101
|
Auriche C, Di Domenico EG, Ascenzioni F. Budding yeast with human telomeres: a puzzling structure. Biochimie 2007; 90:108-15. [PMID: 17954006 DOI: 10.1016/j.biochi.2007.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/13/2007] [Indexed: 12/11/2022]
Abstract
Telomeres share some common features among eukaryotes, with few exceptions such as the fruit fly Drosophila that uses transposons as telomeres, they consist of G-rich repetitive DNA that is elongated by telomerase and/or alternative pathways depending on recombination. Telomere structure comprises both cis-acting satellite DNA (telomeric DNA) and proteins that interact directly and/or indirectly with the underlying DNA. Telomeric DNAs are surprisingly conserved among the vertebrates and very similar in most eukaryotes, but present some differences in yeast such as Saccharomyces cerevisiae. The telomeric proteins are more variable although the basic mechanisms which control telomere lengthening and capping are very similar, in fact orthologues of the yeast telomeric proteins, which have been studied first, have been identified in other organisms. Here we describe the structure of human telomeres in budding yeast as compared to canonical yeast and mammalian telomeres taking into consideration the more recent findings highlighting the mechanisms that are responsible for chromosome end protection and lengthening, and the role of chromatin organization in telomere function. This yeast represents a model for the study of mammalian telomeres that could be reconstituted step-by-step in all their components, moreover it could be useful for the assembly of mammalian artificial chromosome.
Collapse
Affiliation(s)
- Cristina Auriche
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | |
Collapse
|
102
|
Gao Q, Reynolds GE, Innes L, Pedram M, Jones E, Junabi M, Gao DW, Ricoul M, Sabatier L, Van Brocklin H, Franc BL, Murnane JP. Telomeric transgenes are silenced in adult mouse tissues and embryo fibroblasts but are expressed in embryonic stem cells. Stem Cells 2007; 25:3085-92. [PMID: 17823235 DOI: 10.1634/stemcells.2007-0478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to their role in protecting the ends of chromosomes, telomeres also influence the expression of adjacent genes, a process called telomere-position effect. We previously reported that the neo and HSV-tk transgenes located adjacent to telomeres in mouse embryonic stem cells are initially expressed at low levels and then become gradually silenced upon passage in culture through a process involving DNA methylation. We also reported extensive DNA methylation in these telomeric transgenes in three different tissues isolated from mice generated from one of these embryonic stem cell clones. In the present study, we demonstrate that embryo fibroblasts isolated from two different mouse strains show extensive DNA methylation and silencing of the telomeric transgenes. Consistent with this observation, we also demonstrate little or no detectable expression of the HSV-tk telomeric transgene in somatic tissues using whole body imaging. In contrast, both telomeric transgenes are expressed at low levels and have little DNA methylation in embryonic stem cell lines isolated from these same mouse strains. Our results demonstrate that telomere-position effect in mammalian cells can be observed either as a low level of expression in embryonic stem cells in the preimplantation embryo or as complete silencing and DNA methylation in differentiated cells and somatic tissues. This pattern of expression of the telomeric transgenes demonstrates that subtelomeric regions, like much of the genome, are epigenetically reprogrammed in the preimplantation embryo, a process that has been proposed to be important in early embryonic development. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Qing Gao
- Department of Radiation Oncology, University of California, 1855 Folsom Street, MCB 200, San Francisco, California 94103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Nittis T, Guittat L, Stewart SA. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? Biochimie 2007; 90:5-12. [PMID: 17935854 DOI: 10.1016/j.biochi.2007.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
The acquisition of cellular immortality is a critical step in the tumorigenic process that requires stabilization of the telomeres, nucleoprotein structures at the termini of chromosomes. While the majority of human tumors stabilize their telomeres through activation of telomerase (hTERT), a significant portion (10-15%) utilize a poorly understood alternative mechanism of telomere maintenance referred to as ALT (Alternative Lengthening of Telomeres). Strikingly, the ALT mechanism is more prevalent in tumors arising from tissues of mesenchymal origin than in those of epithelial origin. This observation suggests that cell type specific mechanisms favor the activation of the ALT mechanism versus telomerase in human tumorigenesis. In addition, the presence of an alternative mechanism of telomere maintenance raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies might escape by activating the ALT pathway. For these reasons, delineating the ALT mechanism is critical for our understanding of the tumorigenic process and the development of ALT-specific anti-neoplastic therapies. Recent studies have demonstrated that epigenetic modifications at telomeres have a profound effect on telomere length, and may also be linked to the ALT mechanism. In this review we focus on these recent advances and their implications in telomere maintenance.
