101
|
Bisetto E, Picotti P, Giorgio V, Alverdi V, Mavelli I, Lippe G. Functional and stoichiometric analysis of subunit e in bovine heart mitochondrial F(0)F(1)ATP synthase. J Bioenerg Biomembr 2008; 40:257-67. [PMID: 18958608 DOI: 10.1007/s10863-008-9183-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/16/2008] [Indexed: 12/21/2022]
Abstract
The role of the integral inner membrane subunit e in self-association of F(0)F(1)ATP synthase from bovine heart mitochondria was analyzed by in situ limited proteolysis, blue native PAGE/iterative SDS-PAGE, and LC-MS/MS. Selective degradation of subunit e, without disrupting membrane integrity or ATPase capacity, altered the oligomeric distribution of F(0)F(1)ATP synthase, by eliminating oligomers and reducing dimers in favor of monomers. The stoichiometry of subunit e was determined by a quantitative MS-based proteomics approach, using synthetic isotope-labelled reference peptides IAQL*EEVK, VYGVGSL*ALYEK, and ELAEAQEDTIL*K to quantify the b, gamma and e subunits, respectively. Accuracy of the method was demonstrated by confirming the 1:1 stoichiometry of subunits gamma and b. Altogether, the results indicate that the integrity of a unique copy of subunit e is essential for self-association of mammalian F(0)F(1)ATP synthase.
Collapse
Affiliation(s)
- Elena Bisetto
- Department of Biomedical Sciences and Technologies and M.A.T.I. Centre of Excellence, University of Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
102
|
Bueler SA, Rubinstein JL. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae. Biochemistry 2008; 47:11804-10. [PMID: 18937496 DOI: 10.1021/bi801665x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk.
Collapse
Affiliation(s)
- Stephanie A Bueler
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute
| | | |
Collapse
|
103
|
Lau WC, Baker LA, Rubinstein JL. Cryo-EM Structure of the Yeast ATP Synthase. J Mol Biol 2008; 382:1256-64. [DOI: 10.1016/j.jmb.2008.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/28/2008] [Accepted: 08/07/2008] [Indexed: 11/17/2022]
|
104
|
Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly. Biochem Soc Trans 2008; 36:1027-31. [DOI: 10.1042/bst0361027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
V-ATPases (vacuolar ATPases) are membrane-bound multiprotein complexes that are localized in the endomembrane systems of eukaryotic cells and in the plasma membranes of some specialized cells. They couple ATP hydrolysis with the transport of protons across membranes. On nutrient shortage, V-ATPases disassemble into a membrane-embedded part (V0), which contains the proton translocation machinery, and an extrinsic part (V1), which carries the nucleotide-binding sites. Disassembly decouples ATP hydrolysis and proton translocation. Furthermore, the disassembled parts are inactive, leading to an efficient shutdown of ATP consumption. On restoring the nutrient levels, V1 and V0 reassemble and restore ATP-hydrolysis activity coupled with proton translocation. This reversible assembly/disassembly process has certain conformational constraints, which are best fulfilled by adopting a unique conformation before disassembly.
Collapse
|
105
|
Düser MG, Bi Y, Zarrabi N, Dunn SD, Börsch M. The proton-translocating a subunit of F0F1-ATP synthase is allocated asymmetrically to the peripheral stalk. J Biol Chem 2008; 283:33602-10. [PMID: 18786919 DOI: 10.1074/jbc.m805170200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the epsilon or gamma subunits. Three fluorescence resonance energy transfer levels were observed during rotation driven by ATP hydrolysis corresponding to the three resting positions of the rotor subunits, gamma or epsilon, relative to the a subunit of the stator. Comparison of these positions of the rotor sites with those previously determined relative to the b subunit dimer indicates the position of a as adjacent to the b dimer on its counterclockwise side when the enzyme is viewed from the cytoplasm. This relationship provides stability to the membrane interface between a and b2, allowing it to withstand the torque imparted by the rotor during ATP synthesis as well as ATP hydrolysis.
Collapse
Affiliation(s)
- Monika G Düser
- 3, Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
106
|
Muhlia-Almazan A, Martinez-Cruz O, Navarrete del Toro MDLA, Garcia-Carreño F, Arreola R, Sotelo-Mundo R, Yepiz-Plascencia G. Nuclear and mitochondrial subunits from the white shrimp Litopenaeus vannamei F(0)F(1) ATP-synthase complex: cDNA sequence, molecular modeling, and mRNA quantification of atp9 and atp6. J Bioenerg Biomembr 2008; 40:359-69. [PMID: 18770013 DOI: 10.1007/s10863-008-9162-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/16/2008] [Indexed: 01/29/2023]
Abstract
We studied for the first time the ATP-synthase complex from shrimp as a model to understand the basis of crustacean bioenergetics since they are exposed to endogenous processes as molting that demand high amount of energy. We analyzed the cDNA sequence of two subunits of the Fo sector from mitochondrial ATP-synthase in the white shrimp Litopenaeus vannamei. The nucleus encoded atp9 subunit presents a 773 bp sequence, containing a signal peptide sequence only observed in crustaceans, and the mitochondrial encoded atp6 subunit presents a sequence of 675 bp, and exhibits high identity with homologous sequences from invertebrate species. ATP9 and ATP6 protein structural models interaction suggest specific functional characteristics from both proteins in the mitochondrial enzyme. Differences in the steady-state mRNA levels of atp9 and atp6 from five different tissues correlate with tissue function. Moreover, significant changes in the mRNA levels of both subunits at different molt stages were detected. We discussed some insights about the enzyme structure and the regulation mechanisms from both ATP-synthase subunits related to the energy requirements of shrimp.
Collapse
Affiliation(s)
- Adriana Muhlia-Almazan
- Molecular Biology Lab, Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Sonora, Mexico.
| | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
F1F0 ATP synthases convert energy stored in an electrochemical gradient of H+ or Na+ across the membrane into mechanical rotation, which is subsequently converted into the chemical bond energy of ATP. The majority of cellular ATP is produced by the ATP synthase in organisms throughout the biological kingdom and therefore under diverse environmental conditions. The ATP synthase of each particular cell is confronted with specific challenges, imposed by the specific environment, and thus by necessity must adapt to these conditions for optimal operation. Examples of these adaptations include diverse mechanisms for regulating the ATP hydrolysis activity of the enzyme, the utilization of different coupling ions with distinct ion binding characteristics, different ion-to-ATP ratios reflected by variations in the size of the rotor c ring, the mode of ion delivery to the binding sites, and the different contributions of the electrical and chemical gradients to the driving force.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
108
|
Wittig I, Schägger H. Structural organization of mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:592-8. [DOI: 10.1016/j.bbabio.2008.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 01/02/2023]
|
109
|
A sequence predicted to form a stem-loop is proposed to be required for formation of an RNA-protein complex involving the 3'UTR of beta-subunit F0F1-ATPase mRNA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:747-57. [PMID: 18538128 DOI: 10.1016/j.bbabio.2008.05.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 11/22/2022]
Abstract
ATP-synthase assembly requires coordinated control of ATP mRNA translation; this may e.g. occur through the formation of mRNA-protein complexes. In this study we aim to identify sequences in the 3'UTR of the beta-subunit F(1)-ATPase mRNA necessary for RNA-protein complex formation. We examined the interaction between a brain cytoplasmic protein extract and in vitro-synthesized beta-subunit 3'UTR probes containing successive accumulative 5'- and 3'-deletions, as well as single subregion deletions, with or without poly(A) tail. Using electrophoretic mobility shift assays we found that two major RNA-protein complexes (here called RPC1 and RPC2) were formed with the full-length 3'UTR. The RPC2 complex formation was fully dependent on the presence of both the poly(A) tail and one subregion directly adjacent to it. For RPC1 complex formation, a 3'UTR sequence stretch (experimentally divided into three subregions) adjacent to but not including the poly(A) tail was necessary. This sequence stretch includes a conserved 40-nucleotide region that, according to the structure prediction program mfold, is able to fold into a characteristic stem-loop structure. Since the formation of the RPC1 complex was not dependent on a conventional sequence motif in the 3'UTR of the beta-subunit mRNA but rather on the presence of the predicted stem-loop-forming region as such, we hypothetize that this RNA region, by forming a stem-loop in the 3'UTR beta-subunit mRNA, is necessary for formation of the RNA-protein complex.
Collapse
|
110
|
Vonck J, Schäfer E. Supramolecular organization of protein complexes in the mitochondrial inner membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:117-24. [PMID: 18573282 DOI: 10.1016/j.bbamcr.2008.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 12/29/2022]
Abstract
The liquid state model that envisions respiratory chain complexes diffusing freely in the membrane is increasingly challenged by reports of supramolecular organization of the complexes in the mitochondrial inner membrane. Supercomplexes of complex III with complex I and/or IV can be isolated after solubilisation with mild detergents like digitonin. Electron microscopic studies have shown that these have a distinct architecture and are not random aggregates. A 3D reconstruction of a I1III2IV1 supercomplex shows that the ubiquinone and cytochrome c binding sites of the individual complexes are facing each other, suggesting a role in substrate channelling. Formation of supercomplexes plays a role in the assembly and stability of the complexes, suggesting that the supercomplexes are the functional state of the respiratory chain. Furthermore, a supramolecular organisation of ATP synthases has been observed in mitochondria, where ATP synthase is organised in dimer rows. Dimers can be isolated by mild detergent extraction and recent electron microscopic studies have shown that the membrane domains of the two partners in the dimer are at an angle to each other, indicating that in vivo the dimers would cause the membrane to bend. The suggested role in crista formation is supported by the observation of rows of ATP synthase dimers in the most curved parts of the cristae. Together these observations show that the mitochondrial inner membrane is highly organised and that the molecular events leading to ATP synthesis are carefully coordinated.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
111
|
Wittig I, Velours J, Stuart R, Schägger H. Characterization of domain interfaces in monomeric and dimeric ATP synthase. Mol Cell Proteomics 2008; 7:995-1004. [PMID: 18245802 DOI: 10.1074/mcp.m700465-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
We disassembled monomeric and dimeric yeast ATP synthase under mild conditions to identify labile proteins and transiently stable subcomplexes that had not been observed before. Specific removal of subunits alpha, beta, oligomycin sensitivity conferring protein (OSCP), and h disrupted the ATP synthase at the gamma-alpha(3)beta(3) rotor-stator interface. Loss of two F(1)-parts from dimeric ATP synthase led to the isolation of a dimeric subcomplex containing membrane and peripheral stalk proteins thus identifying the membrane/peripheral stalk sectors immediately as the dimerizing parts of ATP synthase. Almost all subunit a was found associated with a ring of 10 c-subunits in two-dimensional blue native/SDS gels. We therefore postulate that c10a1-complex is a stable structure in resting ATP synthase until the entry of protons induces a breaking of interactions and stepwise rotation of the c-ring relative to the a-subunit in the catalytic mechanism. Dimeric subunit a was identified in SDS gels in association with two c10-rings suggesting that a c10a2c10-complex may constitute an important part of the monomer-monomer interface in dimeric ATP synthase that seems to be further tightened by subunits b, i, e, g, and h. In contrast to the monomer-monomer interface, the interface between dimers in higher oligomeric structures remains largely unknown. However, we could show that the natural inhibitor protein Inh1 is not required for oligomerization.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Cluster of Excellence "Macromolecular Complexes", Johann Wolfgang Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
112
|
Angle determination for side views in single particle electron microscopy. J Struct Biol 2008; 162:260-70. [DOI: 10.1016/j.jsb.2008.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/20/2007] [Accepted: 01/04/2008] [Indexed: 11/22/2022]
|
113
|
Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 2008; 27:1154-60. [PMID: 18323778 DOI: 10.1038/emboj.2008.35] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/11/2008] [Indexed: 11/08/2022] Open
Abstract
ATP synthase converts the electrochemical potential at the inner mitochondrial membrane into chemical energy, producing the ATP that powers the cell. Using electron cryo-tomography we show that the ATP synthase of mammalian mitochondria is arranged in long approximately 1-microm rows of dimeric supercomplexes, located at the apex of cristae membranes. The dimer ribbons enforce a strong local curvature on the membrane with a 17-nm outer radius. Calculations of the electrostatic field strength indicate a significant increase in charge density, and thus in the local pH gradient of approximately 0.5 units in regions of high membrane curvature. We conclude that the mitochondrial cristae act as proton traps, and that the proton sink of the ATP synthase at the apex of the compartment favours effective ATP synthesis under proton-limited conditions. We propose that the mitochondrial ATP synthase organises itself into dimer ribbons to optimise its own performance.
Collapse
|
114
|
Role of gamma-subunit N- and C-termini in assembly of the mitochondrial ATP synthase in yeast. J Mol Biol 2008; 377:1314-23. [PMID: 18328502 DOI: 10.1016/j.jmb.2008.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/25/2008] [Accepted: 02/01/2008] [Indexed: 11/23/2022]
Abstract
The gamma-subunit is required for the assembly of ATP synthases and plays a crucial role in their catalytic activity. We stepwise shortened the N-terminus and the C-terminus of the gamma-subunit in the mitochondrial ATP synthase of yeast and investigated the relevance of these segments in the assembly of the enzyme and in the growth of the cells. We found that a deletion of 9 residues at the N-terminus or 20 residues at the C-terminus still allowed efficient import of the subunit into mitochondria; however, the assembly of both monomeric and dimeric holoenzymes was partially impaired. gamma-Subunits lacking 13 N-terminal residues or 30 C-terminal residues were not assembled. Yeast strains expressing either of the truncated gamma-subunits did not grow on non-fermentable carbon sources, indicating that non-assembled parts of the ATP synthase accumulated and impaired essential mitochondrial functions.
