101
|
Tekel SJ, Haynes KA. Molecular structures guide the engineering of chromatin. Nucleic Acids Res 2017; 45:7555-7570. [PMID: 28609787 PMCID: PMC5570049 DOI: 10.1093/nar/gkx531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics.
Collapse
Affiliation(s)
- Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Karmella A Haynes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
102
|
Perell GT, Mishra NK, Sudhamalla B, Ycas PD, Islam K, Pomerantz WCK. Specific Acetylation Patterns of H2A.Z Form Transient Interactions with the BPTF Bromodomain. Biochemistry 2017; 56:4607-4615. [PMID: 28771339 PMCID: PMC5779092 DOI: 10.1021/acs.biochem.7b00648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational lysine acetylation of histone tails affects both chromatin accessibility and recruitment of multifunctional bromodomain-containing proteins for modulating transcription. The bromodomain- and PHD finger-containing transcription factor (BPTF) regulates transcription but has also been implicated in high gene expression levels in a variety of cancers. In this report, the histone variant H2A.Z, which replaces H2A in chromatin, is evaluated for its affinity for BPTF with a specific recognition pattern of acetylated lysine residues of the N-terminal tail region. Although BPTF immunoprecipitates H2A.Z-containing nucleosomes, a direct interaction with its bromodomain has not been reported. Using protein-observed fluorine nuclear magnetic resonance (PrOF NMR) spectroscopy, we identified a diacetylation of H2A.Z on lysine residues 4 and 11, with the highest affinity for BPTF with a Kd of 780 μM. A combination of subsequent 1H NMR Carr-Purcell-Meiboom-Gill experiments and photo-cross-linking further confirmed the specificity of the diacetylation pattern at lysines 4 and 11. Because of an adjacent PHD domain, this transient interaction may contribute to a higher-affinity bivalent interaction. Further evaluation of specificity toward a set of bromodomains, including two BET bromodomains (Brd4 and BrdT) and two Plasmodium falciparum bromodomains, resulted in one midmicromolar affinity binder, PfGCN5 (Kd = 650 μM). With these biochemical experiments, we have identified a direct interaction of histone H2A.Z with bromodomains with a specific acetylation pattern that further supports the role of H2A.Z in epigenetic regulation.
Collapse
Affiliation(s)
- Gabriella T. Perell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Neeraj K. Mishra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh, 1307 Chevron Science Center, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 1307 Chevron Science Center, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
103
|
Wang Q, Li Y, Xu J, Wang Y, Leung ELH, Liu L, Yao X. Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: insight from microsecond molecular dynamics simulations. Sci Rep 2017; 7:8857. [PMID: 28821780 PMCID: PMC5562737 DOI: 10.1038/s41598-017-08909-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
RVX-208 is a recently reported inhibitor of bromo and extraterminal (BET) family proteins (including BRD2-4 and BRDT) with selectivity for the second bromodomain (BD2), currently in phase III clinical trials. Despite of its promising antitumor activity, due to the conserved folds of the first and second bromodomains (BD1 and BD2), the detailed selectivity mechanism of RVX-208 towards BD2 over BD1 is still unknown. To elucidate selective inhibition mechanism of RVX-208 to BD2, microsecond molecular dynamics simulations were performed in this study for BRD2-BD1, BRD2-BD2 and BRD4-BD1 with and without RVX-208, respectively. Binding free energy calculations show that there exists strongest interaction between RVX-208 and BRD2-BD2. Leu383 and Asn429 are two most important residues of BRD2-BD2 for binding to RVX-208. Structural network analysis reveals that RVX-208 can shorten the communication path of ZA and BC loops in BRD2-BD2 pocket, making pocket more suitable to accommodate RVX-208. Additionally, different behaviors of His433 (Asp160 in BRD2-BD1) and Val435 (Ile162 in BRD2-BD1) in BRD2-BD2 are key factors responsible for selective binding of RVX-208 to BRD2-BD2. The proposed selective inhibition mechanism of RVX-208 to BRD2-BD2 can be helpful for rational design of novel selective inhibitors of the second bromodomain of BET family proteins.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
104
|
Langini C, Caflisch A, Vitalis A. The ATAD2 bromodomain binds different acetylation marks on the histone H4 in similar fuzzy complexes. J Biol Chem 2017; 292:16734-16745. [PMID: 28798233 DOI: 10.1074/jbc.m117.786350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Bromodomains are protein modules adopting conserved helix bundle folds. Some bromodomain-containing proteins, such as ATPase family AAA domain-containing protein 2 (ATAD2), isoform A, have attracted much interest because they are overexpressed in many types of cancer. Bromodomains bind to acetylated lysine residues on histone tails and thereby facilitate the reading of the histone code. Epigenetic regulators in general have been implicated as indicators, mediators, or causes of a large number of diseases and disorders. To interfere with or modulate these processes, it is therefore of fundamental interest to understand the molecular mechanisms by which epigenetic regulation occurs. Here, we present results from molecular dynamics simulations of a doubly acetylated histone H4 peptide bound to the bromodomain of ATAD2 (hereafter referred to as ATAD2A). These simulations revealed how the flexibility of ATAD2A's major loop, the so-called ZA loop, creates an adaptable interface that preserves the disorder of both peptide and loop in the bound state. We further demonstrate that the binding involves an almost identical average pattern of interactions irrespective of which acetyl mark is inserted into the pocket. In conjunction with a likely mechanism of electrostatically driven recruitment, our simulation results highlight how the bromodomain is built toward promiscuous binding with low specificity. In conclusion, the simulations indicate that disorder and electrostatic steering function jointly to recruit ATAD2A to the histone core and that these fuzzy interactions may promote cooperativity between nearby epigenetic marks.