Collapse
Affiliation(s)
- Thalia Nittis
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
104
|
Rincón-Arano H, Furlan-Magaril M, Recillas-Targa F. Protection against telomeric position effects by the chicken cHS4 beta-globin insulator. Proc Natl Acad Sci U S A 2007; 104:14044-9. [PMID: 17715059 PMCID: PMC1955792 DOI: 10.1073/pnas.0704999104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Indexed: 12/26/2022] Open
Abstract
Epigenetic silencing of genes relocated near telomeres, termed telomeric position effect, has been extensively studied in yeast and more recently in vertebrates. However, protection of a transgene against telomeric position effects by chromatin insulators has not yet been addressed. In this work we investigated the capacity of the chicken beta-globin insulator cHS4 to shield a transgene against silencing by telomeric heterochromatin. Using telomeric repeats, we targeted transgene integration into telomeres of the chicken cell line HD3. When the chicken cHS4 insulator is incorporated to the transgene, we observe a sustained gene expression of single-copy integrants that can be maintained for >100 days of continuous culture. However, uninsulated single-copy clones showed an accelerated gene expression extinction profile. Unexpectedly, telomeric silencing was not reversed with trichostatin A or nicotidamine. In contrast, significant reactivation was obtained with 5-aza-2'-deoxycytidine, consistent with the subtelomeric DNA methylation status. Strikingly, insulated transgenes integrated into telomeric regions were enriched in histone methylation, such as H3K4me2 and H3K79me2, but not in histone acetylation. Furthermore, the cHS4 insulator counteracts telomeric position effects in an upstream stimulatory factor-independent manner. Our results suggest that this insulator has the capacity to adapt to different chromatin propagation signals in distinct insertional epigenome environments.
Collapse
Affiliation(s)
- Héctor Rincón-Arano
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F., México
| | - Mayra Furlan-Magaril
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F., México
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F., México
| |
Collapse
|
105
|
Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 2007; 90:93-107. [PMID: 17868970 DOI: 10.1016/j.biochi.2007.07.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/25/2007] [Indexed: 01/28/2023]
Abstract
Alteration of the epigenome is associated with a wide range of human diseases. Therefore, deciphering the pathways that regulate the epigenetic modulation of gene expression is a major milestone for the understanding of diverse biological mechanisms and subsequently human pathologies. Although often evoked, little is known on the implication of telomeric position effect, a silencing mechanism combining telomere architecture and classical heterochromatin features, in human cells. Nevertheless, this particular silencing mechanism has been investigated in different organisms and several ingredients are likely conserved during evolution. Subtelomeres are highly dynamic regions near the end of the chromosomes that are prone to recombination and may buffer or facilitate the spreading of silencing that emanates from the telomere. Therefore, the composition and integrity of these regions also concur to the propensity of telomeres to regulate the expression, replication and recombination of adjacent regions. Here we describe the similarities and disparities that exist among the different species at chromosome ends with regard to telomeric silencing regulation with a special accent on its implication in numerous human pathologies.
