101
|
Motovska Z, Vichova T, Doktorova M, Labos M, Maly M, Widimsky P. Serum Dickkopf-1 signaling and calcium deposition in aortic valve are significantly related to the presence of concomitant coronary atherosclerosis in patients with symptomatic calcified aortic stenosis. J Transl Med 2015; 13:63. [PMID: 25889943 PMCID: PMC4336498 DOI: 10.1186/s12967-015-0423-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
Background The study aimed to assess serum RANKL:OPG ratio, Dkk-1 and deposition of calcium in aortic valve in relation to the presence of concomitant coronary atherosclerosis in patients with symptomatic calcified aortic stenosis (CAS). Methods OPG, soluble RANKL and Dkk-1 were measured in 218 consecutive patients who were undergoing cardiac catheterization because of symptomatic CAS. Values of studied compounds were compared between patients without (Group A) and with (Group B) coronary atherosclerosis. Computed tomography derived Agatston score was assessed by using 256-slice CT. Results Presence of coronary atherosclerosis was related to significantly (p = 0.007) higher OPG and to significantly (p = 0.004) lower Dkk-1. Coronary atherosclerosis was also associated with a trend towards a decrease of RANKL. RANKL/OPG Ratios (mean (95% C.I.)) were: 20.04 (16.58; 24.23) in Group A and 12.69 (9.96; 16.17) in Group B, resp., p = 0.018). After adjustment, the difference in RANKL:OPG ratios was no longer significant. Multivariable regression underscored the significance of difference in Dkk-1 (pafter adjustement = 0.020). Group A patients had significantly higher Dkk-1, significantly higher deposition of calcium in aortic valve and were symptomatic in significantly younger age (p < 0.001) as compared to group B patients: Agatston score (mean (95% C.I.)) 4069.9 (3211.8; 5134.5) and 2413.5 (1821.3; 3198.1), p = 0.007. Conclusions Dkk-1 and deposition of calcium in aortic valve differ significantly in relation to the presence/absence of coronary atherosclerosis in patients with symptomatic CAS. A positive association was found between Dkk-1 and calcium load in aortic valve in patients with symptomatic CAS and angiographically normal coronary arteries.
Collapse
Affiliation(s)
- Zuzana Motovska
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| | - Teodora Vichova
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| | - Magdalena Doktorova
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| | - Marek Labos
- Department, of Radiology, University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| | - Marek Maly
- National Institute of Public Health, Prague, Czech Republic.
| | - Petr Widimsky
- Cardiocentre, Third Medical Faculty Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| |
Collapse
|
102
|
Pfister R, Michels G, Sharp SJ, Luben R, Wareham NJ, Khaw KT. Inverse association between bone mineral density and risk of aortic stenosis in men and women in EPIC–Norfolk prospective study. Int J Cardiol 2015; 178:29-30. [DOI: 10.1016/j.ijcard.2014.10.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
|
103
|
Barbarash O, Rutkovskaya N, Hryachkova O, Gruzdeva O, Uchasova E, Ponasenko A, Kondyukova N, Odarenko Y, Barbarash L. Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves. Patient Prefer Adherence 2015; 9:389-99. [PMID: 25834408 PMCID: PMC4358689 DOI: 10.2147/ppa.s76001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To analyze the influence of recipient-related metabolic factors on the rate of structural dysfunction caused by the calcification of xenoaortic bioprostheses. MATERIALS AND METHODS We retrospectively analyzed clinical status, calcium-phosphorus metabolism, and nonspecific markers of inflammatory response in bioprosthetic mitral valve recipients with calcific degeneration confirmed by histological and electron microscopic studies (group 1, n=22), and in those without degeneration (group 2, n=48). RESULTS Patients with confirmed calcification of bioprostheses were more likely to have a severe clinical state (functional class IV in 36% in group 1 versus 15% in group 2, P=0.03) and a longer cardiopulmonary bypass period (112.8±18.8 minutes in group 1 versus 97.2±23.6 minutes in group 2, P=0.02) during primary surgery. Patients in group 1 demonstrated moderate hypovitaminosis D (median 34.0, interquartile range [21.0; 49.4] vs 40 [27.2; 54.0] pmol/L, P>0.05), osteoprotegerin deficiency (82.5 [44.2; 115.4] vs 113.5 [65.7; 191.3] pg/mL, P>0.05) and osteopontin deficiency (4.5 [3.3; 7.7] vs 5.2 [4.1; 7.2] ng/mL, P>0.05), and significantly reduced bone-specific alkaline phosphatase isoenzyme (17.1 [12.2; 21.4] vs 22.3 [15.5; 30.5] U/L, P=0.01) and interleukin-8 levels (9.74 [9.19; 10.09] pg/mL vs 13.17 [9.72; 23.1] pg/mL, P=0.045) compared with group 2, with an overall increase in serum levels of proinflammatory markers. CONCLUSION Possible predictors of the rate of calcific degeneration of bioprostheses include the degree of decompensated heart failure, the duration and invasiveness of surgery, and the characteristics of calcium-phosphorus homeostasis in the recipient, defined by bone resorption and local and systemic inflammation. The results confirm the hypothesis that cell-mediated regulation of pathological calcification is caused by dysregulation of metabolic processes, which are in turn controlled by proinflammatory signals.
Collapse
Affiliation(s)
- Olga Barbarash
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Natalya Rutkovskaya
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Oksana Hryachkova
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Olga Gruzdeva
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Evgenya Uchasova
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
- Correspondence: Evgenya Uchasova, Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia, Tel +7 3842 640 553, Email
| | - Anastasia Ponasenko
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Natalya Kondyukova
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Yuri Odarenko
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Leonid Barbarash
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
104
|
Lerman DA, Prasad S, Alotti N. Using Na 3PO 4 to Enhance In vitro Animal Models of Aortic Valve Calcification. ACTA ACUST UNITED AC 2015; 5. [PMID: 27376093 DOI: 10.4172/2324-8602.1000250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND/OBJECTIVES The pathogenesis of calcific aortic valvular disease (CAVD) involves an active inflammatory process of valvular interstitial cells (VICs) characterized by the activation of specific osteogenic signaling pathways and apoptosis. This process can be studied by analyzing certain molecular markers and gene expression pathways of spontaneous calcification. The purpose of our study is to investigate the role of sodium phosphate (Na3PO4) as a calcification promoter, with the aim of improving in vitro animal models for testing potential calcification inhibitors. MATERIALS AND METHODS VICs were extracted from 6 healthy 6-month-old fresh porcine hearts by serial collagenase digestion. Quantitative polymerase chain reaction (qPCR) was used to quantify trans-differentiation of genes of interest during spontaneous calcification of VICs. Spontaneous calcification of VICs was increased by adding Na3PO4 (3 mM, pH 7.4). The degree of calcification was estimated by Alizarin Red staining for calcium deposition, and Sirius Red staining for collagen. Colorimetric techniques were used to determine calcium and collagen deposition quantitatively. Additionally, the enzymatic activity of alkaline phosphatase (ALP) was measured by a kinetic assay. For statistical analysis we used SPSS and Microsoft Office Excel 2013. RESULTS Porcine VICs calcify spontaneously with demonstrable calcium and collagen deposition. In this study we observed an increase of calcium and collagen deposition from day 0 to day 14 (calcium: 376%; P<0.001, collagen: 3553%; P<0.001). qPCR analysis of mRNA by day 14 showed the following results: α-actin, a marker of myoblast phenotype, was increased to 1.6-fold; P<0.001. Runx2, an osteoblast marker, rose to 1.3 fold; P<0.05, TGF-β, a promoter of osteogenesis, increased to 3.2-fold; P<0.001, and RhoA, a regulator of nodular formation in myoblasts, increased to 4.5-fold; P<0.001, compared to their levels at day 0. RANKL mRNA and calponin did not change significantly. Treatment of porcine VICs with Na3PO4 (3 mM, pH 7.4) led to a marked increase in calcium deposition by day 14 (522%; P<0.001), and a significant increase in ALP activity by day 7 (228%; P<0.05). There were no significant changes in ALP activity between the groups by day 14. CONCLUSION This study has demonstrated the upregulation of some specific molecules during spontaneous calcification of aortic VICs with an active increase of calcium, collagen and ALP activity. In this in vitro model it was possible to increase spontaneous VICs calcification with Na3PO4 (3 mM, pH 7.4) to a level in which inhibitors of calcification could be tested to identify a novel potential therapeutic strategy against calcific aortic stenosis.