Collapse
|
115
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
116
|
Kitagawa N, Mazon H, Heck AJR, Wilkens S. Stoichiometry of the peripheral stalk subunits E and G of yeast V1-ATPase determined by mass spectrometry. J Biol Chem 2007; 283:3329-3337. [PMID: 18055462 DOI: 10.1074/jbc.m707924200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stoichiometry of yeast V(1)-ATPase peripheral stalk subunits E and G was determined by two independent approaches using mass spectrometry (MS). First, the subunit ratio was inferred from measuring the molecular mass of the intact V(1)-ATPase complex and each of the individual protein components, using native electrospray ionization-MS. The major observed intact complex had a mass of 593,600 Da, with minor components displaying masses of 553,550 and 428,300 Da, respectively. Second, defined amounts of V(1)-ATPase purified from yeast grown on (14)N-containing medium were titrated with defined amounts of (15)N-labeled E and G subunits as internal standards. Following protease digestion of subunit bands, (14)N- and (15)N-containing peptide pairs were used for quantification of subunit stoichiometry using matrix-assisted laser desorption/ionization-time of flight MS. Results from both approaches are in excellent agreement and reveal that the subunit composition of yeast V(1)-ATPase is A(3)B(3)DE(3)FG(3)H.
Collapse
Affiliation(s)
- Norton Kitagawa
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210; Department of Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, California 92521
| | - Hortense Mazon
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
117
|
Esteban O, Bernal RA, Donohoe M, Videler H, Sharon M, Robinson CV, Stock D. Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. J Biol Chem 2007; 283:2595-603. [PMID: 18055467 DOI: 10.1074/jbc.m704941200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton-translocating ATPases are central to biological energy conversion. Although eukaryotes contain specialized F-ATPases for ATP synthesis and V-ATPases for proton pumping, eubacteria and archaea typically contain only one enzyme for both tasks. Although many eubacteria contain ATPases of the F-type, some eubacteria and all known archaea contain ATPases of the A-type. A-ATPases are closely related to V-ATPases but simpler in design. Although the nucleotide-binding and transmembrane rotor subunits share sequence homology between A-, V-, and F-ATPases, the peripheral stalk is strikingly different in sequence, composition, and stoichiometry. We have analyzed the peripheral stalk of Thermus thermophilus A-ATPase by using phage display-derived single-domain antibody fragments in combination with electron microscopy and tandem mass spectrometry. Our data provide the first direct evidence for the existence of two peripheral stalks in the A-ATPase, each one composed of heterodimers of subunits E and G arranged symmetrically around the soluble A(1) domain. To our knowledge, this is the first description of phage display-derived antibody selection against a multi-subunit membrane protein used for purification and single particle analysis by electron microscopy. It is also the first instance of the derivation of subunit stoichiometry by tandem mass spectrometry to an intact membrane protein complex. Both approaches could be applicable to the structural analysis of other membrane protein complexes.
Collapse
Affiliation(s)
- Olga Esteban
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
118
|
Stocker A, Keis S, Vonck J, Cook GM, Dimroth P. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 2007; 15:904-14. [PMID: 17697996 DOI: 10.1016/j.str.2007.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/01/2007] [Accepted: 06/15/2007] [Indexed: 11/16/2022]
Abstract
The ATP synthase of the thermoalkaliphilic Bacillus sp. TA2.A1 operates exclusively in ATP synthesis direction. In the crystal structure of the nucleotide-free alpha(3)beta(3)gamma epsilon subcomplex (TA2F(1)) at 3.1 A resolution, all three beta subunits adopt the open beta(E) conformation. The structure shows salt bridges between the helix-turn-helix motif of the C-terminal domain of the beta(E) subunit (residues Asp372 and Asp375) and the N-terminal helix of the gamma subunit (residues Arg9 and Arg10). These electrostatic forces pull the gamma shaft out of the rotational center and impede rotation through steric interference with the beta(E) subunit. Replacement of Arg9 and Arg10 with glutamines eliminates the salt bridges and results in an activation of ATP hydrolysis activity, suggesting that these salt bridges prevent the native enzyme from rotating in ATP hydrolysis direction. A similar bending of the gamma shaft as in the TA2F(1) structure was observed by single-particle analysis of the TA2F(1)F(o) holoenzyme.
Collapse
Affiliation(s)
- Achim Stocker
- Institute of Microbiology ETH Zürich, ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
119
|
Reconstitution of mitochondrial ATP synthase into lipid bilayers for structural analysis. J Struct Biol 2007; 160:287-94. [PMID: 17959389 DOI: 10.1016/j.jsb.2007.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/10/2007] [Accepted: 09/12/2007] [Indexed: 11/21/2022]
Abstract
Mitochondrial F(1)F(o)-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F(1)F(o)-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F(1)F(o)-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F(1)F(o)-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F(1) catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F(1) to the lipid monolayer and the F(o) membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within F(o) by electron microscopy and AFM.
Collapse
|
120
|
Corvest V, Sigalat C, Haraux F. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide. Biochemistry 2007; 46:8680-8. [PMID: 17595113 DOI: 10.1021/bi700522v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of yeast mitochondrial F1-ATPase inhibition by its regulatory peptide IF1 was investigated with the noncatalytic sites frozen by pyrophosphate pretreatment that mimics filling by ATP. This allowed for confirmation of the mismatch between catalytic site occupancy and IF1 binding rate without the kinetic restriction due to slow ATP binding to the noncatalytic sites. These data strengthen the previously proposed two-step mechanism, where IF1 loose binding is determined by the catalytic state and IF1 locking is turnover-dependent and competes with IF1 release (Corvest, V., Sigalat, C., Venard, R., Falson, P., Mueller, D. M., and Haraux, F. (2005) J. Biol. Chem. 280, 9927-9936). They also demonstrate that noncatalytic sites, which slightly modulate IF1 access to the enzyme, play a minor role in its binding. It is also shown that loose binding of IF1 to MgADP-loaded F1-ATPase is very slow and that IF1 binding to ATP-hydrolyzing F1-ATPase decreases nucleotide binding severely in the micromolar range and moderately in the submillimolar range. Taken together, these observations suggest an outline of the total inhibition process. During the first catalytic cycle, IF1 loosely binds to a catalytic site with newly bound ATP and is locked when ATP is hydrolyzed at a second site. During the second cycle, blocking of ATP hydrolysis by IF1 inhibits ATP from becoming entrapped on the third site and, at high ATP concentrations, also inhibits ADP release from the second site. This model also provides a clue for understanding why IF1 does not bind ATP synthase during ATP synthesis.