Collapse
Affiliation(s)
- Alexandre Ottaviani
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UCBL1, IFR128, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
106
|
Abstract
Increasing evidence indicates that chromatin modifications are important regulators of mammalian telomeres. Telomeres provide well studied paradigms of heterochromatin formation in yeast and flies, and recent studies have shown that mammalian telomeres and subtelomeric regions are also enriched in epigenetic marks that are characteristic of heterochromatin. Furthermore, the abrogation of master epigenetic regulators, such as histone methyltransferases and DNA methyltransferases, correlates with loss of telomere-length control, and telomere shortening to a critical length affects the epigenetic status of telomeres and subtelomeres. These links between epigenetic status and telomere-length regulation provide important new avenues for understanding processes such as cancer development and ageing, which are characterized by telomere-length defects.
Collapse
Affiliation(s)
- María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid E-28029, Spain.
| |
Collapse
|
107
|
Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 2007; 39:243-50. [PMID: 17237781 DOI: 10.1038/ng1952] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/28/2006] [Indexed: 11/08/2022]
Abstract
Mammalian telomeres have epigenetic marks of constitutive heterochromatin. Here, we study the impact of telomere length on the maintenance of heterochromatin domains at telomeres. Telomerase-deficient Terc(-/-) mice with short telomeres show decreased trimethylation of histone 3 at Lys9 (H3K9) and histone 4 at Lys20 (H4K20) in telomeric and subtelomeric chromatin as well as decreased CBX3 binding accompanied by increased H3 and H4 acetylation at these regions. Subtelomeric DNA methylation is also decreased in conjunction with telomere shortening in Terc(-/-) mice. In contrast, telomere repeat factors 1 and 2 show normal binding to telomeres independent of telomere length. These results indicate that loss of telomeric repeats leads to a change in the architecture of telomeric and subtelomeric chromatin consisting of loss of heterochromatic features leading to a more 'open' chromatin state. These observations highlight the importance of telomere repeats in the establishment of constitutive heterochromatin at mammalian telomeres and subtelomeres and point to histone modifications as important in counting telomere repeats.
Collapse
Affiliation(s)
- Roberta Benetti
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | | | | |
Collapse
|
108
|
Kaller M, Euteneuer U, Nellen W. Differential effects of heterochromatin protein 1 isoforms on mitotic chromosome distribution and growth in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:530-43. [PMID: 16524908 PMCID: PMC1398066 DOI: 10.1128/ec.5.3.530-543.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a well-characterized heterochromatin component conserved from fission yeast to humans. We identified three HP1-like genes (hcpA, hcpB, and hcpC) in the Dictyostelium discoideum genome. Two of these (hcpA and hcpB) are expressed, and the proteins colocalized as green fluorescent protein (GFP) fusion proteins in one major cluster at the nuclear periphery that was also characterized by histone H3 lysine 9 dimethylation, a histone modification so far not described for Dictyostelium. The data strongly suggest that this cluster represents the centromeres. Both single-knockout strains displayed only subtle phenotypes, suggesting that both isoforms have largely overlapping functions. In contrast, disruption of both isoforms appeared to be lethal. Furthermore, overexpression of a C-terminally truncated form of HcpA resulted in phenotypically distinct growth defects that were characterized by a strong decrease in cell viability. Although genetic evidence implies functional redundancy, overexpression of GFP-HcpA, but not GFP-HcpB, caused growth defects that were accompanied by an increase in the frequency of atypic anaphase bridges. Our data indicate that Dictyostelium discoideum cells are sensitive to changes in HcpA and HcpB protein levels and that the two isoforms display different in vivo and in vitro affinities for each other. Since the RNA interference (RNAi) machinery is frequently involved in chromatin remodeling, we analyzed if knockouts of RNAi components influenced the localization of H3K9 dimethylation and HP1 isoforms in Dictyostelium. Interestingly, heterochromatin organization appeared to be independent of functional RNAi.