Collapse
Affiliation(s)
- Cassiano Langini
- From the Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- From the Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- From the Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
105
|
Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes (Basel) 2017; 8:genes8080196. [PMID: 28783137 PMCID: PMC5575660 DOI: 10.3390/genes8080196] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The nucleosome surface is covered with multiple modifications that are perpetuated by eight different classes of enzymes. These enzymes modify specific target sites both on DNA and histone proteins, and these modifications have been well identified and termed “epigenetics”. These modifications play critical roles, either by affecting non-histone protein recruitment to chromatin or by disturbing chromatin contacts. Their presence dictates the condensed packaging of DNA and can coordinate the orderly recruitment of various enzyme complexes for DNA manipulation. This genetic modification machinery involves various writers, readers, and erasers that have unique structures, functions, and modes of action. Regarding human disease, studies have mainly focused on the genetic mechanisms; however, alteration in the balance of epigenetic networks can result in major pathologies including mental retardation, chromosome instability syndromes, and various types of cancers. Owing to its critical influence, great potential lies in developing epigenetic therapies. In this regard, this review has highlighted mechanistic and structural interactions of the main epigenetic families with their targets, which will help to identify more efficient and safe drugs against several diseases.
Collapse
|
106
|
Tan H, Liu T, Zhang J, Zhou T. Random positioning of nucleosomes enhances heritable bistability. MOLECULAR BIOSYSTEMS 2017; 13:132-141. [PMID: 27833942 DOI: 10.1039/c6mb00729e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal regions are often dynamically modified by histones, leading to the uncertainty of nucleosome positions. Experiments have provided evidence for this randomness, but it is unclear how it impacts epigenetic heritability. Here, by analyzing a mechanic model at the molecular level, which considers three representative types of nucleosomes (unmodified, methylated, and acetylated) and dynamic nucleosome modifications, we find that in contrast to the equidistance partition of nucleosomes, random partition can significantly enhance heritable bistability. Moreover, the more "chaotic" the nucleosome positions are, the better the heritable bistability is, in contrast to the previous view. In both cases of nucleosome positioning, heritable bistability occurs only when the total nucleosome number is beyond a threshold, and it depends strongly on the allocation rate that enzymes regulate transitions between different nucleosome types. Thus, we conclude that random positioning of nucleosomes is an unneglectable factor impacting heritable bistability. A point worth mentioning is that our model established on a master equation can easily be extended to include other more complex processes underlying dynamic nucleosome modifications.
Collapse
Affiliation(s)
- Heli Tan
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and School of Mathematics and Computational Science, Xiangtan University, XiangTan 411105, P. R. China
| | - Tuoqi Liu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
107
|
Characterizing the molecular architectures of chromatin-modifying complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1613-1622. [PMID: 28652207 DOI: 10.1016/j.bbapap.2017.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
108
|
Heo JI, Kim W, Choi KJ, Bae S, Jeong JH, Kim KS. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget 2017; 7:5118-30. [PMID: 26802028 PMCID: PMC4868675 DOI: 10.18632/oncotarget.6962] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/15/2016] [Indexed: 01/31/2023] Open
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is well known as an antagonist of XIAP-mediated caspase inhibition. Although XAF1 serves as a tumor-suppressor gene, the role of XAF1 in cellular senescence remains unclear. We found that XAF1 expression was increased by genotoxic agents, such as doxorubicin and ionizing radiation in pulmonary microvascular endothelial cells, consequently leading to premature senescence. Conversely, downregulation of XAF1 in premature senescent cells partially overcame endothelial cell senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by XAF1 induction. XAF1 expression was transcriptionally regulated by Bromodomain 7 (BRD7). XAF1 induction with interferon-gamma (IFN-γ) treatment was abrogated by BRD7 knockdown, which resulted in blocking interferon-induced senescence. In lung cancer cells, XAF1 tumor suppressor activity was decreased by BRD7 knockdown, and inhibition of tumor growth by IFN-γ did not appear in BRD7-depleted xenograft tumors. These data suggest that XAF1 is involved in BRD7-associated senescence and plays an important role in the regulation of endothelial senescence through a p53-dependent pathway. Furthermore, regulation of the BRD7/XAF1 system might contribute to tissue or organismal aging and protection against cellular transformation.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Wonwoo Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kyu Jin Choi
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sangwoo Bae
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kwang Seok Kim
- Divisions of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
109
|
Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Microbiol Mol Biol Rev 2017; 81:81/1/e00047-16. [PMID: 28077462 DOI: 10.1128/mmbr.00047-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.
Collapse
|
110
|
Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 2017; 18:246-262. [PMID: 28053347 DOI: 10.1038/nrm.2016.143] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.
Collapse
Affiliation(s)
- Takao Fujisawa
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford.,Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
111
|
Porter EG, Dykhuizen EC. Individual Bromodomains of Polybromo-1 Contribute to Chromatin Association and Tumor Suppression in Clear Cell Renal Carcinoma. J Biol Chem 2017; 292:2601-2610. [PMID: 28053089 DOI: 10.1074/jbc.m116.746875] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/22/2016] [Indexed: 01/09/2023] Open
Abstract
The architecture of chromatin is governed, in part, by ATP-dependent chromatin remodelers. These multiprotein complexes contain targeting domains that recognize post-translational marks on histones. One such targeting domain is the bromodomain (BD), which recognizes acetyl-lysines and recruits proteins to sites of acetylation across the genome. Polybromo1 (PBRM1), a subunit of the Polybromo-associated BRG1- or hBRM-associated factors (PBAF) chromatin remodeler, contains six tandem BDs and is frequently mutated in clear cell renal cell carcinoma (ccRCC). Mutations in the PBRM1 gene often lead to the loss of protein expression; however, missense mutations in PBRM1 have been identified and tend to cluster in the BDs, particularly BD2 and BD4, suggesting that individual BDs are critical for PBRM1 function. To study the role of these six BDs, we inactivated each of the six BDs of PBRM1 and re-expressed these mutants in Caki2 cells (ccRCC cells with the loss of function mutation in PBRM1). Four of the six BDs abrogated PBRM1 tumor suppressor function, gene regulation, and chromatin affinity with the degree of importance correlating strongly to the rate of missense mutations in patients. Furthermore, we identified BD2 as the most critical for PBRM1 and confirmed BD2-mediated association to histone H3 peptides acetylated at lysine 14 (H3K14Ac), validating the importance of this specific acetylation mark for PBRM1 binding. From these data, we conclude that four of the BDs act together to target PBRM1 to sites on chromatin; when a single BD is mutated, PBRM1 no longer controls gene expression properly, leading to increased cell proliferation.