Collapse
Affiliation(s)
- Daniel Alejandro Lerman
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian) The University of Edinburgh, United Kingdom
| | - Sai Prasad
- Department of Cardiothoracic Surgery, Royal Infirmary Hospital of Edinburgh (NHS Lothian) The University of Edinburgh, United Kingdom
| | - Nasri Alotti
- Department of Cardiothoracic Surgery, Teaching Hospital of Zala County, Pécs University, Hungary
| |
Collapse
|
105
|
Bowler MA, Merryman WD. In vitro models of aortic valve calcification: solidifying a system. Cardiovasc Pathol 2015; 24:1-10. [PMID: 25249188 PMCID: PMC4268061 DOI: 10.1016/j.carpath.2014.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/21/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
Calcific aortic valve disease (CAVD) affects 25% of people over 65, and the late-stage stenotic state can only be treated with total valve replacement, requiring 85,000 surgeries annually in the US alone (University of Maryland Medical Center, 2013, http://umm.edu/programs/services/heart-center-programs/cardiothoracic-surgery/valve-surgery/facts). As CAVD is an age-related disease, many of the affected patients are unable to undergo the open-chest surgery that is its only current cure. This challenge motivates the elucidation of the mechanisms involved in calcification, with the eventual goal of alternative preventative and therapeutic strategies. There is no sufficient animal model of CAVD, so we turn to potential in vitro models. In general, in vitro models have the advantages of shortened experiment time and better control over multiple variables compared to in vivo models. As with all models, the hypothesis being tested dictates the most important characteristics of the in vivo physiology to recapitulate. Here, we collate the relevant pieces of designing and evaluating aortic valve calcification so that investigators can more effectively draw significant conclusions from their results.
Collapse
Affiliation(s)
- Meghan A Bowler
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212.
| |
Collapse
|
106
|
Schröder K. NADPH oxidases in bone homeostasis and osteoporosis. Cell Mol Life Sci 2015; 72:25-38. [PMID: 25167924 PMCID: PMC11114015 DOI: 10.1007/s00018-014-1712-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Bone formation and degradation are perfectly coordinated. In case of an imbalance of these processes diseases occur associated with exaggerated formation of new bone or bone loss as in osteoporosis. Most studies investigating osteoporosis either focus on osteoblast or osteoclast function and differentiation. Both processes have been suggested to be affected by reactive oxygen species (ROS). Besides a potentially harmful role of ROS, these small molecules are important second messengers. The family of NADPH oxidases produces ROS in a controlled and targeted manner, to specifically regulate signal transduction. This review will highlight the role of reactive oxygen species in bone cell differentiation and bone-loss associated disease with a special focus on osteoporosis and NADPH oxidases as specialized sources of ROS.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany,
| |
Collapse
|
107
|
Demer LL, Tintut Y. The leading edge of vascular calcification. Trends Cardiovasc Med 2014; 25:275-7. [PMID: 25572012 DOI: 10.1016/j.tcm.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Linda L Demer
- Department of Medicine, UCLA, Los Angeles, CA; Department of Physiology, UCLA, Los Angeles, CA; Department of Bioengineering, UCLA, Los Angeles, CA
| | - Yin Tintut
- Department of Medicine, UCLA, Los Angeles, CA.
| |
Collapse
|
108
|
Trapeaux J, Busseuil D, Shi Y, Nobari S, Shustik D, Mecteau M, El-Hamamsy I, Lebel M, Mongrain R, Rhéaume E, Tardif JC. Improvement of aortic valve stenosis by ApoA-I mimetic therapy is associated with decreased aortic root and valve remodelling in mice. Br J Pharmacol 2014; 169:1587-99. [PMID: 23638718 DOI: 10.1111/bph.12236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE We have shown that infusions of apolipoprotein A-I (ApoA-I) mimetic peptide induced regression of aortic valve stenosis (AVS) in rabbits. This study aimed at determining the effects of ApoA-I mimetic therapy in mice with calcific or fibrotic AVS. EXPERIMENTAL APPROACH Apolipoprotein E-deficient (ApoE(-/-) ) mice and mice with Werner progeria gene deletion (Wrn(Δhel/Δhel) ) received high-fat diets for 20 weeks. After developing AVS, mice were randomized to receive saline (placebo group) or ApoA-I mimetic peptide infusions (ApoA-I treated groups, 100 mg·kg(-1) for ApoE(-/-) mice; 50 mg·kg(-1) for Wrn mice), three times per week for 4 weeks. We evaluated effects on AVS using serial echocardiograms and valve histology. KEY RESULTS Aortic valve area (AVA) increased in both ApoE(-/-) and Wrn mice treated with the ApoA-I mimetic compared with placebo. Maximal sinus wall thickness was lower in ApoA-I treated ApoE(-/-) mice. The type I/III collagen ratio was lower in the sinus wall of ApoA-I treated ApoE(-/-) mice compared with placebo. Total collagen content was reduced in aortic valves of ApoA-I treated Wrn mice. Our 3D computer model and numerical simulations confirmed that the reduction in aortic root wall thickness resulted in improved AVA. CONCLUSIONS AND IMPLICATIONS ApoA-I mimetic treatment reduced AVS by decreasing remodelling and fibrosis of the aortic root and valve in mice.