Collapse
Affiliation(s)
- Markus Kaller
- Kassel University, FB 18, Abt. Genetik, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | | | | |
Collapse
|
109
|
Pedram M, Sprung CN, Gao Q, Lo AWI, Reynolds GE, Murnane JP. Telomere position effect and silencing of transgenes near telomeres in the mouse. Mol Cell Biol 2006; 26:1865-78. [PMID: 16479005 PMCID: PMC1430234 DOI: 10.1128/mcb.26.5.1865-1878.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reversible transcriptional silencing of genes located near telomeres, termed the telomere position effect (TPE), is well characterized in Saccharomyces cerevisiae. TPE has also been observed in human tumor cell lines, but its function remains unknown. To investigate TPE in normal mammalian cells, we developed clones of mouse embryonic stem (ES) cells that contain single-copy marker genes integrated adjacent to different telomeres. Analysis of these telomeric transgenes demonstrated that they were expressed at very low levels compared to the same transgenes integrated at interstitial sites. Similar to the situation in yeast, but in contrast to studies with human tumor cell lines, TPE in mouse ES cells was not reversed with trichostatin A. Prolonged culturing without selection resulted in extensive DNA methylation and complete silencing of telomeric transgenes, which could be reversed by treatment with 5-azacytidine. Thus, complete silencing of the telomeric transgenes appears to involve a two-step process in which the initial repression is reinforced by DNA methylation. Extensive methylation of the telomeric transgenes was also observed in various tissues and embryonic fibroblasts isolated from transgenic mice. In contrast, telomeric transgenes were not silenced in ES cell lines isolated from 3-day-old preimplantation embryos, consistent with the hypothesis that TPE plays a role in the development of the embryo.
Collapse
Affiliation(s)
- Mehrdad Pedram
- Department of Radiation Oncology, University of California, 1855 Folsom St., MCB 200, San Francisco, CA 94103, USA
| | | | | | | | | | | |
Collapse
|
110
|
Brunori M, Mathieu N, Ricoul M, Bauwens S, Koering CE, Roborel de Climens A, Belleville A, Wang Q, Puisieux I, Décimo D, Puisieux A, Sabatier L, Gilson E. TRF2 inhibition promotes anchorage-independent growth of telomerase-positive human fibroblasts. Oncogene 2006; 25:990-7. [PMID: 16205637 DOI: 10.1038/sj.onc.1209135] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although telomere instability is observed in human tumors and is associated with the development of cancers in mice, it has yet to be established that it can contribute to the malignant transformation of human cells. We show here that in checkpoint-compromised telomerase-positive human fibroblasts an episode of TRF2 inhibition promotes heritable changes that increase the ability to grow in soft agar, but not tumor growth in nude mice. This transforming activity is associated to a burst of telomere instability but is independent of an altered control of telomere length. Moreover, it cannot be recapitulated by an increase in chromosome breaks induced by an exposure to gamma-radiations. Since it can be revealed in the context of telomerase-proficient human cells, telomere dysfunction might contribute to cancer progression even at late stages of the oncogenesis process, after the telomerase reactivation step.
Collapse
Affiliation(s)
- M Brunori
- Laboratoire de Biologie Moléculaire de la Cellule of Ecole Normale Supérieure de Lyon, UMR CNRS/INRA/ENS, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
112
|
Cristofari G, Lingner J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 2006; 25:565-74. [PMID: 16424902 PMCID: PMC1383536 DOI: 10.1038/sj.emboj.7600952] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/19/2005] [Indexed: 11/09/2022] Open
Abstract
Stabilization of telomere length in germline and highly proliferative human cells is required for long-term survival and for the immortal phenotype of cancer-derived cells. This is achieved through expression of telomerase reverse transcriptase (TERT), which synthesizes telomeric repeats through reverse transcription of its tightly associated RNA template (TR). The telomeric repeat binding factor TRF1 inhibits telomerase at telomeres in cis in a length-dependent manner to achieve telomere length homeostasis. Here we manipulate telomerase activity over a wide range in cancer and primary cells. Concomitant overexpression of TERT and TR was necessary and sufficient to substantially increase telomerase activity. Upon overexpression, more telomerase associated with telomeres and telomeres elongated at a constant rate (up to 0.8 kb/population doubling (PD)) in a length-independent manner. Thus, in less than 50 PDs, the length of telomeres increased 3-8-fold beyond physiological size, while telomere-bound TRF1 and TRF2 increased proportionally to telomere length. Thus, long telomeres do not permanently adopt a structural state that is non-extendible. A low cellular concentration of telomerase is critical to achieve preferential elongation of short telomeres and telomere length homeostasis.