Collapse
Affiliation(s)
- Elizabeth G Porter
- From the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Emily C Dykhuizen
- From the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
112
|
Cheng C, Diao H, Zhang F, Wang Y, Wang K, Wu R. Deciphering the mechanisms of selective inhibition for the tandem BD1/BD2 in the BET-bromodomain family. Phys Chem Chem Phys 2017; 19:23934-23941. [DOI: 10.1039/c7cp04608a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bromodomain and extra terminal domain (BET) family of bromodomains (BRDs) are well-known drug targets for many human diseases.
Collapse
Affiliation(s)
- Chunyan Cheng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Hongjuan Diao
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yongheng Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Kai Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
113
|
Nicholas DA, Andrieu G, Strissel KJ, Nikolajczyk BS, Denis GV. BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol Life Sci 2017; 74:231-243. [PMID: 27491296 PMCID: PMC5222701 DOI: 10.1007/s00018-016-2320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Guillaume Andrieu
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Katherine J Strissel
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Gerald V Denis
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA.
- Section of Hematology/Oncology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, K520, Boston, MA, 02118, USA.
| |
Collapse
|
114
|
Jiang H, Xing J, Wang C, Zhang H, Yue L, Wan X, Chen W, Ding H, Xie Y, Tao H, Chen Z, Jiang H, Chen K, Chen S, Zheng M, Zhang Y, Luo C. Discovery of novel BET inhibitors by drug repurposing of nitroxoline and its analogues. Org Biomol Chem 2017; 15:9352-9361. [DOI: 10.1039/c7ob02369c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The BET family of bromodomain-containing proteins (BRDs) is believed to be a promising drug target for therapeutic intervention in a number of diseases.
Collapse
|
115
|
Morgan MT, Wolberger C. Recognition of ubiquitinated nucleosomes. Curr Opin Struct Biol 2016; 42:75-82. [PMID: 27923209 DOI: 10.1016/j.sbi.2016.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022]
Abstract
Histone ubiquitination plays a non-degradative role in regulating transcription and the DNA damage response. A mechanistic understanding of this chromatin modification has lagged that of small histone modifications because of the technical challenges in preparing ubiquitinated nucleosomes. The recent structure of the DUB module of the SAGA coactivator complex bound to a nucleosome containing monoubiquitinated H2B has provided the first view of how specialized subunits target this enzyme to its substrate. Single particle electron microscopy of the intact SAGA coactivator suggests how the DUB module and histone acetyltransferase module engage a nucleosomal substrate. A cryo EM study of 53BP1 bound to nucleosomes containing ubiquitinated H2A and H4 methylated at K20 extends our understanding of recognition of biologically distinct combinations of chromatin marks through multivalent interactions.
Collapse
Affiliation(s)
- Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
116
|
Abstract
BACKGROUND: Skeletal muscle atrophy during aging, a process known as sarcopenia, is associated with muscle weakness, frailty, and the loss of independence in older adults. The mechanisms contributing to sarcopenia are not totally understood, but muscle fiber loss due to apoptosis, reduced stimulation of anabolic pathways, activation of catabolic pathways, denervation, and altered metabolism have been observed in muscle from old rodents and humans. OBJECTIVE: Recently, histone deacetylases (HDACs) have been implicated in muscle atrophy and dysfunction due to denervation, muscular dystrophy, and disuse, and HDACs play key roles in regulating metabolism in skeletal muscle. In this review, we will discuss the role of HDACs in muscle atrophy and the potential of HDAC inhibitors for the treatment of sarcopenia. CONCLUSIONS: Several HDAC isoforms are potential targets for intervention in sarcopenia. Inhibition of HDAC1 prevents muscle atrophy due to nutrient deprivation. HDAC3 regulates metabolism in skeletal muscle and may inhibit oxidative metabolism during aging. HDAC4 and HDAC5 have been implicated in muscle atrophy due to denervation, a process implicated in sarcopenia. HDAC inhibitors are already in use in the clinic, and there is promise in targeting HDACs for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Michael E Walsh
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich , Zurich, Switzerland
| | | |
Collapse
|
117
|
Marchand JR, Lolli G, Caflisch A. Derivatives of 3-Amino-2-methylpyridine as BAZ2B Bromodomain Ligands: In Silico Discovery and in Crystallo Validation. J Med Chem 2016; 59:9919-9927. [PMID: 27731638 DOI: 10.1021/acs.jmedchem.6b01258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 3-amino-2-methylpyridine derivative 1 was identified as ligand of the BAZ2B bromodomain by automatic docking of nearly 500 compounds, selected on the basis of previous fragment hits. Hit expansion by two in silico approaches, pharmacophore search followed by docking, and substructure search resulted in five additional ligands. The predicted binding mode of the six 3-amino-2-methylpyridine derivatives was validated by protein crystallography. A small displacement of residues 1894-1899 of the ZA loop is observed for two of the six ligands. In all structures, the pyridine head is involved in a water-mediated hydrogen bond with the side chain of the conserved Tyr1901 while the 3-amino linker acts as hydrogen bond donor for the backbone carbonyl of Pro1888. Heterogeneous orientations are observed for the tail groups (i.e., the 3-amino substituents). The sulfonyl group in the tail of compounds 1 and 2 is involved in a hydrogen bond with the backbone amide of Asn1894.