Collapse
Affiliation(s)
- Vincent Corvest
- Institut de Biologie et de Technologie de Saclay and CNRS-URA 2096, CEA Saclay, F 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
121
|
Meyer B, Wittig I, Trifilieff E, Karas M, Schägger H. Identification of two proteins associated with mammalian ATP synthase. Mol Cell Proteomics 2007; 6:1690-9. [PMID: 17575325 DOI: 10.1074/mcp.m700097-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine mitochondrial ATP synthase commonly is isolated as a monomeric complex that contains 16 protein subunits and the natural IF(1) inhibitor protein in substoichiometric amounts. Alternatively ATP synthase can be isolated in dimeric and higher oligomeric states using digitonin for membrane solubilization and blue native or clear native electrophoresis for separation of the native mitochondrial complexes. Using blue native electrophoresis we could identify two ATP synthase-associated membrane proteins with masses smaller than 7 kDa and isoelectric points close to 10 that previously had been removed during purification. We show that in the mitochondrial membrane both proteins are almost quantitatively bound to ATP synthase. Both proteins had been identified earlier in a different context, but their association with ATP synthase was unknown. The first one had been named 6.8-kDa mitochondrial proteolipid because it can be isolated by chloroform/methanol extraction from mitochondrial membranes. The second one had been denoted as diabetes-associated protein in insulin-sensitive tissue (DAPIT), which may provide a clue for further functional and clinical investigations.
Collapse
Affiliation(s)
- Björn Meyer
- Institut für Pharmazeutische Chemie, Biozentrum, Centre of Excellence "Macromolecular Complexes," Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
122
|
Buzhynskyy N, Sens P, Prima V, Sturgis JN, Scheuring S. Rows of ATP synthase dimers in native mitochondrial inner membranes. Biophys J 2007; 93:2870-6. [PMID: 17557793 PMCID: PMC1989723 DOI: 10.1529/biophysj.107.109728] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how these molecules form dimers with characteristic 15 nm distance between the axes of their rotors through stereospecific interactions of the membrane embedded portions of their stators. A different interaction surface is responsible for the formation of rows of dimers. Such an organization elucidates the role of the ATP synthase in mitochondrial morphology. Some dimers have a different morphology with 10 nm stalk-to-stalk distance, in line with ATP synthases that are accessible to IF1 inhibition. Rotation torque compensation within ATP synthase dimers stabilizes the ATP synthase structure, in particular the stator-rotor interaction.
Collapse
|
123
|
Carbajo RJ, Kellas FA, Yang JC, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. How the N-terminal Domain of the OSCP Subunit of Bovine F1Fo-ATP Synthase Interacts with the N-terminal Region of an Alpha Subunit. J Mol Biol 2007; 368:310-8. [PMID: 17355883 DOI: 10.1016/j.jmb.2007.02.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
The peripheral stalk of ATP synthase acts as a stator holding the alpha(3)beta(3) catalytic subcomplex and the membrane subunit a against the torque of the rotating central stalk and attached c ring. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha subunits of the F(1) subcomplex. Here, we present an NMR characterisation of the interaction between OSCP-NT and a peptide corresponding to residues 1-25 of the alpha-subunit of bovine F(1)-ATPase. The interaction site contains adjoining hydrophobic surfaces of helices 1 and 5 of OSCP-NT binding to hydrophobic side-chains of the alpha-peptide.
Collapse
|
124
|
Lokanath NK, Matsuura Y, Kuroishi C, Takahashi N, Kunishima N. Dimeric Core Structure of Modular Stator Subunit E of Archaeal H+-ATPase. J Mol Biol 2007; 366:933-44. [PMID: 17189637 DOI: 10.1016/j.jmb.2006.11.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Archaeal H(+)-ATPase (A-ATPase) is composed of an A(1) region that hydrolyzes ATP and an integral membrane part A(0) that conducts protons. Subunit E is a component of peripheral stator(s) that physically links A(1) and A(0) parts of the A-ATPase. Here we report the first crystal structure of subunit E of A-ATPase from Pyrococcus horikoshii OT3 at 1.85 A resolution. The protomer structure of subunit E represents a novel fold. The quaternary structure of subunit E is a homodimer, which may constitute the core part of the stator. To investigate the relationship with other stator subunit H, the complex of subunits EH was prepared and characterized using electrophoresis, mass spectrometry, N-terminal sequencing and circular dichroism spectroscopy, which revealed the polymeric and highly helical nature of the EH complex with equimolar stoichiometry of both the subunits. On the basis of the modular architecture of stator subunits, it is suggested that both cytoplasm and membrane sides of the EH complex may interact with other subunits to link A(1) and A(0) parts.
Collapse
Affiliation(s)
- Neratur K Lokanath
- Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-Gun, Hyogo, Japan
| | | | | | | | | |
Collapse
|
125
|
Weber J. ATP synthase--the structure of the stator stalk. Trends Biochem Sci 2007; 32:53-6. [PMID: 17208001 PMCID: PMC2570231 DOI: 10.1016/j.tibs.2006.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/22/2006] [Accepted: 12/20/2006] [Indexed: 11/22/2022]
Abstract
ATP synthase synthesizes ATP from ADP and inorganic phosphate using a unique rotary mechanism whereby two subcomplexes move relative to each other, powered by a proton or sodium gradient. The non-rotating parts of the machinery are held together by the "stator stalk". The recent resolution of the structure of a major portion of the stator stalk of mitochondrial ATP synthase represents an important step towards a structural model for the ATP synthase holoenzyme.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
126
|
Abstract
Adenosine triphosphate (ATP) is used as a general energy source by all living cells. The free energy released by hydrolyzing its terminal phosphoric acid anhydride bond to yield ADP and phosphate is utilized to drive various energy-consuming reactions. The ubiquitous F(1)F(0) ATP synthase produces the majority of ATP by converting the energy stored in a transmembrane electrochemical gradient of H(+) or Na(+) into mechanical rotation. While the mechanism of ATP synthesis by the ATP synthase itself is universal, diverse biological reactions are used by different cells to energize the membrane. Oxidative phosphorylation in mitochondria or aerobic bacteria and photophosphorylation in plants are well-known processes. Less familiar are fermentation reactions performed by anaerobic bacteria, wherein the free energy of the decarboxylation of certain metabolites is converted into an electrochemical gradient of Na(+) ions across the membrane (decarboxylation phosphorylation). This chapter will focus on the latter mechanism, presenting an updated survey on the Na(+)-translocating decarboxylases from various organisms. In the second part, we provide a detailed description of the F(1)F(0) ATP synthases with special emphasis on the Na(+)-translocating variant of these enzymes.
Collapse
|
127
|
Peng G, Bostina M, Radermacher M, Rais I, Karas M, Michel H. Biochemical and electron microscopic characterization of the F1F0 ATP synthase from the hyperthermophilic eubacterium Aquifex aeolicus. FEBS Lett 2006; 580:5934-40. [PMID: 17045990 DOI: 10.1016/j.febslet.2006.09.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 01/05/2023]
Abstract
The F(1)F(0) ATP synthase has been purified from the hyperthermophilic eubacterium Aquifex aeolicus and characterized. Its subunits have been identified by MALDI-mass spectrometry through peptide mass fingerprinting and MS/MS. It contains the canonical subunits alpha, beta, gamma, delta and epsilon of F(1) and subunits a and c of F(0). Two versions of the b subunit were found, which show a low sequence homology to each other. Most likely they form a heterodimer. An electron microscopic single particle analysis revealed clear structural details, including two stalks connecting F(1) and F(0). In several orientations the central stalk appears to be tilted and/or kinked. It is unclear whether there is a direct connection between the peripheral stalk and the delta subunit.