Collapse
Affiliation(s)
- Gaël Cristofari
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
- National Center of Competence in Research ‘Frontiers in Genetics', Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
- National Center of Competence in Research ‘Frontiers in Genetics', Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), 155, Chemin des Boveresses, 1066 Epalinges, Switzerland. Tel.: +41 21 692 5912; Fax: +41 21 652 6933; E-mail:
| |
Collapse
|
113
|
Zou YS, Van Dyke DL, Thorland EC, Chhabra HS, Michels VV, Keefe JG, Lega MA, Feely MA, Uphoff TS, Jalal SM. Mosaic ring 20 with no detectable deletion by FISH analysis: Characteristic seizure disorder and literature review. Am J Med Genet A 2006; 140:1696-706. [PMID: 16835934 DOI: 10.1002/ajmg.a.31332] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ring chromosome 20 is a rare chromosome disorder characterized by a typical seizure phenotype consisting of complex partial seizures, frequent progression to generalized tonic or tonic-clonic seizures, and nocturnal frontal lobe seizures with frequent episodes of non-convulsive status epilepticus. Development may be normal or mildly delayed, followed by cognitive and behavioral decline after seizure onset. Here, we describe a patient with a typical severe seizure phenotype and a mosaic ring chromosome 20 without loss of p or q subtelomere regions or telomeric sequences. The ring had a longer telomere length than either of the telomere ends of its homologous chromosome 20 by quantitative fluorescence in situ hybridization analysis, suggesting that it might be derived from telomere-telomere fusion. The phenotypic comparison of this patient and other chromosome 20 cases that had terminal deletions of 20qter (n = 1) and 20pter (n = 7), shows that the epilepsy phenotype and electroencephalographic abnormalities are characteristic in patients with ring chromosome 20. Several hypotheses have been proposed to address the elusive mechanisms underlying the seizure disorder in ring chromosome 20. These possibilities include haploinsufficiency of two epilepsy genes CHRNA4 and KCNQ2 located at 20qter, silencing of these genes by a telomere position effect, or microdeletions or rearrangements of genetic material during the ring formation.
Collapse
Affiliation(s)
- Ying S Zou
- Cytogenetics Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Telomere length and telomerase activity are important factors in the pathobiology of human disease. Age-related diseases and premature ageing syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. Altered functioning of both telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and in cancer, and recent findings indicate that alterations that affect telomeres at the level of chromatin structure might also have a role in human disease. These findings have inspired a number of potential therapeutic strategies that are based on telomerase and telomeres.
Collapse
Affiliation(s)
- Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
115
|
Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J. Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 2005; 37:977-90. [PMID: 15743672 DOI: 10.1016/j.biocel.2004.10.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/02/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single-stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.
Collapse
Affiliation(s)
- Francis Rodier
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
116
|
Quina AS, Parreira L. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells. Exp Cell Res 2005; 307:52-64. [PMID: 15922726 DOI: 10.1016/j.yexcr.2005.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/12/2005] [Accepted: 02/19/2005] [Indexed: 11/16/2022]
Abstract
Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
117
|
Blasco MA. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 2005; 24:1095-103. [PMID: 15775986 PMCID: PMC556402 DOI: 10.1038/sj.emboj.7600598] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 02/04/2005] [Indexed: 12/13/2022] Open
Abstract
Telomeres are capping structures at the ends of eukaryotic chromosomes, which consist of repetitive DNA bound to an array of specialized proteins. Telomeres are part of the constitutive heterochromatin and are subjected to epigenetic modifications. The function of telomeres is to prevent chromosome ends from being detected as damaged DNA. Both the length of telomere repeats and the integrity of the telomere-binding proteins are important for telomere protection. Telomere length is regulated by telomerase, by the telomere-binding proteins, as well as by activities that modify the state of the chromatin. Various mouse models with altered levels of telomerase activity, or mutant for different telomere-binding proteins, have been recently generated. Here, I will discuss how these different mouse models have contributed to our understanding on the role of telomeres and telomerase in cancer and aging.