Collapse
Affiliation(s)
- Jean-Rémy Marchand
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Graziano Lolli
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
118
|
Pan D, Kather M, Willmann L, Schlimpert M, Bauer C, Lagies S, Schmidtkunz K, Eisenhardt SU, Jung M, Günther S, Kammerer B. Metabolic Response to XD14 Treatment in Human Breast Cancer Cell Line MCF-7. Int J Mol Sci 2016; 17:E1772. [PMID: 27783056 PMCID: PMC5085796 DOI: 10.3390/ijms17101772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
XD14 is a 4-acyl pyrrole derivative, which was discovered by a high-throughput virtual screening experiment. XD14 inhibits bromodomain and extra-terminal domain (BET) proteins (BRD2, BRD3, BRD4 and BRDT) and consequently suppresses cell proliferation. In this study, metabolic profiling reveals the molecular effects in the human breast cancer cell line MCF-7 (Michigan Cancer Foundation-7) treated by XD14. A three-day time series experiment with two concentrations of XD14 was performed. Gas chromatography-mass spectrometry (GC-MS) was applied for untargeted profiling of treated and non-treated MCF-7 cells. The gained data sets were evaluated by several statistical methods: analysis of variance (ANOVA), clustering analysis, principle component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Cell proliferation was strongly inhibited by treatment with 50 µM XD14. Samples could be discriminated by time and XD14 concentration using PLS-DA. From the 117 identified metabolites, 67 were significantly altered after XD14 treatment. These metabolites include amino acids, fatty acids, Krebs cycle and glycolysis intermediates, as well as compounds of purine and pyrimidine metabolism. This massive intervention in energy metabolism and the lack of available nucleotides could explain the decreased proliferation rate of the cancer cells.
Collapse
Affiliation(s)
- Daqiang Pan
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Michel Kather
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Lucas Willmann
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Manuel Schlimpert
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Christoph Bauer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, 79106 Freiburg, Germany.
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
119
|
|
120
|
Huston JH, Ryan JJ. The emerging role of epigenetics in pulmonary arterial hypertension: an important avenue for clinical trials (2015 Grover Conference Series). Pulm Circ 2016; 6:274-84. [PMID: 27683604 DOI: 10.1086/687765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epigenetics is an emerging field of research and clinical trials in cancer therapy that also has applications for pulmonary arterial hypertension (PAH), as there is evidence that epigenetic control of gene expression plays a significant role in PAH. The three types of epigenetic modification include DNA methylation, histone modification, and RNA interference. All three have been shown to be involved in the development of PAH. Currently, the enzymes that perform these modifications are the primary targets of neoplastic therapy. These targets are starting to be explored for therapies in PAH, mostly in animal models. In this review we summarize the basics of each type of epigenetic modification and the known sites and molecules involved in PAH, as well as current targets and prospects for clinical trials.
Collapse
Affiliation(s)
- Jessica H Huston
- Department of Medicine, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
121
|
Vukovic S, Brennan PE, Huggins DJ. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:344007. [PMID: 27367338 DOI: 10.1088/0953-8984/28/34/344007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.
Collapse
Affiliation(s)
- Sinisa Vukovic
- Department of Physics, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | |
Collapse
|
122
|
Suppression of T H17-mediated pathology through BET bromodomain inhibition. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:39-44. [PMID: 27769356 DOI: 10.1016/j.ddtec.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
Abstract
Epigenetic control of gene expression is enforced in part through histone modifications. Bromodomain and extra terminal domain (BET) proteins function as crucial chromatin readers, responsible for interpretation of the chromatin code in diverse cellular contexts, ultimately impacting gene transcription. BET proteins can play a major role in inflammation by profoundly affecting the biology of the Thelper 17 (TH17) lineage. We summarize recent studies focusing on BET inhibition as a viable therapeutic alternative for the control of autoimmune diseases driven by aberrant activation of TH17 cells.
Collapse
|
123
|
Clark PGK, Dixon DJ, Brennan PE. Development of chemical probes for the bromodomains of BRD7 and BRD9. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:73-80. [PMID: 27769361 DOI: 10.1016/j.ddtec.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
The bromodomain family of proteins are 'readers' of acetylated lysines of histones, a key mark in the epigenetic code of gene regulation. Without high quality chemical probes with which to study these proteins, their biological function, and potential use in therapeutics, remains unknown. Recently, a number of chemical ligands were reported for the previously unprobed bromodomain proteins BRD7 and BRD9. Herein the development and characterisation of probes against these proteins is detailed, including the preliminary biological activity of BRD7 and BRD9 assessed using these probes. Future studies utilising these chemically-diverse compounds in parallel will allow for a confident assessment of the role of BRD7/9, and give multiple entry points into any subsequent pharmaceutical programs.
Collapse
Affiliation(s)
- Peter G K Clark
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Paul E Brennan
- Structural Genomics Consortium, Target Discovery Institute, and Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Dept of Medicine, Oxford OX3 7FZ, UK.
| |
Collapse
|
124
|
Li W, Zhao A, Tempel W, Loppnau P, Liu Y. Crystal structure of DPF3b in complex with an acetylated histone peptide. J Struct Biol 2016; 195:365-372. [PMID: 27402533 DOI: 10.1016/j.jsb.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022]
Abstract
Histone acetylation plays an important role in chromatin dynamics and is associated with active gene transcription. This modification is written by acetyltransferases, erased by histone deacetylases and read out by bromodomain containing proteins, and others such as tandem PHD fingers of DPF3b. Here we report the high resolution crystal structure of the tandem PHD fingers of DPF3b in complex with an H3K14ac peptide. In the complex structure, the histone peptide adopts an α-helical conformation, unlike previously observed by NMR, but similar to a previously reported MOZ-H3K14ac complex structure. Our crystal structure adds to existing evidence that points to the α-helix as a natural conformation of histone tails as they interact with histone-associated proteins.
Collapse
Affiliation(s)
- Weiguo Li
- Key Laboratory of Pesticide & Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Anthony Zhao
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
125
|
Lori L, Pasquo A, Lori C, Petrosino M, Chiaraluce R, Tallant C, Knapp S, Consalvi V. Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability. PLoS One 2016; 11:e0159180. [PMID: 27403962 PMCID: PMC4942050 DOI: 10.1371/journal.pone.0159180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023] Open
Abstract
Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding.