Collapse
Affiliation(s)
- J Trapeaux
- Montreal Heart Institute, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
London GM, Marchais SJ, Guérin AP, de Vernejoul MC. Ankle-brachial index and bone turnover in patients on dialysis. J Am Soc Nephrol 2014; 26:476-83. [PMID: 25231881 DOI: 10.1681/asn.2014020169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An association between atherosclerosis and osteoporosis has been reported in several studies. This association could result from local intraosseous atherosclerosis and ischemia, which is shown by limb osteoporosis in patients with peripheral artery disease (PAD), but also could result from bidirectional communication between the skeleton and blood vessels. Systemic bone disorders and PAD are frequent in ESRD. Here, we investigated the possible interaction of these disorders. For 65 prevalent nondiabetic patients on hemodialysis, we measured ankle-brachial pressure index (ABix) and evaluated mineral and bone disorders with bone histomorphometry. In prevalent patients on hemodialysis, PAD (ABix<0.9 or >1.4/incompressible) was associated with low bone turnover and pronounced osteoblast resistance to parathyroid hormone (PTH), which is indicated by decreased double-labeled surface and osteoblast surface (P<0.001). Higher osteoblast resistance to PTH in patients with PAD was characterized by weaker correlation coefficients (slopes) between serum PTH and double-labeled surface (P=0.02) or osteoblast surface (P=0.03). The correlations between osteoclast number or eroded surface and serum mineral parameters, including PTH, did not differ for subjects with normal ABix and PAD. Common vascular risk factors (dyslipidemia, smoking, and sex) were similar for normal, low, and incompressible ABix. Patients with PAD were older and had high C-reactive protein levels and longer hemodialysis vintage. These results indicate that, in prevalent nondiabetic patients with ESRD, PAD associates with low bone turnover and pronounced osteoblast resistance to PTH.
Collapse
Affiliation(s)
- Gérard M London
- Department of Nephrology, Manhès Hospital, Fleury Mérogis, France; Department of Pharmacology, Georges Pompidou European Hospital, National Institute of Health and Medical Research U970, Paris, France; and
| | | | - Alain P Guérin
- Department of Pharmacology, Georges Pompidou European Hospital, National Institute of Health and Medical Research U970, Paris, France; and
| | - Marie-Christine de Vernejoul
- Lariboisiere Hospital, Vigot Petersen Centre, National Institute of Health and Medical Research U606, University Paris 7, Paris, France
| |
Collapse
|
110
|
Li X, Garcia J, Lu J, Iriana S, Kalajzic I, Rowe D, Demer LL, Tintut Y. Roles of parathyroid hormone (PTH) receptor and reactive oxygen species in hyperlipidemia-induced PTH resistance in preosteoblasts. J Cell Biochem 2014; 115:179-88. [PMID: 24038594 DOI: 10.1002/jcb.24648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/08/2022]
Abstract
Bioactive lipids initiate inflammatory reactions leading to pathogenesis of atherosclerosis. Evidence shows that they also contribute to bone loss by inhibiting parathyroid hormone receptor (PTH1R) expression and differentiation of osteoblasts. We previously demonstrated that bone anabolic effects of PTH(1-34) are blunted in hyperlipidemic mice and that these PTH effects are restored by antioxidants. However, it is not clear which osteoblastic cell developmental stage is targeted by bioactive lipids. To investigate the effects of hyperlipidemia at the cellular level, hyperlipidemic Ldlr(-/-) mice were bred with Col3.6GFPtpz mice, in which preosteoblasts/osteoblasts carry a topaz fluorescent label, and with Col2.3GFPcyan mice, in which more mature osteoblasts/osteocytes carry a cyan fluorescent label. Histological analyses of trabecular bone surfaces in femoral as well as calvarial bones showed that intermittent PTH(1-34) increased fluorescence intensity in WT-Tpz mice, but not in Tpz-Ldlr(-/-) mice. In contrast, PTH(1-34) did not alter fluorescence intensity in femoral cortical envelopes of either WT-Cyan or Ldlr(-/-)-Cyan mice. To test the mechanism of PTH1R downregulation, preosteoblastic MC3T3-E1 cells were treated with bioactive lipids and the antioxidant Trolox. Results showed that inhibitory effects of PTH1R levels by bioactive lipids were rescued by pretreatment with Trolox. The inhibitory effects on expression of PTH1R as well as on PTH-induced osteoblastic genes were mimicked by xanthine/xanthine oxidase, a known generator of reactive oxygen species. These findings suggest an important role of the preosteoblastic development stage as the target and downregulation of PTH receptor expression mediated by intracellular oxidant stress as a mechanism in hyperlipidemia-induced PTH resistance.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine, University of California, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
111
|
The degeneration of biological cardiovascular prostheses under pro-calcific metabolic conditions in a small animal model. Biomaterials 2014; 35:7416-28. [DOI: 10.1016/j.biomaterials.2014.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/14/2014] [Indexed: 01/23/2023]
|
112
|
Sprini D, Rini GB, Di Stefano L, Cianferotti L, Napoli N. Correlation between osteoporosis and cardiovascular disease. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2014; 11:117-119. [PMID: 25285139 PMCID: PMC4172178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Several evidences have shown in the last years a possible correlation between cardiovascular diseases and osteoporosis. Patients affected with osteoporosis, for example, have a higher risk of cardiovascular diseases than subjects with normal bone mass. However, the heterogeneous approaches and the different populations that have been studied so far have limited the strength of the findings. Studies conducted in animal models show that vascular calcification is a very complex mechanism that involves similar pathways described in the normal bone calcification. Proteins like BMP, osteopontin, osteoprotegerin play an important role at the bone level but are also highly expressed in the calcified vascular tissue. In particular, it seems that the OPG protect from vascular calcification and elevated levels have been found in patients with CVD. Other factors like oxidative stress, inflammation, free radicals, lipids metabolism are involved in this complex scenario. It is not a case that medications used for treating osteoporosis also inhibit the atherosclerotic process, acting on blood pressure and ventricular hypertrophy. Given the limited amount of available data, further studies are needed to elucidate the underlying mechanisms between osteoporosis and cardiovascular disease which may be important in the future also for preventive and therapeutic approaches of both conditions.
Collapse
Affiliation(s)
- Delia Sprini
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | | - Laura Di Stefano
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Nicola Napoli
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis MO, USA
| |
Collapse
|
113
|
Abstract
Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. Therefore, we discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, 3 Blackfan Circle, 17th Floor, Center for Life Sciences Boston, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, 3 Blackfan Circle, 17th Floor, Center for Life Sciences Boston, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - W David Merryman
- Department of Biomedical Engineering, 2213 Garland Avenue, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
114
|
Gujadhur A, Smith ER, McMahon LP, Spanger M, Chuen J, Holt SG. Large vessel calcification in Takayasu arteritis. Intern Med J 2014; 43:584-7. [PMID: 23668269 DOI: 10.1111/imj.12116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/11/2012] [Indexed: 12/22/2022]
Abstract
We report the novel case of a young woman with Takayasu arteritis, with extensive large vessel disease. The case demonstrates that while mechanisms of vascular calcification are poorly understood, inflammation per se might be sufficient to mediate increased mineral stress leading to vessel calcification, even in the absence of renal impairment.