Collapse
Affiliation(s)
- Guohong Peng
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
128
|
Clare DK, Orlova EV, Finbow MA, Harrison MA, Findlay JBC, Saibil HR. An expanded and flexible form of the vacuolar ATPase membrane sector. Structure 2006; 14:1149-56. [PMID: 16843896 DOI: 10.1016/j.str.2006.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022]
Abstract
The vacuolar ATPase integral membrane c-ring from Nephrops norvegicus occurs in paired complexes in a double membrane. Using cryo-electron microscopy and single particle image processing of 2D crystals, we have obtained a projection structure of the c-ring of N. norvegicus. The c-ring was found to be very flexible, most likely as a result of an expanded conformation of the c subunits. This structure may support a role for the vacuolar ATPase c-rings in membrane fusion.
Collapse
Affiliation(s)
- Daniel K Clare
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
The prokaryotic V-type ATPase/synthases (prokaryotic V-ATPases) have simpler subunit compositions than eukaryotic V-ATPases, and thus are useful subjects for studying chemical, physical and structural properties of V-ATPase. In this review, we focus on the results of recent studies on the structure/function relationships in the V-ATPase from the eubacterium Thermus thermophilus. First, we describe single-molecule analyses of T. thermophilus V-ATPase. Using the single-molecule technique, it was established that the V-ATPase is a rotary motor. Second, we discuss arrangement of subunits in V-ATPase. Third, the crystal structure of the C-subunit (homolog of eukaryotic d-subunit) is described. This funnel-shape subunit appears to cap the proteolipid ring in the V(0) domain in order to accommodate the V(1) central stalk. This structure seems essential for the regulatory reversible association/dissociation of the V(1) and the V(0) domains. Last, we discuss classification of the V-ATPase family. We propose that the term prokaryotic V-ATPases should be used rather than the term archaeal-type ATPase (A-ATPase).
Collapse
Affiliation(s)
- Ken Yokoyama
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Nagatsuta, Midori-ku, Yokohama, Japan.
| | | |
Collapse
|
130
|
Kol S, Turrell BR, de Keyzer J, van der Laan M, Nouwen N, Driessen AJM. YidC-mediated membrane insertion of assembly mutants of subunit c of the F1F0 ATPase. J Biol Chem 2006; 281:29762-8. [PMID: 16880204 DOI: 10.1074/jbc.m605317200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YidC is a member of the OxaI family of membrane proteins that has been implicated in the membrane insertion of inner membrane proteins in Escherichia coli. We have recently demonstrated that proteoliposomes containing only YidC support both the stable membrane insertion and the oligomerization of the c subunit of the F(1)F(0) ATP synthase (F(0)c). Here we have shown that two mutants of F(0)c unable to form a functional F(1)F(0) ATPase interact with YidC, require YidC for membrane insertion, but fail to oligomerize. These data show that oligomerization is not essential for the stable YidC-dependent membrane insertion of F(0)c consistent with a function of YidC as a membrane protein insertase.
Collapse
Affiliation(s)
- Stefan Kol
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Materials Science Center Plus, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
131
|
Dickson VK, Silvester JA, Fearnley IM, Leslie AGW, Walker JE. On the structure of the stator of the mitochondrial ATP synthase. EMBO J 2006; 25:2911-8. [PMID: 16791136 PMCID: PMC1500866 DOI: 10.1038/sj.emboj.7601177] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 11/08/2022] Open
Abstract
The structure of most of the peripheral stalk, or stator, of the F-ATPase from bovine mitochondria, determined at 2.8 A resolution, contains residues 79-183, 3-123 and 5-70 of subunits b, d and F6, respectively. It consists of a continuous curved alpha-helix about 160 A long in the single b-subunit, augmented by the predominantly alpha-helical d- and F6-subunits. The structure occupies most of the peripheral stalk in a low-resolution structure of the F-ATPase. The long helix in subunit b extends from near to the top of the F1 domain to the surface of the membrane domain, and it probably continues unbroken across the membrane. Its uppermost region interacts with the oligomycin sensitivity conferral protein, bound to the N-terminal region of one alpha-subunit in the F1 domain. Various features suggest that the peripheral stalk is probably rigid rather than resembling a flexible rope. It remains unclear whether the transient storage of energy required by the rotary mechanism takes place in the central stalk or in the peripheral stalk or in both domains.
Collapse
Affiliation(s)
| | | | - Ian M Fearnley
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 248011; Fax: +44 1223 213556; E-mail:
| | - John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
- Dunn Human Nutrition Unit, Medical Research Council, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK. Tel.: +44 1223 252701; Fax: +44 1223 252705; E-mail:
| |
Collapse
|
132
|
Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:286-96. [PMID: 16697972 DOI: 10.1016/j.bbabio.2006.01.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/04/2006] [Indexed: 12/23/2022]
Abstract
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.
Collapse
Affiliation(s)
- John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, The Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
133
|
Weber J. ATP synthase: subunit-subunit interactions in the stator stalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1162-70. [PMID: 16730323 PMCID: PMC1785291 DOI: 10.1016/j.bbabio.2006.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/20/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022]
Abstract
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral "stator stalk", which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2delta; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit delta (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
134
|
Hiendleder S, Zakhartchenko V, Wolf E. Mitochondria and the success of somatic cell nuclear transfer cloning: from nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination. Reprod Fertil Dev 2006; 17:69-83. [PMID: 15745633 DOI: 10.1071/rd04115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 01/10/2023] Open
Abstract
The overall success of somatic cell nuclear transfer (SCNT) cloning is rather unsatisfactory, both in terms of efficacy and from an animal health and welfare point of view. Most research activities have concentrated on epigenetic reprogramming problems as one major cause of SCNT failure. The present review addresses the limited success of mammalian SCNT from yet another viewpoint, the mitochondrial perspective. Mitochondria have a broad range of critical functions in cellular energy supply, cell signalling and programmed cell death and, thus, affect embryonic and fetal development, suggesting that inadequate or perturbed mitochondrial functions may adversely affect SCNT success. A survey of perinatal clinical data from human subjects with deficient mitochondrial respiratory chain activity has revealed a plethora of phenotypes that have striking similarities with abnormalities commonly encountered in SCNT fetuses and offspring. We discuss the limited experimental data on nuclear-mitochondrial interaction effects in SCNT and explore the potential effects in the context of new findings about the biology of mitochondria. These include mitochondrial fusion/fission, mitochondrial complementation and mitochondrial DNA recombination, processes that are likely to be affected by and impact on SCNT cloning. Furthermore, we indicate pathways that could link epigenetic reprogramming and mitochondria effects in SCNT and address questions and perspectives for future research.