Collapse
Affiliation(s)
- María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain.
| |
Collapse
|
118
|
Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 2004; 26:867-74. [PMID: 15471900 DOI: 10.1093/carcin/bgh296] [Citation(s) in RCA: 499] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Telomere dynamics are a critical component of both aging and cancer. Telomeres progressively shorten in almost all dividing cells and most human cells do not express or maintain sufficient telomerase activity to fully maintain telomeres. There is accumulating evidence that when only a few telomeres are short, they form end-associations, leading to a DNA damage signal resulting in replicative senescence (a cellular growth arrest, also called the M1 stage). In the absence of cell-cycle checkpoint pathways (e.g. p53 and or p16/Rb), cells bypass M1 senescence and telomeres continue to shorten eventually resulting in crisis (also called the M2 stage). M2 is characterized by many 'uncapped' chromosome ends, end-fusions, chromosome breakage fusion-bridge cycles, mitotic catastrophe and a high fraction of apoptotic cells. In a rare M2 cell, telomerase (a cellular reverse transcriptase) can be reactivated or up-regulated, resulting in indefinite cell proliferation. This cellular immortalization is a potentially rate-limiting step in carcinogenesis that is important for the continuing evolution of most advanced cancers. In this perspective we will present our views on the evidence for telomere dysfunction in aging and in cancer progression. We will argue that telomere shortening in the absence of other alterations may be a potent tumor suppressor mechanism and we will discuss the evidence for and against the major molecular mechanisms proposed to initiate replicative senescence.
Collapse
Affiliation(s)
- Jerry W Shay
- University of Texas Southwestern Medical Center at Dallas, Department of Cell Biology, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA.
| | | |
Collapse
|
119
|
Perrini B, Piacentini L, Fanti L, Altieri F, Chichiarelli S, Berloco M, Turano C, Ferraro A, Pimpinelli S. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 2004; 15:467-76. [PMID: 15304225 DOI: 10.1016/j.molcel.2004.06.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/28/2004] [Accepted: 06/02/2004] [Indexed: 11/24/2022]
Abstract
HP1 is a conserved chromosomal protein, first discovered in Drosophila, which is predominantly associated with the heterochromatin of many organisms. Recently, it has been shown that HP1 is required for telomere capping, telomere elongation, and transcriptional repression of telomeric sequences. Several studies have suggested a model for heterochromatin formation and epigenetic gene silencing in different species that is based on interactions among histone methyltransferases (HMTases), histone H3 methylated at lysine 9 (H3-MeK9), and the HP1 chromodomain. This model has been extended to HP1 telomeric localization by data showing that H3-MeK9 is present at all of the telomeres. Here, we tested this model, and we found that the capping function of HP1 is due to its direct binding to telomeric DNA, while the silencing of telomeric sequences and telomere elongation is due to its interaction with H3-MeK9.
Collapse
Affiliation(s)
- Barbara Perrini
- Fondazione Cenci Bolognetti and Dipartimento, di Genetica e Biologia Molecolare, Università "La Sapienza", 00185 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 2004; 18:1850-61. [PMID: 15256487 PMCID: PMC517405 DOI: 10.1101/gad.1202504] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We demonstrate that the Drosophila homolog of ATM is encoded by the telomere fusion (tefu) gene. In the absence of ATM, telomere fusions occur even though telomere-specific Het-A sequences are still present. High levels of spontaneous apoptosis are observed in ATM-deficient tissues, indicating that telomere dysfunction induces apoptosis in Drosophila. Suppression of this apoptosis by p53 mutations suggests that loss of ATM activates apoptosis through a DNA damage-response mechanism. Loss of ATM reduces the levels of heterochromatin protein 1 (HP1) at telomeres and suppresses telomere position effect. We propose that recognition of chromosome ends by ATM prevents telomere fusion and apoptosis by recruiting chromatin-modifying complexes to telomeres.
