uniform storage of annotations for the curators of the CyanoBase and RhizoBase databases. The number of references investigated for CyanoBase increased from 2260 in our previous report to 5285, and for RhizoBase, we perused 1216 references. The results of these intensive annotations are displayed on the GeneView pages of each database. Advanced users can also retrieve this information through the representational state transfer-based web application programming interface in an automated manner.
Collapse
Affiliation(s)
- Takatomo Fujisawa
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan, Database Center for Life Science, Research Organization of Information and Systems, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan and Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Alexandre A, Laranjo M, Oliveira S. Global transcriptional response to heat shock of the legume symbiont Mesorhizobium loti MAFF303099 comprises extensive gene downregulation. DNA Res 2013; 21:195-206. [PMID: 24277738 PMCID: PMC3989490 DOI: 10.1093/dnares/dst050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rhizobia, the bacterial legume symbionts able to fix atmospheric nitrogen inside root nodules, have to survive in varied environmental conditions. The aim of this study was to analyse the transcriptional response to heat shock of Mesorhizobium loti MAFF303099, a rhizobium with a large multipartite genome of 7.6 Mb that nodulates the model legume Lotus japonicus. Using microarray analysis, extensive transcriptomic changes were detected in response to heat shock: 30% of the protein-coding genes were differentially expressed (2067 genes in the chromosome, 62 in pMLa and 57 in pMLb). The highest-induced genes are in the same operon and code for two sHSP. Only one of the five groEL genes in MAFF303099 genome was induced by heat shock. Unlike other prokaryotes, the transcriptional response of this Mesorhizobium included the underexpression of an unusually large number of genes (72% of the differentially expressed genes). This extensive downregulation of gene expression may be an important part of the heat shock response, as a way of reducing energetic costs under stress. To our knowledge, this study reports the heat shock response of the largest prokaryote genome analysed so far, representing an important contribution to understand the response of plant-interacting bacteria to challenging environmental conditions.
Collapse
Affiliation(s)
- Ana Alexandre
- 1ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | | | | |
Collapse
|
135
|
Caffeine junkie: an unprecedented glutathione S-transferase-dependent oxygenase required for caffeine degradation by Pseudomonas putida CBB5. J Bacteriol 2013; 195:3933-9. [PMID: 23813729 DOI: 10.1128/jb.00585-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners.
Collapse
|
136
|
Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene inMesorhizobiumspp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 2013; 349:46-53. [DOI: 10.1111/1574-6968.12294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Clarisse Brígido
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| | - Francisco X. Nascimento
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| | - Jin Duan
- Department of Biology; University of Waterloo; Waterloo ON Canada
| | - Bernard R. Glick
- Department of Biology; University of Waterloo; Waterloo ON Canada
| | - Solange Oliveira
- Laboratório de Microbiologia do Solo; ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora Portugal
| |
Collapse
|
137
|
Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia. J Bacteriol 2013; 196:100-6. [PMID: 24142247 DOI: 10.1128/jb.01031-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial interactions with plants are accompanied by complex signal exchange processes. Previously, the nitrogen-fixing symbiotic (rhizo)bacterium Bradyrhizobium japonicum was found to carry adjacent genes encoding two sequentially acting diterpene cyclases that together transform geranylgeranyl diphosphate to ent-kaurene, the olefin precursor to the gibberellin plant hormones. Species from the three other major genera of rhizobia were found to have homologous terpene synthase genes. Cloning and functional characterization of a representative set of these enzymes confirmed the capacity of each genus to produce ent-kaurene. Moreover, comparison of their genomic context revealed that these diterpene synthases are found in a conserved operon which includes an adjacent isoprenyl diphosphate synthase, shown here to produce the geranylgeranyl diphosphate precursor, providing a critical link to central metabolism. In addition, the rest of the operon consists of enzymatic genes that presumably lead to a more elaborated diterpenoid, although the production of gibberellins was not observed. Nevertheless, it has previously been shown that the operon is selectively expressed during nodulation, and the scattered distribution of the operon via independent horizontal gene transfer within the symbiotic plasmid or genomic island shown here suggests that such diterpenoid production may modulate the interaction of these particular symbionts with their host plants.