Collapse
Affiliation(s)
- A Gujadhur
- Department of Renal Medicine, Eastern Clinical School, Faculty of Medicine, Nursing and Health Sciences Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
115
|
Zhou J, Bowen C, Lu G, Knapp Iii C, Recknagel A, Norris RA, Butcher JT. Cadherin-11 expression patterns in heart valves associate with key functions during embryonic cushion formation, valve maturation and calcification. Cells Tissues Organs 2013; 198:300-10. [PMID: 24356423 DOI: 10.1159/000356762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 01/28/2023] Open
Abstract
Proper fibroblast cell migration and differentiation are critical for valve formation and homeostasis, but uncontrolled myofibroblastic activation may precede osteogenic differentiation and calcification. Cadherin-11 (cad-11) is a cell-cell adhesion protein classically expressed at mesenchymal-osteoblast interfaces that participates in mesenchymal differentiation to osteochondral lineages. This suggests cad-11 may have an important role in heart valve development and pathogenesis, but its expression patterns in valves are largely unknown. In this study, we profiled the spatial and temporal expression patterns of cad-11 in embryonic chick and mouse heart development. We determined that cad-11 is expressed in both endocardial and mesenchymal cells of the atrioventricular and outflow tract cushions (pre-HH30/E14), but becomes restricted to the valve endocardial/endothelial cells during late fetal remodeling and throughout postnatal life. We then investigated changes in cad-11 expression in a murine aortic valve disease model (the ApoE(-/-)). Unlike wild-type mice, cad-11 becomes dramatically re-expressed in the interstitium. Similarly, in calcified human aortic valve leaflets, cad-11 loses endothelial confinement and becomes significantly re-expressed in the valve interstitium. Double labeling identified that 91% of myofibroblastic and 96% of osteoblastic cells in calcified aortic valves were also cad-11 positive. Collectively, our results suggest that cad-11 is important for proper embryonic cushion formation and remodeling, but may also participate in aortic valve pathogenesis if re-expressed in adulthood.
Collapse
Affiliation(s)
- Jingjing Zhou
- Department of Biomedical Engineering, Cornell University, Ithaca, N.Y., USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Ramesh A, Soroushian S, Ganguly R. Coincidence of calcified carotid atheromatous plaque, osteoporosis, and periodontal bone loss in dental panoramic radiographs. Imaging Sci Dent 2013; 43:235-43. [PMID: 24380062 PMCID: PMC3873311 DOI: 10.5624/isd.2013.43.4.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 07/27/2013] [Accepted: 08/10/2013] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study was performed to assess the correlation of calcified carotid atheromatous plaque (CCAP), the mandibular cortical index, and periodontal bone loss in panoramic radiographs. MATERIALS AND METHODS One hundred eighty-five panoramic radiographs with CCAP and 234 without this finding were evaluated by 3 observers for the presence of osseous changes related to osteoporosis and periodontal bone loss. Chi-squared and Mann-Whitney U tests were used to compare the two groups for an association of CCAP with the mandibular cortical index and periodontal bone loss, respectively. RESULTS There was a statistically significant coincidence of CCAP and osseous changes related to osteopenia/osteoporosis, with a p-value <0.001. There was no statistically significant coincidence of CCAP and periodontal bone loss. When comparing the 2 groups, "With CCAP" and "Without CCAP", there was a statistically significant association with the mean body mass index (BMI), number of remaining teeth, positive history of diabetes mellitus, and vascular accidents. There was no statistically significant association with gender or a history of smoking. CONCLUSION This study identified a possible concurrence of CCAP and mandibular cortical changes secondary to osteopenia/osteoporosis in panoramic radiographs. This could demonstrate the important role of dental professionals in screening for these systemic conditions, leading to timely and appropriate referrals resulting in early interventions and thus improving overall health.
Collapse
Affiliation(s)
- Aruna Ramesh
- Division of Oral and Maxillofacial Radiology, Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Sheila Soroushian
- Department of Orthodontics, Howard University College of Dentistry, Washington, DC, USA
| | - Rumpa Ganguly
- Division of Oral and Maxillofacial Radiology, Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
117
|
Galeone A, Paparella D, Colucci S, Grano M, Brunetti G. The role of TNF-α and TNF superfamily members in the pathogenesis of calcific aortic valvular disease. ScientificWorldJournal 2013; 2013:875363. [PMID: 24307884 PMCID: PMC3836568 DOI: 10.1155/2013/875363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 01/08/2023] Open
Abstract
Calcific aortic valve disease (CAVD) represents a slowly progressive pathologic process associated with major morbidity and mortality. The process is characterized by multiple steps: inflammation, fibrosis, and calcification. Numerous studies focalized on its physiopathology highlighting different "actors" for the multiple "acts." This paper focuses on the role of the tumor necrosis factor superfamily (TNFSF) members in the pathogenesis of CAVD. In particular, we discuss the clinical and experimental studies providing evidence of the involvement of tumor necrosis factor-alpha (TNF-α), receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), its membrane receptor RANK and its decoy receptor osteoprotegerin (OPG), and TNF-related apoptosis-inducing ligand (TRAIL) in valvular calcification.
Collapse
Affiliation(s)
- Antonella Galeone
- Division of Cardiac Surgery, Department of Emergencies and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Italy
| | - Domenico Paparella
- Division of Cardiac Surgery, Department of Emergencies and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Maria Grano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
118
|
Wildgruber M, Swirski FK, Zernecke A. Molecular imaging of inflammation in atherosclerosis. Am J Cancer Res 2013; 3:865-84. [PMID: 24312156 PMCID: PMC3841337 DOI: 10.7150/thno.5771] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 01/13/2023] Open
Abstract
Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic.