Collapse
Affiliation(s)
- Laura Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | | | - Clorinda Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Roberta Chiaraluce
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
- * E-mail:
| | - Cynthia Tallant
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Valerio Consalvi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
126
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
127
|
Nucleation and spreading of a heterochromatic domain in fission yeast. Nat Commun 2016; 7:11518. [PMID: 27167753 PMCID: PMC4865850 DOI: 10.1038/ncomms11518] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/05/2016] [Indexed: 12/28/2022] Open
Abstract
Outstanding questions in the chromatin field bear on how large heterochromatin domains are formed in space and time. Positive feedback, where histone-modifying enzymes are attracted to chromosomal regions displaying the modification they catalyse, is believed to drive the formation of these domains; however, few quantitative studies are available to assess this hypothesis. Here we quantified the de novo establishment of a naturally occurring ∼20-kb heterochromatin domain in fission yeast through single-cell analyses, measuring the kinetics of heterochromatin nucleation in a region targeted by RNAi and its subsequent expansion. We found that nucleation of heterochromatin is stochastic and can take from one to ten cell generations. Further silencing of the full region takes another one to ten generations. Quantitative modelling of the observed kinetics emphasizes the importance of local feedback, where a nucleosome-bound enzyme modifies adjacent nucleosomes, combined with a feedback where recruited enzymes can act at a distance. Chromosomes contain large heterochromatin domains. Here, the authors measure the kinetics of heterochromatin formation in fission yeast and show both global and local feedbacks by nucleosome-bound enzymes are important for formation and stability of the large heterochromatin domains.
Collapse
|
128
|
Ren C, Zeng L, Zhou MM. Preparation, Biochemical Analysis, and Structure Determination of the Bromodomain, an Acetyl-Lysine Binding Domain. Methods Enzymol 2016; 573:321-43. [PMID: 27372760 DOI: 10.1016/bs.mie.2016.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The bromodomain (BrD) represents an evolutionarily conserved protein domain whose function mostly is to recognize acetylated lysine residues in histones and nuclear proteins in regulation of gene transcription in chromatin. The highly conserved BrD structure features an unusual left-handed, antiparallel four-helix bundle and a hydrophobic pocket between the interhelical ZA and BC loops important for acetyl-lysine binding. Many proteins, particularly transcriptional activators, contain BrDs, and mutation or deletion of the BrDs impairs the protein function, implying their critical role in human biology and disease. In this chapter, we provide general protocols of the preparation, biochemical analysis, and structure determination of BrDs, aiming to offer a general guideline for structural and biochemical functional characterization of BrD-containing proteins.
Collapse
Affiliation(s)
- C Ren
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - L Zeng
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - M-M Zhou
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
129
|
Abstract
The bromodomain (BrD) is a conserved protein modular domain found in many chromatin- and transcription-associated proteins that has the ability to recognize acetylated lysine residues. This activity allows bromodomains to play a vital role in many acetylation-mediated protein-protein interactions in the cell, ranging from substrate recruitment for histone acetyltransferases (HATs) to aiding in multiple-protein complex assembly for gene transcriptional activation or suppression in chromatin. In recent years, considerable efforts have been made to develop chemical inhibitors of these bromodomains in an effort to probe their cellular functions. Potent and selective inhibitors have been extensively developed for one group of the bromodomain family termed BET proteins that consist of tandem bromodomains followed by an extra terminal domain. Drug developers are actively designing inhibitors of other bromodomains and working to move the most successful inhibitors into the clinic.
Collapse
Affiliation(s)
- Steven G. Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
130
|
Abstract
UNLABELLED Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic "reader" proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the "readout" of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and BET inhibitors are currently being studied in several clinical trials. However, their role in addiction-related phenomena remains unknown. In the current studies, we revealed that BRD4 is elevated in the nucleus accumbens and recruited to promoter regions of addiction-related genes following repeated cocaine administration, and that inhibition of BRD4 attenuates transcriptional and behavioral responses to cocaine. Together, these studies reveal that BET inhibitors may have therapeutic utility in the treatment of cocaine addiction.
Collapse
|
131
|
Hügle M, Lucas X, Weitzel G, Ostrovskyi D, Breit B, Gerhardt S, Einsle O, Günther S, Wohlwend D. 4-Acyl Pyrrole Derivatives Yield Novel Vectors for Designing Inhibitors of the Acetyl-Lysine Recognition Site of BRD4(1). J Med Chem 2016; 59:1518-30. [PMID: 26731611 DOI: 10.1021/acs.jmedchem.5b01267] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several human diseases, including cancer, show altered signaling pathways resulting from changes in the activity levels of epigenetic modulators. In the past few years, small-molecule inhibitors against specific modulators, including the bromodomain and extra-terminal (BET) bromodomain family of acetylation readers, have shown early promise in the treatment of the genetically defined midline carcinoma and hematopoietic malignancies. We have recently developed a novel potent inhibitor of BET proteins, 1 (XD14[ Angew. Chem., Int. Ed. 2013, 52, 14055]), which exerts a strong inhibitory potential on the proliferation of specific leukemia cell lines. In the study presented here, we designed analogues of 1 to study the potential of substitutions on the 4-acyl pyrrole backbone to occupy additional sites within the substrate recognition site of BRD4(1). The compounds were profiled using ITC, DSF, and X-ray crystallography. We could introduce several substitutions that address previously untargeted areas of the substrate recognition site. This work may substantially contribute to the development of therapeutics with increased target specificity against BRD4-related malignancies.