Collapse
|
138
|
Madhaiyan M, Peng N, Te NS, Hsin I C, Lin C, Lin F, Reddy C, Yan H, Ji L. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:140. [PMID: 24083555 PMCID: PMC3879406 DOI: 10.1186/1754-6834-6-140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/26/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. RESULTS We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. CONCLUSION Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Ni Peng
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Ngoh Si Te
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Cheng Hsin I
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Cai Lin
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Fu Lin
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Chalapathy Reddy
- Joil Pte Ltd, 1 Research Link National University of Singapore, Singapore 117604, Republic of Singapore
| | - Hong Yan
- Joil Pte Ltd, 1 Research Link National University of Singapore, Singapore 117604, Republic of Singapore
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| |
Collapse
|
139
|
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2013; 169:30-9. [PMID: 24095256 DOI: 10.1016/j.micres.2013.09.009] [Citation(s) in RCA: 816] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/09/2013] [Accepted: 09/14/2013] [Indexed: 01/25/2023]
Abstract
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
140
|
Hernández-Salmerón JE, Valencia-Cantero E, Santoyo G. Genome-wide analysis of long, exact DNA repeats in rhizobia. Genes Genomics 2013. [DOI: 10.1007/s13258-012-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Ling J, Zheng H, Katzianer DS, Wang H, Zhong Z, Zhu J. Applying reversible mutations of nodulation and nitrogen-fixation genes to study social cheating in Rhizobium etli-legume interaction. PLoS One 2013; 8:e70138. [PMID: 23922937 PMCID: PMC3724788 DOI: 10.1371/journal.pone.0070138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.
Collapse
Affiliation(s)
- Jun Ling
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Huiming Zheng
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - David S. Katzianer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Zengtao Zhong
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
142
|
The thuEFGKAB operon of rhizobia and agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. J Bacteriol 2013; 195:3797-807. [PMID: 23772075 DOI: 10.1128/jb.00478-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thu operon (thuEFGKAB) in Sinorhizobium meliloti codes for transport and utilization functions of the disaccharide trehalose. Sequenced genomes of members of the Rhizobiaceae reveal that some rhizobia and Agrobacterium possess the entire thu operon in similar organizations and that Mesorhizobium loti MAFF303099 lacks the transport (thuEFGK) genes. In this study, we show that this operon is dedicated to the transport and assimilation of maltitol and isomers of sucrose (leucrose, palatinose, and trehalulose) in addition to trehalulose, not only in S. meliloti but also in Agrobacterium tumefaciens. By using genetic complementation, we show that the thuAB genes of S. meliloti, M. loti, and A. tumefaciens are functionally equivalent. Further, we provide both genetic and biochemical evidence to show that these bacteria assimilate these disaccharides by converting them to their respective 3-keto derivatives and that the thuAB genes code for this ketodisaccharide-forming enzyme(s). Formation of 3-ketotrehalose in real time in live S. meliloti is shown through Raman spectroscopy. The presence of an additional ketodisaccharide-forming pathway(s) in A. tumefaciens is also indicated. To our knowledge, this is the first report to identify the genes that code for the conversion of disaccharides to their 3-ketodisaccharide derivatives in any organism.
Collapse
|
143
|
Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 2013; 195:3424-32. [PMID: 23708135 DOI: 10.1128/jb.00289-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhizobium leguminosarum the ABC transporter responsible for rhamnose transport is dependent on RhaK, a sugar kinase that is necessary for the catabolism of rhamnose. This has led to a working hypothesis that RhaK has two biochemical functions: phosphorylation of its substrate and affecting the activity of the rhamnose ABC transporter. To address this hypothesis, a linker-scanning random mutagenesis of rhaK was carried out. Thirty-nine linker-scanning mutations were generated and mapped. Alleles were then systematically tested for their ability to physiologically complement kinase and transport activity in a strain carrying an rhaK mutation. The rhaK alleles generated could be divided into three classes: mutations that did not affect either kinase or transport activity, mutations that eliminated both transport and kinase activity, and mutations that affected transport activity but not kinase activity. Two genes of the last class (rhaK72 and rhaK73) were found to have similar biochemical phenotypes but manifested different physiological phenotypes. Whereas rhaK72 conferred a slow-growth phenotype when used to complement rhaK mutants, the rhaK73 allele did not complement the inability to use rhamnose as a sole carbon source. To provide insight to how these insertional variants might be affecting rhamnose transport and catabolism, structural models of RhaK were generated based on the crystal structure of related sugar kinases. Structural modeling suggests that both rhaK72 and rhaK73 affect surface-exposed residues in two distinct regions that are found on one face of the protein, suggesting that this protein's face may play a role in protein-protein interaction that affects rhamnose transport.