Collapse
|
119
|
Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PLoS One 2013; 8:e77701. [PMID: 24204923 PMCID: PMC3808405 DOI: 10.1371/journal.pone.0077701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/12/2013] [Indexed: 12/02/2022] Open
Abstract
Bone tissue is continuously remodeled by bone cells and maintenance of its mass relies on the balance between the processes of resorption and formation. We have reported the expression of numerous scavenger receptors, namely scavenger receptor (SR) class B type I and II (SR-BI and SR-BII), and CD36, in bone-forming osteoblasts but their physiological roles in bone metabolism are still unknown. To unravel the role of CD36 in bone metabolism, we determined the bone phenotype of CD36 knockout (CD36KO) mice and characterized the cell functions of osteoblasts lacking CD36. Weights of CD36KO mice were significantly lower than corresponding wild-type (WT) mice, yet no significant difference was found in femoral nor tibial length between CD36KO and WT mice. Analysis of bone architecture by micro-computed tomography revealed a low bone mass phenotype in CD36KO mice of both genders. Femoral trabecular bone from 1 to 6 month-old CD36KO mice showed lower bone volume, higher trabecular separation and reduced trabeculae number compared to WT mice; similar alterations were noticed for lumbar vertebrae. Plasma levels of osteocalcin (OCN) and N-terminal propeptide of type I procollagen (PINP), two known markers of bone formation, were significantly lower in CD36KO mice than in WT mice, whereas plasma levels of bone resorption markers were similar. Accordingly, histology highlighted lower osteoblast perimeter and reduced bone formation rate. In vitro functional characterization of bone marrow stromal cells and osteoblasts isolated from CD36KO mice showed reduced cell culture expansion and survival, lower gene expression of osteoblastic Runt-related transcription factor 2 (Runx2) and osterix (Osx), as well as bone sialoprotein (BSP) and osteocalcin (OCN). Our results indicate that CD36 is mandatory for adequate bone metabolism, playing a role in osteoblast functions ensuring adequate bone formation.
Collapse
|
120
|
Weiss RM, Miller JD, Heistad DD. Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ Res 2013; 113:209-22. [PMID: 23833295 DOI: 10.1161/circresaha.113.300153] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in vitro and in vivo continue to identify complex-regulated mechanisms leading to overt fibrocalcific aortic valve disease (FCAVD). Assessment of the functional impact of those processes requires careful studies of models of FCAVD in vivo. Although the genetic basis for FCAVD is unknown for most patients with FCAVD, several disease-associated genes have been identified in humans and mice. Some gene products which regulate valve development in utero also protect against fibrocalcific disease during postnatal aging. Valve calcification can occur via processes that resemble bone formation. But valve calcification can also occur by nonosteogenic mechanisms, such as formation of calcific apoptotic nodules. Anticalcific interventions might preferentially target either osteogenic or nonosteogenic calcification. Although FCAVD and atherosclerosis share several risk factors and mechanisms, there are fundamental differences between arteries and the aortic valve, with respect to disease mechanisms and responses to therapeutic interventions. Both innate and acquired immunity are likely to contribute to FCAVD. Angiogenesis is a feature of inflammation, but may also contribute independently to progression of FCAVD, possibly by actions of pericytes that are associated with new blood vessels. Several therapeutic interventions seem to be effective in attenuating the development of FCAVD in mice. Therapies which are effective early in the course of FCAVD, however, are not necessarily effective in established disease.
Collapse
Affiliation(s)
- Robert M Weiss
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | |
Collapse
|
121
|
Heterogeneous susceptibility of valve endothelial cells to mesenchymal transformation in response to TNFα. Ann Biomed Eng 2013; 42:149-61. [PMID: 23982279 DOI: 10.1007/s10439-013-0894-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/12/2013] [Indexed: 02/04/2023]
Abstract
Lack of understanding of the early mechanisms of aortic valve stenosis and calcification hinders the development of diagnostic and therapeutic intervention strategies. Inflammation is a known component of early aortic valve disease and can induce mesenchymal transformation in a subset of aortic valve endothelial cells. Here we present a three-dimensional culture system that allows transforming and non-transforming cells to be independently isolated and analyzed. We have used the system to identify and characterize the dynamic invasion and phenotypic transition of two distinct subsets of endothelial cells: those that invade and transform under TNFα treatment, and those that resist mesenchymal transformation and remain endothelial. We determine that non-transformed cells maintain control levels of endothelial genes VE-cadherin and eNOS, while transformed cells lose these endothelial characteristics and upregulate α-smooth muscle actin. Both subsets of cells have an inflammatory phenotype marked by increased ICAM-1, but transformed cells have increased MMP-9, Notch1, TGF-β, and BMP-4, while non-transformed cells do not. Transformed cells also have distinct effects on alignment of collagen fibers as they invade the hydrogel system, which is not found in control endothelial or interstitial valve cells. Understanding the role of transforming and non-transforming endothelial cells in valve disease will provide an important pathological link between early inflammation and later stages of disease. Discovery of the molecular signature of transformation-resistant endothelial cells could inform development of treatment strategies that promote survival of the valve endothelium.
Collapse
|
122
|
Akerström F, Barderas MG, Rodríguez-Padial L. Aortic stenosis: a general overview of clinical, pathophysiological and therapeutic aspects. Expert Rev Cardiovasc Ther 2013; 11:239-50. [PMID: 23405844 DOI: 10.1586/erc.12.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aortic stenosis is the most prevalent valve pathology and calcific aortic valve disease (CAVD) is its most frequent etiology in developed countries. There is extensive evidence that CAVD represents an active disease process similar to that of atherosclerosis with similar classical cardiovascular risk factors and pathological mechanisms. Given that in the vast majority of situations the only treatment available is valve replacement there is a need to develop pharmacological therapies that retard the disease progression. Lipid-lowering therapies have been the focus of research, however, so far with negative results. Future studies, including animal models, shall provide an opportunity to further evaluate the disease mechanisms of CAVD and to discover potential disease biomarkers and pharmacological interventions that can reduce the need for valve replacement.
Collapse
Affiliation(s)
- Finn Akerström
- Department of Cardiology, Hospital Virgen de la Salud, Toledo, Spain
| | | | | |
Collapse
|
123
|
Weiss RM, Lund DD, Chu Y, Brooks RM, Zimmerman KA, El Accaoui R, Davis MK, Hajj GP, Zimmerman MB, Heistad DD. Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS One 2013; 8:e65201. [PMID: 23762316 PMCID: PMC3675204 DOI: 10.1371/journal.pone.0065201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are no rigorously confirmed effective medical therapies for calcific aortic stenosis. Hypercholesterolemic Ldlr (-/-) Apob (100/100) mice develop calcific aortic stenosis and valvular cardiomyopathy in old age. Osteoprotegerin (OPG) modulates calcification in bone and blood vessels, but its effect on valve calcification and valve function is not known. OBJECTIVES To determine the impact of pharmacologic treatment with OPG upon aortic valve calcification and valve function in aortic stenosis-prone hypercholesterolemic Ldlr (-/-) Apob (100/100) mice. METHODS Young Ldlr (-/-) Apob (100/100) mice (age 2 months) were fed a Western diet and received exogenous OPG or vehicle (N = 12 each) 3 times per week, until age 8 months. After echocardiographic evaluation of valve function, the aortic valve was evaluated histologically. Older Ldlr (-/-) Apob (100/100) mice were fed a Western diet beginning at age 2 months. OPG or vehicle (N = 12 each) was administered from 6 to 12 months of age, followed by echocardiographic evaluation of valve function, followed by histologic evaluation. RESULTS In Young Ldlr (-/-) Apob (100/100) mice, OPG significantly attenuated osteogenic transformation in the aortic valve, but did not affect lipid accumulation. In Older Ldlr (-/-) Apob (100/100) mice, OPG attenuated accumulation of the osteoblast-specific matrix protein osteocalcin by ∼80%, and attenuated aortic valve calcification by ∼ 70%. OPG also attenuated impairment of aortic valve function. CONCLUSIONS OPG attenuates pro-calcific processes in the aortic valve, and protects against impairment of aortic valve function in hypercholesterolemic aortic stenosis-prone Ldlr (-/-) Apob (100/100) mice.