Collapse
Affiliation(s)
- Sarah R Oikemus
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
There is a discrepancy in telomere length as measured by signal intensity of telomere restriction fragments on gels and fluorescence in situ hybridization analysis. This difference has been ascribed to the X-region, a segment of subtelomeric DNA that is resistant to being cut by restriction enzymes. To explore the nature of this region, we analyzed the digestibility of an artificial seeded telomere in HeLa cells as well as the Xp/Yp autosomal telomere in human BJ fibroblasts. We found that there is a substantial fraction of subtelomeric DNA containing restriction sites that is not digested with enzymes such as EcoRI, NlaIII, and SphI. Comparison of methylation-sensitive and -resistant enzymes excluded the possibility of the X-region being maintained by DNA methylation. We show that the X-region represents a variable domain whose size changes with telomere length, and neither non-TTAGGG sequences nor cytidine methylation can adequately explain the size of the X-region.
Collapse
Affiliation(s)
- Susanne Steinert
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | | | |
Collapse
|
122
|
Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, Tanke HJ, Dirks RW. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 2004; 22:6631-41. [PMID: 14657034 PMCID: PMC291828 DOI: 10.1093/emboj/cdg633] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chromosome ends are protected from degradation by the presence of the highly repetitive hexanucleotide sequence of TTAGGG and associated proteins. These so-called telomeric complexes are suggested to play an important role in establishing a functional nuclear chromatin organization. Using peptide nucleic acid (PNA) probes, we studied the dynamic behavior of telomeric DNA repeats in living human osteosarcoma U2OS cells. A fluorescent cy3-labeled PNA probe was introduced in living cells by glass bead loading and was shown to specifically associate with telomeric DNA shortly afterwards. Telomere dynamics were imaged for several hours using digital fluorescence microscopy. While the majority of telomeres revealed constrained diffusive movement, individual telomeres in a human cell nucleus showed significant directional movements. Also, a subfraction of telomeres were shown to associate and dissociate, suggesting that in vivo telomere clusters are not stable but dynamic structures. Furthermore, telomeres were shown to associate with promyelocytic leukemia (PML) bodies in a dynamic manner.
Collapse
Affiliation(s)
- Chris Molenaar
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
123
|
Baur JA, Shay JW, Wright WE. Spontaneous reactivation of a silent telomeric transgene in a human cell line. Chromosoma 2004; 112:240-6. [PMID: 14735368 DOI: 10.1007/s00412-003-0269-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 11/26/2003] [Accepted: 12/02/2003] [Indexed: 11/28/2022]
Abstract
Subtelomeric reporter genes in human cells are silenced in a telomere length-dependent manner. Here we show that a subtelomeric reporter gene is expressed in only a subpopulation of cells within a clone and that this heterogeneity is generated by switching between expression states. We observed frequent reversion from the silenced state back to active expression. This process was more prominent for subtelomeric transgenes; however, we also observed cases of spontaneous reversion in control clones bearing the reporter at an internal site. We additionally show that treatment of these cells with 5-bromodeoxyuridine results in strong activation of the transgene. Although similar findings have been reported previously in mouse cells, this is, to our knowledge, the first direct observation of ongoing fluctuations in transcription in clonal populations of human cells. Our results suggest that this mechanism, as opposed to progressive silencing or a delayed fixing of expression states, accounts for the variegation in expression observed for subtelomeric transgenes in human cells. These data imply that telomere shortening during human aging could lead to stochastic activation of subtelomeric genes.