Collapse
|
144
|
Kasai-Maita H, Hirakawa H, Nakamura Y, Kaneko T, Miki K, Maruya J, Okazaki S, Tabata S, Saeki K, Sato S. Commonalities and differences among symbiosis islands of three Mesorhizobium loti strains. Microbes Environ 2013; 28:275-8. [PMID: 23666538 PMCID: PMC4070662 DOI: 10.1264/jsme2.me12201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To shed light on the breadth of the host range of Mesorhizobium loti strain NZP2037, we determined the sequence of the NZP2037 symbiosis island and compared it with those of strain MAFF303099 and R7A islands. The determined 533 kb sequence of NZP2037 symbiosis island, on which 504 genes were predicted, implied its integration into a phenylalanine-tRNA gene and subsequent genome rearrangement. Comparative analysis revealed that the core regions of the three symbiosis islands consisted of 165 genes. We also identified several NZP2037-specific genes with putative functions in nodulation-related events, suggesting that these genes contribute to broaden the host range of NZP2037.
Collapse
Affiliation(s)
- Hiroko Kasai-Maita
- Department of Plant Genome Research, Kazusa DNA Research Institute, 2–6–7 Kazusa-kamatari Kisarazu, Chiba 292–0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Brown DB, Muszyński A, Carlson RW. Elucidation of a novel lipid A α-(1,1)-GalA transferase gene (rgtF) from Mesorhizobium loti: Heterologous expression of rgtF causes Rhizobium etli to synthesize lipid A with α-(1,1)-GalA. Glycobiology 2013; 23:546-58. [PMID: 23283001 PMCID: PMC3608353 DOI: 10.1093/glycob/cws223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 01/24/2023] Open
Abstract
An unusual α-(1,1)-galacturonic acid (GalA) lipid A modification has been reported in the lipopolysaccharide of a number of interesting Gram-negative bacteria, including the nitrogen-fixing bacteria Azospirillum lipoferum, Mesorhizobium huakuii and M. loti, the stalk-forming bacterium Caulobacter crescentus and the hyperthermophilic bacterium Aquifex aeolicus. However, the α-(1,1)-GalA transferase (GalAT) gene, which we have named RgtF, was not identified. Species of the Rhizobium genera produce lipid A with α-(1,4')-GalA but not α-(1,1)-GalA. The Rhizobium GalAT, RgtD, is the lipid A α-(1-4')-GalAT which utilizes the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA) for GalA transfer. An additional Rhizobium GalAT, RgtE, is required for the biosynthesis of Dod-P-GalA. We predicted candidate rgtF genes in bacterial species known to produce lipid A with α-(1,1)-GalA. In order to determine the predicted rgtF gene function, we cloned the M. loti rgtF gene into an expression plasmid and introduced that plasmid into Rhizobium etli strains that do not contain the rgtF gene nor produce lipid A α-(1,1)-GalA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis combined with NMR studies revealed that the lipid As from these rgtF-complemented strains were modified with an additional α-(1,1)-GalA attached to the proximal glucosamine.
Collapse
Affiliation(s)
- Dusty B Brown
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| |
Collapse
|
146
|
Gene cloning and characterization of L-ribulose 3-epimerase from Mesorhizobium loti and its application to rare sugar production. Biosci Biotechnol Biochem 2013; 77:511-5. [PMID: 23470755 DOI: 10.1271/bbb.120745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A gene encoding L-ribulose 3-epimerase (L-RE) from Mesorhizobium loti, an important enzyme for rare sugar production by the Izumoring strategy, was cloned and overexpressed. The enzyme showed highest activity toward L-ribulose (230 U/mg) among keto-pentoses and keto-hexoses. This is the first report on a ketose 3-epimerase showing highest activity toward keto-pentose. The optimum enzyme reaction conditions for L-RE were determined to be sodium phosphate buffer (pH 8.0) at 60 °C. The enzyme showed of higher maximum reaction a rate (416 U/mg) and catalytic efficiency (43 M(-1) min(-1)) for L-ribulose than other known ketose 3-epimerases. It was able to produce L-xylulose efficiently from ribitol in two-step reactions. In the end, 7.2 g of L-xylulose was obtained from 20 g of ribitol via L-ribulose at a yield of 36%.
Collapse
|
147
|
Kelly SJ, Muszyński A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW. Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:319-29. [PMID: 23134480 DOI: 10.1094/mpmi-09-12-0227-r] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rhizobial surface polysaccharides are required for nodule formation on the roots of at least some legumes but the mechanisms by which they act are yet to be determined. As a first step to investigate the function of exopolysaccharide (EPS) in the formation of determinate nodules, we isolated Mesorhizobium loti mutants affected in various steps of EPS biosynthesis and characterized their symbiotic phenotypes on two Lotus spp. The wild-type M. loti R7A produced both high molecular weight EPS and lower molecular weight (LMW) polysaccharide fractions whereas most mutant strains produced only LMW fractions. Mutants affected in predicted early biosynthetic steps (e.g., exoB) formed nitrogen-fixing nodules on Lotus corniculatus and L. japonicus 'Gifu', whereas mutants affected in mid or late biosynthetic steps (e.g., exoU) induced uninfected nodule primordia and, occasionally, a few infected nodules following a lengthy delay. These mutants were disrupted at the stage of infection thread (IT) development. Symbiotically defective EPS and Nod factor mutants functionally complemented each other in co-inoculation experiments. The majority of full-length IT observed harbored only the EPS mutant strain and did not show bacterial release, whereas the nitrogen-fixing nodules contained both mutants. Examination of the symbiotic proficiency of the exoU mutant on various L. japonicus ecotypes revealed that both host and environmental factors were linked to the requirement for EPS. These results reveal a complex function for M. loti EPS in determinate nodule formation and suggest that EPS plays a signaling role at the stages of both IT initiation and bacterial release.