Collapse
Affiliation(s)
- Robert M Weiss
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res 2013; 112:1073-84. [PMID: 23538277 PMCID: PMC3668680 DOI: 10.1161/circresaha.113.300937] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular calcification is a prominent feature of chronic inflammatory disorders-such as chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis-that associate with significant morbidity and mortality. The concept that similar pathways control both bone remodeling and vascular calcification is widely accepted, but the precise mechanisms of calcification remain largely unknown. The central role of microRNAs (miRNA) as fine-tune regulators in the cardiovascular system and bone biology has gained acceptance and has raised the possibility for novel therapeutic targets. Additionally, circulating miRNAs have been proposed as biomarkers for a wide range of cardiovascular diseases, but knowledge of miRNA biology in cardiovascular calcification is very limited. This review focuses on the role of miRNAs in cardiovascular disease, with emphasis on osteogenic processes. Herein, we discuss the current understanding of miRNAs in cardiovascular calcification. Furthermore, we identify a set of miRNAs common to diseases associated with cardiovascular calcification (chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis), and we hypothesize that these miRNAs may provide a molecular signature for calcification. Finally, we discuss this novel hypothesis with emphasis on known biological and pathological osteogenic processes (eg, osteogenic differentiation, release of calcifying matrix vesicles). The aim of this review is to provide an organized discussion of the known links between miRNA and calcification that provide emerging concepts for future studies on miRNA biology in cardiovascular calcification, which will be critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Goettsch
- Harvard Medical School, Cardiovascular Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB-741, Boston, MA 02115, USA.
| | | | | |
Collapse
|
125
|
Nagy E, Eriksson P, Yousry M, Caidahl K, Ingelsson E, Hansson GK, Franco-Cereceda A, Bäck M. Valvular osteoclasts in calcification and aortic valve stenosis severity. Int J Cardiol 2013; 168:2264-71. [PMID: 23452891 DOI: 10.1016/j.ijcard.2013.01.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Bone remodeling in calcified aortic valves is thought to originate from microfractures at multiple sites of the valve, at which osteoclasts and osteoblasts are recruited. The aim of the present study was to assess circulating mediators of bone homeostasis, correlate them to the severity of stenosis and explore the spatio-temporal distribution of bone turnover in different parts of calcified aortic valve tissue. METHODS AND RESULTS Plasma and explanted aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery. Plasma levels of tartrate-resistant acid phosphatase (TRAP), receptor activator of nuclear-κB (RANK) ligand and Runt-related transcription factor 2 (Runx2/Cbfa1) exhibited a significant correlation to the severity of aortic stenosis. mRNA levels in normal, thickened and calcified parts of aortic valves assessed by quantitative real-time PCR were significantly elevated in calcified parts of valves for TRAP (5.08 ± 1.6-fold, P<0.001) RANK ligand (8.6 ± 4.2-fold, P<0.001) and RANK (1.98 ± 0.78-fold, P=0.015). In an age, gender and aortic valve anatomy-adjusted multivariable regression analysis the local transcript levels of TRAP correlated significantly with echocardiographic parameters quantifying stenosis severity in early stages, whereas the expression level of Runx2/Cbfa1 was a predictor of the stenosis severity in advanced stages. CONCLUSIONS These findings suggest a critical role of bone turnover as a determinant of aortic stenosis severity.
Collapse
Affiliation(s)
- Edit Nagy
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Hekimian G, Boutten A, Flamant M, Duval X, Dehoux M, Benessiano J, Huart V, Dupré T, Berjeb N, Tubach F, Iung B, Vahanian A, Messika-Zeitoun D. Progression of aortic valve stenosis is associated with bone remodelling and secondary hyperparathyroidism in elderly patients--the COFRASA study. Eur Heart J 2013; 34:1915-22. [PMID: 23329150 DOI: 10.1093/eurheartj/ehs450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIMS There is currently no medical therapy that can prevent the progression of aortic valve stenosis (AS). Recent data highlight a possible relationship between bone metabolism and AS progression but prospective data are lacking. METHODS AND RESULTS Serum levels of calcium, phosphorus, creatinine, 25-OH vitamin D, intact parathyroid hormon (iPTH), C-terminal-telopeptide of type-1-collagen (CTX) and osteocalcin were assessed at baseline in 110 elderly patients (age ≥70 years) with at least mild AS. CTX/osteocalcin ratio was calculated as a marker of bone remodelling balance. AS severity was assessed at baseline and 1-year based on the mean gradient. Two-thirds of patients had low 25-OH vitamin D and 20% had secondary hyperparathyroidism. AS progression was not associated with age, glomerular filtration rate (GFR), calcium and phosphorus levels, calcium-phosphorus product, but significantly with iPTH, CTX/osteocalcin and vitamin D status (all P < 0.01). There was no correlation between iPTH and CTX/osteocalcin (R = 0.04, P = 0.70) and AS progression was associated with CTX/osteocalcin (R = 0.42, P = 0.009), but not with iPTH (R = 0.10, P = 0.55) in patients with normal vitamin D levels, whereas it was associated with iPTH (R = 0.47, P < 0.001) and not with CTX/osteocalcin (R = 0.04, P = 0.73) in those with low vitamin D levels, especially if mild renal insufficiency was present (R = 0.61, P < 0.001). CONCLUSION In elderly patients with AS, we observed an association between AS progression and vitamin D, iPTH and CTX/osteocalcin ratio and their respective influence varied according to the vitamin D status. In patients with normal vitamin D levels, AS progression was associated with a bone resorptive balance, whereas in patients with low vitamin D levels, AS progression was associated with iPTH and secondary hyperparathyroidism, especially if mild renal insufficiency was present. These findings may have important prognostic and therapeutic implications. Trial registration information: Clinicaltrials.gov identifier number: NCT00338676, funded by AP-HP, the COFRASA study.
Collapse
Affiliation(s)
- Guillaume Hekimian
- Cardiovascular Division, Department of Cardiology, AP-HP, Bichat Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Lu J, Cheng H, Atti E, Shih DM, Demer LL, Tintut Y. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice. Biochem Biophys Res Commun 2013; 431:19-24. [PMID: 23291186 DOI: 10.1016/j.bbrc.2012.12.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 11/15/2022]
Abstract
Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr(-/-)PON1(tg)) were generated, and daily PTH injections were administered to Ldlr(-/-)PON1(tg) and to littermate Ldlr(-/-) mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr(-/-)PON1(tg) mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr(-/-)PON1(tg) mice. In contrast, in control mice (Ldlr(-/-)) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr(-/-)PON1(tg) mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr(-/-)PON1(tg) mice had significantly greater expression of PTHR1 than untreated Ldlr(-/-) mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, FoxO1 and ATF4, were also elevated in the untreated, control Ldlr(-/-)PON1(tg) mice, suggesting enhancement of cellular protection against oxidants. These findings suggest that PON1 restores responsiveness to PTH through effects on oxidant stress, PTH receptor expression, and/or Wnt signaling.