Collapse
Affiliation(s)
- Stefan Hiendleder
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center of the Ludwig-Maximilian University, D-81377 Munich, Germany.
| | | | | |
Collapse
|
135
|
Di Pancrazio F, Bisetto E, Alverdi V, Mavelli I, Esposito G, Lippe G. Differential steady-state tyrosine phosphorylation of two oligomeric forms of mitochondrial F0F1ATPsynthase: a structural proteomic analysis. Proteomics 2006; 6:921-6. [PMID: 16400683 DOI: 10.1002/pmic.200500077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated tyrosine phosphorylation of F(0)F(1)ATPsynthase using 3-D blue native (BN)-SDS-PAGE, a refinement of the electrophoretic analysis of mitochondrial complexes. Bovine heart mitochondria were detergent-solubilized and subjected to BN-PAGE. Bands of ATPsynthase monomer (Vmon) and dimer (Vdim) were excised and submitted to SDS-PAGE and immunoblotting. One protein corresponding to F(1)gamma subunit was detected by anti-phosphotyrosine antibody in monomer but not in dimer. This was confirmed by MS peptide mapping. LC-ESI/MS analysis after 3-D SDS-PAGE demonstrated phosphotyrosine in fragment 43-54. NetPhos scores predicted the phosphorylated residue to be Tyr52, in a solvent-accessible loop at the foot of the F(1) central stalk.
Collapse
Affiliation(s)
- Francesca Di Pancrazio
- Department of Biomedical Sciences and Technologies, University of Udine, MATI Center of Excellence, Udine, Italy
| | | | | | | | | | | |
Collapse
|
136
|
Hsu HC, Zhou T, Kim H, Barnes S, Yang P, Wu Q, Zhou J, Freeman BA, Luo M, Mountz JD. Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis. ACTA ACUST UNITED AC 2006; 54:343-55. [PMID: 16385526 DOI: 10.1002/art.21550] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The BXD2 mouse strain spontaneously develops glomerulonephritis and erosive arthritis. The goal of this study was to identify the antigenic target proteins and epitopes and to unravel the mechanisms by which the related conditions arise in BXD2 mice. METHODS Individual hybridomas isolated from the spleen of a 10-month-old BXD2 mouse were injected intraperitoneally into nonautoimmune mice for evaluation of pathogenicity of each autoantibody. Autoantigens were immunoprecipitated with the pathogenic autoantibody L3A4. Autoantigens were identified using enzyme-linked immunosorbent assay, Western blotting, 2-dimensional gel electrophoresis, and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MS) and tandem MS. Antigenic epitopes were determined using a high-throughput epitope mapping method. RESULTS The production of autoantibodies in BXD2 mice occurred in an orderly progression, with peak levels of autoantibodies to nitrotyrosine (NT)-modified enolase, Ro, alpha-actin, and heat-shock proteins (HSPs) preceding peak levels of antihistone, anti-DNA, and rheumatoid factor. Two monoclonal autoantibodies, L3A4 and T56G10, were identified that could induce immune complexes, renal disease, and/or arthritis. Both L3A4 and T56G10 were polyreactive, and each reacted with separate sets of autoantigens. The antigenic targets of L3A4 consisted of NT-modified enolase, ATP5b, alpha-actin, and Hsp70 family proteins including Hspa5 and Hsp74. The antigenic epitopes of NT-modified enolase and Hspa5 exhibited sequence homology and cross-reactivity, suggesting that epitope spreading may occur through a molecular mimicry mechanism. CONCLUSION The polyreactivity of autoantibodies that target a novel class of autoantigens may enable these autoantibodies to induce erosive arthritis or glomerulonephritis either by direct pathogenic mechanisms or indirectly via Fc or immune complex deposition.
Collapse
Affiliation(s)
- Hui-Chen Hsu
- University of Alabama at Birmingham, 701 South 19th Street, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Dimroth P, von Ballmoos C, Meier T. Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series. EMBO Rep 2006; 7:276-82. [PMID: 16607397 PMCID: PMC1456893 DOI: 10.1038/sj.embor.7400646] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/19/2006] [Indexed: 11/09/2022] Open
Abstract
Cycles have a profound role in cellular life at all levels of organization. Well-known cycles in cell metabolism include the tricarboxylic acid and the urea cycle, in which a specific carrier substrate undergoes a sequence of chemical transformations and is regenerated at the end. Other examples include the interconversions of cofactors, such as NADH or ATP, which are present in the cell in limiting amounts and have to be recycled effectively for metabolism to continue. Every living cell performs a rapid turnover of ATP to ADP to fulfil various energetic demands and effectively regenerates the ATP from ADP in an energy-consuming process. The turnover of the ATP cycle is impressive; a human uses about its body weight in ATP per day. Enzymes perform catalytic reaction cycles in which they undergo several chemical and physical transformations before they are converted back to their original states. The ubiquitous F1F(o) ATP synthase is of particular interest not only because of its biological importance, but also owing to its unique rotational mechanism. Here, we give an overview of the membrane-embedded F(o) sector, particularly with respect to the recent crystal structure of the c ring from Ilyobacter tartaricus, and summarize current hypotheses for the mechanism by which rotation of the c ring is generated.
Collapse
Affiliation(s)
- Peter Dimroth
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich-Hönggerberg, Switzerland.
| | | | | |
Collapse
|
138
|
Carrozzo R, Wittig I, Santorelli FM, Bertini E, Hofmann S, Brandt U, Schägger H. Subcomplexes of human ATP synthase mark mitochondrial biosynthesis disorders. Ann Neurol 2005; 59:265-75. [PMID: 16365880 DOI: 10.1002/ana.20729] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE METHODS We describe biochemically and clinically relevant aspects of mitochondrial ATP synthase, the enzyme that supplies most ATP for the cells energy demand. RESULTS Analyzing human Rho zero cells we could identify three subcomplexes of ATP synthase: F1 catalytic domain, F1 domain with bound natural IF1 inhibitor protein, and F1-c subcomplex, an assembly of F1 domain and a ring of F(O)-subunits c. Large amounts of F1 subcomplexes accumulated also in mitochondria of patients with specific mitochondrial disorders. By quantifying the F1 subcomplexes and other oxidative phosphorylation complexes in parallel, we were able to discriminate three classes of defects in mitochondrial biosynthesis, namely, mitochondrial DNA depletion, mitochondrial transfer RNA (tRNA) mutations, and mutations in the mitochondrial ATP6 gene. INTERPRETATION The relatively simple electrophoretic assay used here is a straightforward approach to differentiate between various types of genetic alterations affecting the biosynthesis of oxidative phosphorylation complexes and will be useful to guide molecular genetic diagnostics in the field of mitochondrial neuromuscular disorders.