Collapse
Affiliation(s)
- Joseph A Baur
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
124
|
García-Cao M, O'Sullivan R, Peters AHFM, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 2003; 36:94-9. [PMID: 14702045 DOI: 10.1038/ng1278] [Citation(s) in RCA: 398] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/17/2003] [Indexed: 11/08/2022]
Abstract
Telomeres are capping structures at the ends of eukaryotic chromosomes composed of TTAGGG repeats bound to an array of specialized proteins. Telomeres are heterochromatic regions. Yeast and flies with defects in activities that modify the state of chromatin also have abnormal telomere function, but the putative role of chromatin-modifying activities in regulating telomeres in mammals is unknown. Here we report on telomere length and function in mice null with respect to both the histone methyltransferases (HMTases) Suv39h1 and Suv39h2 (called SUV39DN mice). Suv39h1 and Suv39h2 govern methylation of histone H3 Lys9 (H3-Lys9) in heterochromatic regions. We show that primary cells derived from SUV39DN mice have abnormally long telomeres relative to wild-type controls. Using chromatin immunoprecipitation (ChIP) analysis, we found that telomeres were enriched in di- and trimethylated H3-Lys9 but that telomeres of SUV39DN cells had less dimethylated and trimethylated H3-Lys9 but more monomethylated H3-Lys9. Concomitant with the decrease in H3-Lys9 methylation, telomeres in SUV39DN cells had reduced binding of the chromobox proteins Cbx1, Cbx3 and Cbx5, homologs of Drosophila melanogaster heterochromatin protein 1 (HP1). These findings indicate substantial changes in the state of telomeric heterochromatin in SUV39DN cells, which are associated with abnormal telomere elongation. Taken together, the results indicate epigenetic regulation of telomere length in mammals by Suv39h1 and Suv39h2.
Collapse
Affiliation(s)
- Marta García-Cao
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), E-28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
125
|
Sharma GG, Hwang KK, Pandita RK, Gupta A, Dhar S, Parenteau J, Agarwal M, Worman HJ, Wellinger RJ, Pandita TK. Human heterochromatin protein 1 isoforms HP1(Hsalpha) and HP1(Hsbeta) interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol Cell Biol 2003; 23:8363-76. [PMID: 14585993 PMCID: PMC262350 DOI: 10.1128/mcb.23.22.8363-8376.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomeres are associated with the nuclear matrix and are thought to be heterochromatic. We show here that in human cells the overexpression of green fluorescent protein-tagged heterochromatin protein 1 (GFP-HP1) or nontagged HP1 isoforms HP1(Hsalpha) or HP1(Hsbeta), but not HP1(Hsgamma), results in decreased association of a catalytic unit of telomerase (hTERT) with telomeres. However, reduction of the G overhangs and overall telomere sizes was found in cells overexpressing any of these three proteins. Cells overexpressing HP1(Hsalpha) or HP1(Hsbeta) also display a higher frequency of chromosome end-to-end associations and spontaneous chromosomal damage than the parental cells. None of these effects were observed in cells expressing mutants of GFP-DeltaHP1(Hsalpha), GFP-DeltaHP1(Hsbeta), or GFP-DeltaHP1(Hsgamma) that had their chromodomains deleted. An increase in the cell population doubling time and higher sensitivity to cell killing by ionizing radiation (IR) treatment was also observed for cells overexpressing HP1(Hsalpha) or HP1(Hsbeta). In contrast, cells expressing mutant GFP-DeltaHP1(Hsalpha) or GFP-DeltaHP1(Hsbeta) showed a decrease in population doubling time and decreased sensitivity to IR compared to the parental cells. The effects on cell doubling times were paralleled by effects on tumorigenicity in mice: overexpression of HP1(Hsalpha) or HP1(Hsbeta) suppressed tumorigenicity, whereas expression of mutant HP1(Hsalpha) or HP1(Hsbeta) did not. Collectively, the results show that human cells are exquisitely sensitive to the amount of HP1(Hsalpha) or HP1(Hsbeta) present, as their overexpression influences telomere stability, population doubling time, radioresistance, and tumorigenicity in a mouse xenograft model. In addition, the isoform-specific effects on telomeres reinforce the notion that telomeres are in a heterochromatinized state.
Collapse
Affiliation(s)
- Girdhar G Sharma
- Radiation and Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park, St Louis, MO 63108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|