Collapse
Affiliation(s)
- Martin Hügle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| | - Xavier Lucas
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee , James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Gerhard Weitzel
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| | - Dmytro Ostrovskyi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| | - Stefan Gerhardt
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, D-79104 Freiburg, Germany
| |
Collapse
|
132
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
133
|
Fedorov O, Castex J, Tallant C, Owen DR, Martin S, Aldeghi M, Monteiro O, Filippakopoulos P, Picaud S, Trzupek JD, Gerstenberger BS, Bountra C, Willmann D, Wells C, Philpott M, Rogers C, Biggin PC, Brennan PE, Bunnage ME, Schüle R, Günther T, Knapp S, Müller S. Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. SCIENCE ADVANCES 2015; 1:e1500723. [PMID: 26702435 PMCID: PMC4681344 DOI: 10.1126/sciadv.1500723] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 05/13/2023]
Abstract
Mammalian SWI/SNF [also called Brg/Brahma-associated factors (BAFs)] are evolutionarily conserved chromatin-remodeling complexes regulating gene transcription programs during development and stem cell differentiation. BAF complexes contain an ATP (adenosine 5'-triphosphate)-driven remodeling enzyme (either BRG1 or BRM) and multiple protein interaction domains including bromodomains, an evolutionary conserved acetyl lysine-dependent protein interaction motif that recruits transcriptional regulators to acetylated chromatin. We report a potent and cell active protein interaction inhibitor, PFI-3, that selectively binds to essential BAF bromodomains. The high specificity of PFI-3 was achieved on the basis of a novel binding mode of a salicylic acid head group that led to the replacement of water molecules typically maintained in other bromodomain inhibitor complexes. We show that exposure of embryonic stem cells to PFI-3 led to deprivation of stemness and deregulated lineage specification. Furthermore, differentiation of trophoblast stem cells in the presence of PFI-3 was markedly enhanced. The data present a key function of BAF bromodomains in stem cell maintenance and differentiation, introducing a novel versatile chemical probe for studies on acetylation-dependent cellular processes controlled by BAF remodeling complexes.
Collapse
Affiliation(s)
- Oleg Fedorov
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Josefina Castex
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
| | - Cynthia Tallant
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Dafydd R. Owen
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | - Sarah Martin
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Matteo Aldeghi
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Octovia Monteiro
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Sarah Picaud
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - John D. Trzupek
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | | | - Chas Bountra
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Dominica Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
| | - Christopher Wells
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Martin Philpott
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Catherine Rogers
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul E. Brennan
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Mark E. Bunnage
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Thomas Günther
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
| | - Stefan Knapp
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
134
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
135
|
Sun Y, Huang J, Song K. BET protein inhibition mitigates acute myocardial infarction damage in rats via the TLR4/TRAF6/NF-κB pathway. Exp Ther Med 2015; 10:2319-2324. [PMID: 26668635 DOI: 10.3892/etm.2015.2789] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/07/2015] [Indexed: 01/04/2023] Open
Abstract
Acute myocardial infarction (AMI) is among the most serious cardiovascular diseases and is a leading cause of mortality in developed countries. Previous studies have indicated the central role played by the bromodomain (BRD) proteins, which belong to the BRD and extra-terminal (BET) family, in gene control during heart failure pathogenesis. In addition, BET inhibition has been shown to suppress cardiomyocyte hypertrophy. However, the role of BET proteins in myocardial infarction remains unclear. The present study aimed to investigate whether BETs inhibition mitigates AMI, and explore the molecular mechanism underlying this effect. A rat model of acute myocardial infarction was established, and rats were divided into the sham, AMI and AMI + JQ1 groups. JQ1, a well-known selective BRD inhibitor, was used to suppress BET domain family activity. The mRNA and protein expression levels of BRD2, BRD3 and BRD4 were evaluated using quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the expression levels of markers of cardiac damage were determined using commercial kits. The results indicated that BRD2 and BRD4 mRNA and protein expression levels were significantly increased in the AMI group compared with those in the sham group. In addition, BET inhibition decreased AMI damage in vivo by reversing cardiac function injury, decreasing serum lactate dehydrogenase and creatine kinase-MB isozyme activity, in addition to decreasing the expression levels of high-sensitivity C-reactive protein and interleukin-6. Furthermore, the results suggested that Toll-like receptor 4 (TLR4) signaling was activated by the increased expression of TLR4, TNF receptor-associated factor 6 (TRAF6) and nuclear factor (NF)-κB during AMI. However, JQ1 treatment suppressed TLR4 signaling activation. In conclusion, the present results demonstrated that the inhibition of BET family proteins suppresses AMI, and that this effect was partially mediated by the inhibition of TLR4/TRAF6/NF-κB signaling.
Collapse
Affiliation(s)
- Yangli Sun
- Department of Cardiovascular Internal Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jie Huang
- Department of Cardiovascular Internal Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Kunpeng Song
- Department of Cardiovascular Internal Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
136
|
Baud MGJ, Lin-Shiao E, Zengerle M, Tallant C, Ciulli A. New Synthetic Routes to Triazolo-benzodiazepine Analogues: Expanding the Scope of the Bump-and-Hole Approach for Selective Bromo and Extra-Terminal (BET) Bromodomain Inhibition. J Med Chem 2015; 59:1492-500. [PMID: 26367539 PMCID: PMC4770307 DOI: 10.1021/acs.jmedchem.5b01135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We describe new synthetic routes developed toward a range of substituted analogues of bromo and extra-terminal (BET) bromodomain inhibitors I-BET762/JQ1 based on the triazolo-benzodiazepine scaffold. These new routes allow for the derivatization of the methoxyphenyl and chlorophenyl rings, in addition to the diazepine ternary center and the side chain methylene moiety. Substitution at the level of the side chain methylene afforded compounds targeting specifically and potently engineered BET bromodomains designed as part of a bump and hole approach. We further demonstrate that marked selectivity for the second over the first bromodomain can be achieved with an indole derivative that exploits differential interaction with an aspartate/histidine conservative substitution on the BC loop of BET bromodomains.
Collapse
Affiliation(s)
- Matthias G J Baud
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , James Black Centre, Dow Street, Dundee DD1 5EH, U.K.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Enrique Lin-Shiao
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , James Black Centre, Dow Street, Dundee DD1 5EH, U.K.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Michael Zengerle
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , James Black Centre, Dow Street, Dundee DD1 5EH, U.K
| | - Cynthia Tallant
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , James Black Centre, Dow Street, Dundee DD1 5EH, U.K.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
137
|
|
138
|
Nucleosome competition reveals processive acetylation by the SAGA HAT module. Proc Natl Acad Sci U S A 2015; 112:E5461-70. [PMID: 26401015 DOI: 10.1073/pnas.1508449112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications.