Collapse
Affiliation(s)
- Rosalba Carrozzo
- Unit of Molecular Medicine, Bambino Gesù Hospital and Research Institute, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
139
|
Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M, Yokoyama K. Rotation scheme of V1-motor is different from that of F1-motor. Proc Natl Acad Sci U S A 2005; 102:17929-33. [PMID: 16330761 PMCID: PMC1306795 DOI: 10.1073/pnas.0507764102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Indexed: 11/18/2022] Open
Abstract
V(1), a water-soluble portion of vacuole-type ATPase (V-ATPase), is an ATP-driven rotary motor, similar to F(1)-ATPase. Hydrolysis of ATP is coupled to unidirectional rotation of the central rotor D and F subunits relative to the A(3)B(3) cylinder. In this study, we analyzed the rotation kinetics of V(1) in detail. At low ATP concentrations, the D subunit rotated stepwise, pausing every 120 degrees . The dwell time between steps revealed that V(1) consumes one ATP per 120 degrees step. V(1) generated torque of approximately 35 pN nm, slightly lower than the approximately 46 pN nm measured for F(1). Noticeably, the angles for both ATP cleavage and binding were apparently the same in V(1), in sharp contrast to F(1), which cleaves ATP at 80 degrees posterior to the binding of ATP. Thus, the mechanochemical cycle of V(1) has marked differences to that of F(1).
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Midori-ku, Yokohama
| | | | | | | | | | | |
Collapse
|
140
|
Gerle C, Tani K, Yokoyama K, Tamakoshi M, Yoshida M, Fujiyoshi Y, Mitsuoka K. Two-dimensional crystallization and analysis of projection images of intact Thermus thermophilus V-ATPase. J Struct Biol 2005; 153:200-6. [PMID: 16377206 DOI: 10.1016/j.jsb.2005.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
H(+)-ATPase/synthases are membrane-bound rotary nanomotors that are essential for energy conversion in nearly all life forms. A member of the family of the vacuolar-type ATPases (V-ATPases) from Thermus thermophilus, sometimes also termed A-type ATPase, was purified to homogeneity and subjected to two-dimensional (2D) crystallization trials. A novel approach to the 2D crystallization of unstable complexes yielded densely packed sheets of V-ATPase, exhibiting crystalline arrays. Aggregation of the V-ATPase under acidic conditions during reconstitution circumvented the continuous dissociation of the whole complex into the V(1) and V(o) domains. The resulting three-dimensional aggregates were converted into 2D sheets by the use of a basic buffer, and after a short annealing cycle, ordered arrays of up to 1.5 microm diameter appeared. Fourier transforms calculated from micrographs taken from the negatively stained sample showed diffraction spots to a resolution of 23A. The Fourier transforms of the untilted images revealed unit-cell dimensions of a=232A, b=132A, and gamma=90 degrees , and a projection map was calculated by merging 11 images. The most probable molecular packing suggests p22(1)2(1) symmetry of the crystals and dimer contacts between the V(1) domains.
Collapse
Affiliation(s)
- Christoph Gerle
- Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
141
|
Maragakis P, Karplus M. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J Mol Biol 2005; 352:807-22. [PMID: 16139299 DOI: 10.1016/j.jmb.2005.07.031] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/06/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The plastic network model (PNM) is used to generate a conformational change pathway for Escherichia coli adenylate kinase based on two crystal structures, namely that of an open and a closed conformer. In this model, the energy basins corresponding to known conformers are connected at their lowest common energies. The results are used to evaluate and analyze the minimal energy pathways between these basins. The open to closed transition analysis provides an identification of hinges that is in agreement with the existing definitions based on the available X-ray structures. The elastic energy distribution and the C(alpha) pseudo-dihedral variation provide similar information on these hinges. The ensemble of the 45 published structures for this protein and closely related proteins is shown to always be within 3.0 A of the pathway, which corresponds to a conformational change between two end structures that differ by a C(alpha)-atom root-mean-squared deviation of 7.1A.
Collapse
Affiliation(s)
- Paul Maragakis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA.
| | | |
Collapse
|
142
|
Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. J Mol Biol 2005; 351:824-38. [PMID: 16045926 DOI: 10.1016/j.jmb.2005.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022]
Abstract
The peripheral stalk of ATP synthase holds the alpha3beta3 catalytic subcomplex stationary against the torque of the rotating central stalk. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha-subunits of the F1 subcomplex. Here we present the solution structure of OSCP-NT and an NMR titration study of its interaction with peptides representing N-terminal tails of F1 alpha-subunits. The structure comprises a bundle of six alpha-helices, and its interaction site contains adjoining hydrophobic surfaces of helices 1 and 5; residues in the region 1-8 of the alpha-subunit are essential for the interaction. The OSCP-NT is similar to the N-terminal domain of the delta-subunit from Escherichia coli ATP synthase (delta-NT), except that their surface charges differ (basic and acidic, respectively). As the charges of the adjacent crown regions in their alpha3beta3 complexes are similar, the OSCP-NT and delta-NT probably do not contact the crowns extensively. The N-terminal tails of alpha-subunit tails are probably alpha-helical, and so this interface, which is essential for the rotary mechanism of the enzyme, appears to consist of helix-helix interactions.
Collapse
|
143
|
Minauro-Sanmiguel F, Wilkens S, García JJ. Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc Natl Acad Sci U S A 2005; 102:12356-8. [PMID: 16105947 PMCID: PMC1194923 DOI: 10.1073/pnas.0503893102] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Indexed: 11/18/2022] Open
Abstract
The F1F0-ATP synthase exists as a dimer in mitochondria, where it is essential for the biogenesis of the inner membrane cristae. How two ATP synthase complexes dimerize to promote cristae formation is unknown. Here we resolved the structure of the dimeric F1F0 ATP synthase complex isolated from bovine heart mitochondria by transmission electron microscopy. The structure of the ATP synthase dimer has an overall conic appearance that is consistent with the proposed role of the dimeric enzyme in mitochondrial cristae biogenesis. The ATP synthase dimer interface is formed by contacts on both the F0 and F1 domains. A cross-bridging protein density was resolved which connects the two F0 domains on the intermembrane space side of the membrane. On the matrix side of the complex, the two F1 moieties are connected by a protein bridge, which is attributable to the IF1 inhibitor protein.
Collapse
Affiliation(s)
- Fernando Minauro-Sanmiguel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan 14080 Mexico D.F., México
| | | | | |
Collapse
|
144
|
Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M. Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase. EMBO J 2005; 24:2053-63. [PMID: 15920483 PMCID: PMC1150879 DOI: 10.1038/sj.emboj.7600682] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/26/2005] [Indexed: 11/08/2022] Open
Abstract
F0F1-ATP synthases catalyze proton transport-coupled ATP synthesis in bacteria, chloroplasts, and mitochondria. In these complexes, the epsilon-subunit is involved in the catalytic reaction and the activation of the enzyme. Fluorescence-labeled F0F1 from Escherichia coli was incorporated into liposomes. Single-molecule fluorescence resonance energy transfer (FRET) revealed that the epsilon-subunit rotates stepwise showing three distinct distances to the b-subunits in the peripheral stalk. Rotation occurred in opposite directions during ATP synthesis and hydrolysis. Analysis of the dwell times of each FRET state revealed different reactivities of the three catalytic sites that depended on the relative orientation of epsilon during rotation. Proton transport through the enzyme in the absence of nucleotides led to conformational changes of epsilon. When the enzyme was inactive (i.e. in the absence of substrates or without membrane energization), three distances were found again, which differed from those of the active enzyme. The three states of the inactive enzyme were unequally populated. We conclude that the active-inactive transition was associated with a conformational change of epsilon within the central stalk.