Collapse
Affiliation(s)
- Jinxiu Lu
- Department of Physiology, University of California, Los Angeles, CA 90095-1679, United States
| | | | | | | | | | | |
Collapse
|
128
|
Hjortnaes J, New SEP, Aikawa E. Visualizing novel concepts of cardiovascular calcification. Trends Cardiovasc Med 2013; 23:71-9. [PMID: 23290463 DOI: 10.1016/j.tcm.2012.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 12/19/2022]
Abstract
Cardiovascular calcification is currently viewed as an active disease process similar to embryonic bone formation. Cardiovascular calcification mainly affects the aortic valve and arteries and is associated with increased mortality risk. Aortic valve and arterial calcification share similar risk factors, including age, gender, diabetes, chronic renal disease, and smoking. However, the exact cellular and molecular mechanism of cardiovascular calcification is unknown. Late-stage cardiovascular calcification can be visualized with conventional imaging modalities such as echocardiography and computed tomography. However, these modalities are limited in their ability to detect the development of early calcification and the progression of calcification until advanced tissue mineralization is apparent. Due to the subsequent late diagnosis of cardiovascular calcification, treatment is usually comprised of invasive interventions such as surgery. The need to understand the process of calcification is therefore warranted and requires new imaging modalities which are able to visualize early cardiovascular calcification. This review focuses on the use of new imaging techniques to visualize novel concepts of cardiovascular calcification.
Collapse
Affiliation(s)
- Jesper Hjortnaes
- Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB741J, Boston, MA 02115, USA
| | | | | |
Collapse
|
129
|
Schoen FJ, Levy RJ. Pathological Calcification of Biomaterials. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
130
|
Boudoulas KD, Borer JS, Boudoulas H. Etiology of Valvular Heart Disease in the 21st Century. Cardiology 2013; 126:139-52. [DOI: 10.1159/000354221] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022]
|
131
|
Affiliation(s)
- Jane A Leopold
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
132
|
Aluoch AO, Jessee R, Habal H, Garcia-Rosell M, Shah R, Reed G, Carbone L. Heart failure as a risk factor for osteoporosis and fractures. Curr Osteoporos Rep 2012; 10:258-69. [PMID: 22915207 DOI: 10.1007/s11914-012-0115-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although heart failure (HF) and osteoporosis are common diseases, particularly in elderly populations, patients with HF have an increased risk for osteoporosis. The relationship of HF with osteoporosis is modified by gender and the severity of HF. In addition, shared risk factors, medication use, and common pathogenic mechanisms affect both HF and osteoporosis. Shared risk factors for these 2 conditions include advanced age, hypovitaminosis D, renal disease, and diabetes mellitus. Medications used to treat HF, including spironolactone, thiazide diuretics, nitric oxide donors, and aspirin, may protect against osteoporosis. In contrast, loop diuretics may make osteoporosis worse. HF and osteoporosis appear to share common pathogenic mechanisms, including activation of the renin-angiotensin-aldosterone system, increased parathyroid hormone levels, and/or oxidative/nitrosative stress. HF is a major risk factor for mortality following fractures. Thus, in HF patients, it is important to carefully assess osteoporosis and take measures to reduce the risk of osteoporotic fractures.
Collapse
Affiliation(s)
- Aloice O Aluoch
- Department of Medicine, University of TN Health Science Center, Memphis, 38163, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Mahler GJ, Farrar EJ, Butcher JT. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol 2012; 33:121-30. [PMID: 23104848 DOI: 10.1161/atvbaha.112.300504] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Inflammatory activation of valve endothelium is an early phase of aortic valve disease pathogenesis, but subsequent mechanisms are poorly understood. Adult valve endothelial cells retain the developmental ability to undergo endothelial-to-mesenchymal transformation (EndMT), but a biological role has not been established. Here, we test whether and how inflammatory cytokines (tumor necrosis factor-α and interleukin-6) regulate EndMT in embryonic and adult valve endothelium. METHODS AND RESULTS Using in vitro 3-dimensional collagen gel culture assays with primary cells, we determined that interleukin-6 and tumor necrosis factor-α induce EndMT and cell invasion in dose-dependent manners. Inflammatory-EndMT occurred through an Akt/nuclear factor-κB-dependent pathway in both adult and embryonic stages. In embryonic valves, inflammatory-EndMT required canonical transforming growth factor-β signaling through activin receptor-like kinases 2 and 5 to drive EndMT. In adult valve endothelium, however, inflammatory-induced EndMT still occurred when activin receptor-like kinases 2 and 5 signaling was blocked. Inflammatory receptor gene expression was significantly upregulated in vivo during embryonic valve maturation. Endothelial-derived mesenchymal cells expressing activated nuclear factor-κB were found distal to calcific lesions in diseased human aortic valves. CONCLUSIONS Inflammatory cytokine-induced EndMT in valve endothelium is present in both embryonic and adult stages, acting through Akt/nuclear factor-κB, but differently using transforming growth factor-β signaling. Molecular signatures of valve EndMT may be important diagnostic and therapeutic targets in early valve disease.