Collapse
|
139
|
Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF, Tang Y, Cochran AG. A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications. Structure 2015; 23:1801-1814. [PMID: 26365797 DOI: 10.1016/j.str.2015.08.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023]
Abstract
Bromodomains are epigenetic readers that are recruited to acetyllysine residues in histone tails. Recent studies have identified non-acetyl acyllysine modifications, raising the possibility that these might be read by bromodomains. Profiling the nearly complete human bromodomain family revealed that while most human bromodomains bind only the shorter acetyl and propionyl marks, the bromodomains of BRD9, CECR2, and the second bromodomain of TAF1 also recognize the longer butyryl mark. In addition, the TAF1 second bromodomain is capable of binding crotonyl marks. None of the human bromodomains tested binds succinyl marks. We characterized structurally and biochemically the binding to different acyl groups, identifying bromodomain residues and structural attributes that contribute to specificity. These studies demonstrate a surprising degree of plasticity in some human bromodomains but no single factor controlling specificity across the family. The identification of candidate butyryl- and crotonyllysine readers supports the idea that these marks could have specific physiological functions.
Collapse
Affiliation(s)
- E Megan Flynn
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Oscar W Huang
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Florence Poy
- Department of Structural Biology, Constellation Pharmaceuticals, Inc., 215 First Street, Suite 200, Cambridge, MA 02142, USA
| | - Mariano Oppikofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steve F Bellon
- Department of Structural Biology, Constellation Pharmaceuticals, Inc., 215 First Street, Suite 200, Cambridge, MA 02142, USA
| | - Yong Tang
- Department of Structural Biology, Constellation Pharmaceuticals, Inc., 215 First Street, Suite 200, Cambridge, MA 02142, USA.
| | - Andrea G Cochran
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
140
|
Kwok RS, Li YH, Lei AJ, Edery I, Chiu JC. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila. PLoS Genet 2015; 11:e1005307. [PMID: 26132408 PMCID: PMC4488936 DOI: 10.1371/journal.pgen.1005307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. The circadian clock is an endogenous timing system that enables organisms to anticipate daily changes in their external environment and temporally coordinate key biological functions that are important to their survival. Central to Drosophila clockwork is a key transcription factor CLOCK (CLK). CLK activates expression of target genes only during specific parts of the day, thereby orchestrating rhythmic expression of hundreds of clock-controlled genes, which consequently manifest into daily rhythms in physiology and behavior. In this study, we demonstrated that the Brahma (Brm) chromatin-remodeling protein interacts with CLK and fine-tune the levels of CLK-dependent transcription to maintain the robustness of the circadian clock. Specifically, we uncovered two distinct but collaborative functions of Brm. Brm possesses a non-catalytic function that negatively regulates the binding of CLK to target genes and limits transcriptional output, likely by recruiting repressive protein complexes. Catalytically, Brm functions by condensing the chromatin at CLK target genes, specifically when transcription is active. This serves to precisely control the level of repressive factors likely recruited by Brm as well as other transcriptional regulators. By disentangling these two roles of Brm, our study uncovered a multi-layered mechanism in which a chromatin remodeler regulates the circadian clock.
Collapse
Affiliation(s)
- Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Anna J. Lei
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Isaac Edery
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
141
|
Wang L, Xie L, Ramachandran S, Lee Y, Yan Z, Zhou L, Krajewski K, Liu F, Zhu C, Chen DJ, Strahl BD, Jin J, Dokholyan NV, Chen X. Non-canonical Bromodomain within DNA-PKcs Promotes DNA Damage Response and Radioresistance through Recognizing an IR-Induced Acetyl-Lysine on H2AX. ACTA ACUST UNITED AC 2015; 22:849-61. [PMID: 26119999 DOI: 10.1016/j.chembiol.2015.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/27/2022]
Abstract
Regulatory mechanisms underlying γH2AX induction and the associated cell fate decision during DNA damage response (DDR) remain obscure. Here, we discover a bromodomain (BRD)-like module in DNA-PKcs (DNA-PKcs-BRD) that specifically recognizes H2AX acetyl-lysine 5 (K5ac) for sequential induction of γH2AX and concurrent cell fate decision(s). First, top-down mass spectrometry of radiation-phenotypic, full-length H2AX revealed a radiation-inducible, K5ac-dependent induction of γH2AX. Combined approaches of sequence-structure modeling/docking, site-directed mutagenesis, and biochemical experiments illustrated that through docking on H2AX K5ac, this non-canonical BRD determines not only the H2AX-targeting activity of DNA-PKcs but also the over-activation of DNA-PKcs in radioresistant tumor cells, whereas a Kac antagonist, JQ1, was able to bind to DNA-PKcs-BRD, leading to re-sensitization of tumor cells to radiation. This study elucidates the mechanism underlying the H2AX-dependent regulation of DNA-PKcs in ionizing radiation-induced, differential DDR, and derives an unconventional, non-catalytic domain target in DNA-PKs for overcoming resistance during cancer radiotherapy.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Srinivas Ramachandran
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular & Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - YuanYu Lee
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Yan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li Zhou
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Krzysztof Krajewski
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feng Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicinal Chemistry, Soochow University, Suzhou 215123, China
| | - Cheng Zhu
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David J Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Departments of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular & Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Xian Chen
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular & Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
142
|
Gansen A, Tóth K, Schwarz N, Langowski J. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study. Nucleic Acids Res 2015; 43:1433-43. [PMID: 25589544 PMCID: PMC4330349 DOI: 10.1093/nar/gku1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.