Collapse
Affiliation(s)
- Boris Zimmermann
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manuel Diez
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nawid Zarrabi
- 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - Peter Gräber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Börsch
- 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
145
|
Venzke D, Domgall I, Köcher T, Féthière J, Fischer S, Böttcher B. Elucidation of the Stator Organization in the V-ATPase of Neurospora crassa. J Mol Biol 2005; 349:659-69. [PMID: 15890365 DOI: 10.1016/j.jmb.2005.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 11/27/2022]
Abstract
V-ATPases are membrane protein complexes that pump protons in the lumen of various subcellular compartments at the expense of ATP. Proton pumping is done by a rotary mechanism that requires a static connection between the membrane pumping domain (V(0)) and the extrinsic catalytic head (V(1)). This static connection is composed of several known subunits of the V-ATPase, but their location and topological relationships are still a matter of controversy. Here, we propose a model for the V-ATPase of Neurospora crassa on the basis of single-particle analysis by electron microscopy. Comparison of the resulting map to that of the A-ATPase from Thermus thermophilus allows the positioning of two subunits in the static connecting region that are unique to eukaryotic V-ATPases (C and H). These two subunits seem to be located on opposite sides of a semicircular arrangement of the peripheral connecting elements, suggesting a role in stabilizing the stator in V-ATPases.
Collapse
Affiliation(s)
- David Venzke
- EMBL-Heidelberg Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
The realization that many essential functions of living cells are performed by nanoscale motors consisting of protein complexes has given rise to an intense effort to understand their mechanisms. Considerable progress has been made in the past two years by a combination of biophysical techniques and theoretical analysis. Single-molecule studies have played a spectacular role for a variety of motors including kinesin, myosin, and polymerases. The understanding of F(1)-ATPase, the smallest biomolecular rotary motor, has made particular progress by the interplay of experimental and theoretical studies; the latter have provided information not available from experiment.
Collapse
Affiliation(s)
- Martin Karplus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
147
|
Meier T, Polzer P, Diederichs K, Welte W, Dimroth P. Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 2005; 308:659-62. [PMID: 15860619 DOI: 10.1126/science.1111199] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the crystal structure of the membrane-embedded rotor ring of the sodium ion-translocating adenosine 5'-triphosphate (ATP) synthase of Ilyobacter tartaricus at 2.4 angstrom resolution, 11 c subunits are assembled into an hourglass-shaped cylinder with 11-fold symmetry. Sodium ions are bound in a locked conformation close to the outer surface of the cylinder near the middle of the membrane. The structure supports an ion-translocation mechanism in the intact ATP synthase in which the binding site converts from the locked conformation into one that opens toward subunit a as the rotor ring moves through the subunit a/c interface.
Collapse
Affiliation(s)
- Thomas Meier
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH), Zürich Hönggerberg, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
148
|
Drory O, Frolow F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 2005; 5:1148-52. [PMID: 15540116 PMCID: PMC1299189 DOI: 10.1038/sj.embor.7400294] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 11/08/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) has a crucial role in the vacuolar system of eukaryotic cells. It provides most of the energy required for transport systems that utilize the proton-motive force that is generated by ATP hydrolysis. Some, but not all, of the V-ATPase subunits are homologous to those of F-ATPase and the nonhomologous subunits determine the unique features of V-ATPase. We determined the crystal structure of V-ATPase subunit C (Vma5p), which does not show any homology with F-ATPase subunits, at 1.75 A resolution. The structural features suggest that subunit C functions as a flexible stator that holds together the catalytic and membrane sectors of the enzyme. A second crystal form that was solved at 2.9 A resolution supports the flexible nature of subunit C. These structures provide a framework for exploring the unique mechanistic features of V-ATPases.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Tel: +972 3 640 6017; Fax: +972 3 640 6018; E-mail:
| |
Collapse
|
149
|
Mueller DM, Puri N, Kabaleeswaran V, Terry C, Leslie AGW, Walker JE. Ni-chelate-affinity purification and crystallization of the yeast mitochondrial F1-ATPase. Protein Expr Purif 2005; 37:479-85. [PMID: 15358374 DOI: 10.1016/j.pep.2004.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/08/2004] [Indexed: 11/18/2022]
Abstract
The yeast mitochondrial ATPase has been genetically modified to include a His(6) Ni-affinity tag on the amino end of the mature beta-subunit. The modified beta-subunit is imported into the mitochondrion, properly processed to the mature form, and assembled into a mature and fully active ATP synthase. The F(1)-ATPase has been purified from submitochondrial particles after release from the membrane with chloroform, followed by Ni-chelate-affinity and gel filtration chromatography. The final enzyme is a homogeneous preparation with full activity and no apparent degradation products. This enzyme preparation has been used to obtain crystals that diffract to better than 2.8 A resolution.
Collapse
Affiliation(s)
- David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Takeda M, Katayama H, Satoh T, Mabuchi T. Three copies of the ATP2 gene are arranged in tandem on chromosome X in the yeast Saccharomyces cerevisiae. Curr Genet 2005; 47:265-72. [PMID: 15776236 DOI: 10.1007/s00294-005-0565-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/27/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
We previously reported that there were three copies of ATP1 coding for F1-alpha and two copies of ATP3 coding for F1-gamma on the left and right arm of chromosome II, respectively. In this study, we present evidence that there are three closely linked copies of ATP2 encoding the beta subunit of the F1F0-ATPase complex on the right arm of chromosome X in several laboratory strains, including Saccharomyces cerevisiae strain S288C, although it was reported by the yeast genome project that ATP2 is a single-copy gene. Chromosome X fragmentation, long-PCR, chromosome-walking and ATP2-disruption analysis using haploid wild-type strains and prime clone 70645 showed that the three copies of ATP2 are present on the right arm of chromosome X, like those of ATP1 on chromosome II. Each was estimated to be approximately 4 kb apart. We designated the ATP2 proximal to the centromere as ATP2a, the middle one as ATP2b and the distal one as ATP2c. The region containing the three ATP2s is composed of two repeated units of approximately 7 kb; that is, both ends (ATP2a, ATP2c) accompanying the ATP2-neighboring ORFs are the same. A part of YJR119c, YJR120w, YJR122w (CAF17) and YJR123w (RP55), which were reported by the yeast genome project, are contained in the ATP2 repeated units; and the middle ATP2 of the three ATP2s, ATP2b, is located between the two repeated units. Expression of all three copies of ATP2 (ATP2a, ATP2b, ATP2c) was confirmed because a single or double ATP2-disruptant could grow on glycerol, but a triple ATP2-disruptant could not. In addition, of the three copies of ATP1 and ATP2, even if only one copy of the ATP1 and ATP2 genes remained, the cells grew on glycerol.
Collapse
Affiliation(s)
- Masaharu Takeda
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan.
| | | | | | | |
Collapse
|