Collapse
Affiliation(s)
- Simon J Kelly
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Geddes BA, Hausner G, Oresnik IJ. Phylogenetic analysis of erythritol catabolic loci within the Rhizobiales and proteobacteria. BMC Microbiol 2013; 13:46. [PMID: 23432981 PMCID: PMC3599248 DOI: 10.1186/1471-2180-13-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to use erythritol as a sole carbon source is not universal among the Rhizobiaceae. Based on the relatedness to the catabolic genes in Brucella it has been suggested that the eryABCD operon may have been horizontally transferred into Rhizobium. During work characterizing a locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti, we became interested in the differences between the erythritol loci of S. meliloti and R. leguminosarum. Utilizing the Ortholog Neighborhood Viewer from the DOE Joint Genome Institute database it appeared that loci for erythritol and polyol utilization had distinct arrangements that suggested these loci may have undergone genetic rearrangements. RESULTS A data set was established of genetic loci containing erythritol/polyol orthologs for 19 different proteobacterial species. These loci were analyzed for genetic content and arrangement of genes associated with erythritol, adonitol and L-arabitol catabolism. Phylogenetic trees were constructed for core erythritol catabolic genes and contrasted with the species phylogeny. Additionally, phylogenetic trees were constructed for genes that showed differences in arrangement among the putative erythritol loci in these species. CONCLUSIONS Three distinct erythritol/polyol loci arrangements have been identified that reflect metabolic need or specialization. Comparison of the phylogenetic trees of core erythritol catabolic genes with species phylogeny provides evidence that is consistent with these loci having been horizontally transferred from the alpha-proteobacteria into both the beta and gamma-proteobacteria. ABC transporters within these loci adopt 2 unique genetic arrangements, and although biological data suggests they are functional erythritol transporters, phylogenetic analysis suggests they may not be orthologs and probably should be considered analogs. Finally, evidence for the presence of paralogs, and xenologs of erythritol catabolic genes in some of the genomes included in the analysis is provided.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
| | | | | |
Collapse
|
149
|
Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 2013; 79:2542-51. [PMID: 23396330 DOI: 10.1128/aem.00009-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agromonas oligotrophica (Bradyrhizobium oligotrophicum) S58(T) is a nitrogen-fixing oligotrophic bacterium isolated from paddy field soil that is able to grow in extra-low-nutrient environments. Here, the complete genome sequence of S58 was determined. The S58 genome was found to comprise a circular chromosome of 8,264,165 bp with an average GC content of 65.1% lacking nodABC genes and the typical symbiosis island. The genome showed a high level of similarity to the genomes of Bradyrhizobium sp. ORS278 and Bradyrhizobium sp. BTAi1, including nitrogen fixation and photosynthesis gene clusters, which nodulate an aquatic legume plant, Aeschynomene indica, in a Nod factor-independent manner. Although nonsymbiotic (brady)rhizobia are significant components of rhizobial populations in soil, we found that most genes important for nodule development (ndv) and symbiotic nitrogen fixation (nif and fix) with A. indica were well conserved between the ORS278 and S58 genomes. Therefore, we performed inoculation experiments with five A. oligotrophica strains (S58, S42, S55, S72, and S80). Surprisingly, all five strains of A. oligotrophica formed effective nitrogen-fixing nodules on the roots and/or stems of A. indica, with differentiated bacteroids. Nonsymbiotic (brady)rhizobia are known to be significant components of rhizobial populations without a symbiosis island or symbiotic plasmids in soil, but the present results indicate that soil-dwelling A. oligotrophica generally possesses the ability to establish symbiosis with A. indica. Phylogenetic analyses suggest that Nod factor-independent symbiosis with A. indica is a common trait of nodABC- and symbiosis island-lacking strains within the members of the photosynthetic Bradyrhizobium clade, including A. oligotrophica.
Collapse
|
150
|
Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family. Int J Mol Sci 2013; 14:1218-31. [PMID: 23306149 PMCID: PMC3565318 DOI: 10.3390/ijms14011218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.
Collapse
|