Collapse
Affiliation(s)
- Alexander Gansen
- To whom correspondence should be addressed. Tel: +49 6221 423396; Fax: +49 6221 423391;
| | | | | | - Jörg Langowski
- Correspondence may also be addressed to Jörg Langowski. Tel: +49 6221 423390; Fax: +49 6221 423391;
| |
Collapse
|
143
|
Finley A, Copeland RA. Small molecule control of chromatin remodeling. ACTA ACUST UNITED AC 2015; 21:1196-210. [PMID: 25237863 DOI: 10.1016/j.chembiol.2014.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/26/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023]
Abstract
Control of cellular transcriptional programs is based on reversible changes in chromatin conformation that affect access of the transcriptional machinery to specific gene promoters. Chromatin conformation is in turn controlled by the concerted effects of reversible, covalent modification of the DNA and histone components of chromatin, along with topographical changes in DNA-histone interactions; all of these chromatin-modifying reactions are catalyzed by specific enzymes and are communicated to the transcriptional machinery by proteins that recognize and bind to unique, covalent modifications at specific chromatin sites (so-called reader proteins). Over the past decade, considerable progress has been made in the discovery of potent and selective small molecule modulators of specific chromatin-modifying proteins. Here we review the progress that has been made toward small molecule control of these mechanisms and the potential clinical applications of such small molecule modulators of chromatin remodeling.
Collapse
Affiliation(s)
- Aidan Finley
- Epizyme, Inc., 400 Technology Square, 4th Floor, Cambridge, MA 02139, USA
| | - Robert A Copeland
- Epizyme, Inc., 400 Technology Square, 4th Floor, Cambridge, MA 02139, USA.
| |
Collapse
|
144
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
145
|
Dwivedi AK, Gurjar V, Kumar S, Singh N. Molecular basis for nonspecificity of nonsteroidal anti-inflammatory drugs (NSAIDs). Drug Discov Today 2015; 20:863-73. [PMID: 25794602 DOI: 10.1016/j.drudis.2015.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 12/21/2022]
Abstract
Inhibition of the production of inflammatory mediators by the action of nonsteroidal anti-inflammatory drugs (NSAIDs) is highly accredited to their recognition of cyclooxygenase enzymes. Along with inflammation relief, however, NSAIDs also cause adverse effects. Although NSAIDs strongly inhibit enzymes of the prostaglandin synthesis pathways, several other proteins also serve as fairly potent targets for these drugs. Based on their recognition pattern, these receptors are categorised as enzymes modifying NSAIDs, noncatalytic proteins binding to NSAIDs and enzymes with catalytic functions that are inhibited by NSAIDs. The extensive binding of NSAIDs is responsible for their limited in vivo efficacy as well as the large spectrum of their effects. The biochemical nature of drugs binding to multiple protein targets and its implications on physiology are discussed.
Collapse
Affiliation(s)
- Avaneesh K Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201308, India
| | - Vaishali Gurjar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201308, India
| | - Sanjit Kumar
- Center for Bioseparation Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201308, India.
| |
Collapse
|
146
|
Setiaputra D, Ross JD, Lu S, Cheng DT, Dong MQ, Yip CK. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex. J Biol Chem 2015; 290:10057-70. [PMID: 25713136 DOI: 10.1074/jbc.m114.624684] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 01/28/2023] Open
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex is a highly conserved, 19-subunit histone acetyltransferase complex that activates transcription through acetylation and deubiquitination of nucleosomal histones in Saccharomyces cerevisiae. Because SAGA has been shown to display conformational variability, we applied gradient fixation to stabilize purified SAGA and systematically analyzed this flexibility using single-particle EM. Our two- and three-dimensional studies show that SAGA adopts three major conformations, and mutations of specific subunits affect the distribution among these. We also located the four functional modules of SAGA using electron microscopy-based labeling and transcriptional activator binding analyses and show that the acetyltransferase module is localized in the most mobile region of the complex. We further comprehensively mapped the subunit interconnectivity of SAGA using cross-linking mass spectrometry, revealing that the Spt and Taf subunits form the structural core of the complex. These results provide the necessary restraints for us to generate a model of the spatial arrangement of all SAGA subunits. According to this model, the chromatin-binding domains of SAGA are all clustered in one face of the complex that is highly flexible. Our results relate information of overall SAGA structure with detailed subunit level interactions, improving our understanding of its architecture and flexibility.
Collapse
Affiliation(s)
- Dheva Setiaputra
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - James D Ross
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Shan Lu
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Derrick T Cheng
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Meng-Qiu Dong
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Calvin K Yip
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| |
Collapse
|
147
|
Ran T, Zhang Z, Liu K, Lu Y, Li H, Xu J, Xiong X, Zhang Y, Xu A, Lu S, Liu H, Lu T, Chen Y. Insight into the key interactions of bromodomain inhibitors based on molecular docking, interaction fingerprinting, molecular dynamics and binding free energy calculation. MOLECULAR BIOSYSTEMS 2015; 11:1295-304. [DOI: 10.1039/c4mb00723a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interaction mechanism of bromodomain inhibitors was investigated using interaction fingerprinting and binding free energy based methods.
Collapse
|
148
|
P Singh R, Brysbaert G, F Lensink M, Cleri F, Blossey R. Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
149
|
Lukman S, Aung Z, Sim K. Multiple Structural Clustering of Bromodomains of the Bromo and Extra Terminal (BET) Proteins Highlights Subtle Differences in Their Structural Dynamics and Acetylated Leucine Binding Pocket. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.procs.2015.05.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
150
|
50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 2014; 16:258-64. [PMID: 25549891 DOI: 10.1038/nrm3931] [Citation(s) in RCA: 589] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 1964, Vincent Allfrey and colleagues reported the identification of histone acetylation and with deep insight proposed a regulatory role for this protein modification in transcription regulation. Subsequently, histone acetyltransferases (HATs), histone deacetylases (HDACs) and acetyl-Lys-binding proteins were identified as transcription regulators, thereby providing compelling evidence for his daring hypothesis. During the past 15 years, reversible protein acetylation and its modifying enzymes have been implicated in many cellular functions beyond transcription regulation. Here, we review the progress accomplished during the past 50 years and discuss the future of protein acetylation.
Collapse
|