Collapse
Affiliation(s)
- Gretchen J Mahler
- Department of Bioengineering, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
134
|
Abstract
Despite recent progress, cardiovascular and allied metabolic disorders remain a worldwide health challenge. We must identify new targets for therapy, develop new agents for clinical use, and deploy them in a clinically effective and cost-effective manner. Molecular imaging of atherosclerotic lesions has become a major experimental tool in the last decade, notably by providing a direct gateway to the processes involved in atherogenesis and its complications. This review summarizes the current status of molecular imaging approaches that target the key processes implicated in plaque formation, development, and disruption and highlights how the refinement and application of such tools might aid the development and evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Thibaut Quillard
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
135
|
Fadini GP, Rattazzi M, Matsumoto T, Asahara T, Khosla S. Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation 2012; 125:2772-81. [PMID: 22665885 DOI: 10.1161/circulationaha.112.090860] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
Rahimtoola SH. The year in valvular heart disease. J Am Coll Cardiol 2012; 60:85-95. [PMID: 22578924 DOI: 10.1016/j.jacc.2012.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/27/2011] [Accepted: 03/28/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Shahbudin H Rahimtoola
- Griffith Center, Division of Cardiovascular Medicine, Department of Medicine, LAC+USC Medical Center, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
137
|
McCoy CM, Nicholas DQ, Masters KS. Sex-related differences in gene expression by porcine aortic valvular interstitial cells. PLoS One 2012; 7:e39980. [PMID: 22808080 PMCID: PMC3393722 DOI: 10.1371/journal.pone.0039980] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022] Open
Abstract
While many large-scale risk factors for calcific aortic valve disease (CAVD) have been identified, the molecular etiology and subsequent pathogenesis of CAVD have yet to be fully understood. Specifically, it is unclear what biological phenomena underlie the significantly higher occurrence of CAVD in the male population. We hypothesized the existence of intrinsic, cellular-scale differences between male and female valvular interstitial cells (VICs) that contribute to male sex being a risk factor for CAVD. Differences in gene expression profiles between healthy male and female porcine VICs were investigated via microarray analysis. Mean expression values of each probe set in the male samples were compared to the female samples, and biological processes were analyzed for overrepresentation using Gene Ontology term enrichment analysis. There were 183 genes identified as significantly (fold change>2; P<0.05) different in male versus female aortic valve leaflets. Within this significant gene list there were 298 overrepresented biological processes, several of which are relevant to pathways identified in CAVD pathogenesis. In particular, pathway analysis indicated that cellular proliferation, apoptosis, migration, ossification, angiogenesis, inflammation, and extracellular matrix reorganization were all significantly represented in the data set. These gene expression findings also translated into functional differences in VIC behavior in the in vitro environment, as sex-related differences in proliferation and apoptosis were confirmed in VIC populations cultured in vitro. These data suggest that a sex-related propensity for CAVD exists on the cellular level in healthy subjects, a phenomenon that could have significant clinical implications. These findings also strongly support discontinuing the use of mixed-sex VIC cultures, thereby changing the current standard in the field.
Collapse
Affiliation(s)
- Chloe M. McCoy
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dylan Q. Nicholas
- Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
138
|
Handal JA, John TK, Goldstein DT, Khurana JS, Saing M, Braitman LE, Samuel SP. Effect of atorvastatin on the cortical bones of corticosteroid treated rabbits. J Orthop Res 2012; 30:872-6. [PMID: 22161768 DOI: 10.1002/jor.22030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 11/15/2011] [Indexed: 02/04/2023]
Abstract
Osteoporosis ("secondary" osteoporosis) and avascular necrosis (AVN) of the femoral head are well-known adverse effects of corticosteroid therapy. Statins have been reputed to increase bone strength and bone density. In this study, we evaluated the effect of atorvastatin calcium on the flexural properties (3-point bending strength and modulus) of corticosteroid (methylprednisolone acetate) treated rabbit femurs and tibias. Our study hypothesis was that the use of statins would counteract the loss of bone strength caused by corticosteroid treatment. The 40 rabbits were divided into 5 groups: control, corticosteroid alone and corticosteroid combined with oral doses of atorvastatin calcium (2, 10, or 20 mg/day). A daily oral dose of atorvastatin calcium treatment for 70 days weakened the long bones of methylprednisolone acetate treated rabbits irrespective of the dosage (2, 10, or 20 mg). Cortical bone strength was assessed using the 3-point bending test at the end of the study period. A daily oral dose of atorvastatin calcium did not attenuate the loss of cortical bone strength caused by corticosteroid treatment in rabbits. It appeared to decrease that bone strength. If these results hold true in humans, they would have wide applicability given the frequent combined use of corticosteroids and statins in many patients.
Collapse
Affiliation(s)
- John A Handal
- Department of Orthopedic Surgery, Albert Einstein Medical Center, Philadelphia, Pennsylvania 19141, USA.
| | | | | | | | | | | | | |
Collapse
|
139
|
Roosens B, Bala G, Droogmans S, Van Camp G, Breyne J, Cosyns B. Animal models of organic heart valve disease. Int J Cardiol 2012; 165:398-409. [PMID: 22475840 DOI: 10.1016/j.ijcard.2012.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/18/2012] [Accepted: 03/03/2012] [Indexed: 01/23/2023]
Abstract
Heart valve disease is a frequently encountered pathology, related to high morbidity and mortality rates in industrialized and developing countries. Animal models are interesting to investigate the causality, but also underlying mechanisms and potential treatments of human valvular diseases. Recently, animal models of heart valve disease have been developed, which allow to investigate the pathophysiology, and to follow the progression and the potential regression of disease with therapeutics over time. The present review provides an overview of animal models of primary, organic heart valve disease: myxoid age-related, infectious, drug-induced, degenerative calcified, and mechanically induced valvular heart disease.
Collapse
Affiliation(s)
- Bram Roosens
- Centrum Voor Hart- en Vaatziekten (CHVZ), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
140
|
Wen C, Leiyang Z, Fei D, Yifan Z, Xiao R, Li L, Liang Z, Ganggang M, Zirun L, Xin C. Decreased and inactivated nuclear factor kappa B 1 (p50) in human degenerative calcified aortic valve. Cardiovasc Pathol 2012; 22:28-32. [PMID: 22464415 DOI: 10.1016/j.carpath.2012.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Degenerative aortic valve calcification is an important factor in aortic stenosis and incompetence, but the pathogenesis is unclear. The purpose of the present study was to observe the expression of p50 in degenerative calcified aortic valves, which may provide a potential therapeutic target. METHODS Fifteen cases of degenerative calcified aortic valve constituted the experimental group, and 10 aortic valves from patients who had undergone the Bentall operation constituted the control group. RESULTS Immunostaining demonstrated that α-smooth muscle actin was highly expressed in valvular interstitial cells in the experimental group and that the percentage of CD68-positive cells was significantly higher in degenerative calcified aortic valves. Using bone gamma-carboxyglutamate protein as a marker of calcification showed that osteoblasts were significantly increased in the experimental valves. Western blot showed that p50 was more highly expressed and activated in the control group compared with the experimental group. Immunohistochemistry confirmed this finding and showed that p50 was principally localized to the endothelial cells of uncalcified valves, suggesting that it might play an important role in maintaining valve function. CONCLUSIONS Inhibition of p50 activity in endothelial cells might lead to calcification in degenerative calcified aortic valves.
Collapse
Affiliation(s)
- Chen Wen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Affiliated to Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu 210006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, Tetradis S, Demer L, Aghaloo T, Tintut Y. Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res 2012; 27:309-18. [PMID: 21987408 PMCID: PMC3274629 DOI: 10.1002/jbmr.541] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hyperlipidemia increases the risk for generation of lipid oxidation products, which accumulate in the subendothelial spaces of vasculature and bone. Atherogenic high-fat diets increase serum levels of oxidized lipids, which are known to attenuate osteogenesis in culture and to promote bone loss in mice. In this study, we investigated whether oxidized lipids affect bone regeneration and mechanical strength. Wild-type (WT) and hyperlipidemic (Ldlr(-/-)) mice were placed on a high-fat (HF) diet for 13 weeks. Bilateral cranial defects were introduced on each side of the sagittal suture, and 5 weeks postsurgery on the respective diets, the repair/regeneration of cranial bones and mechanical properties of femoral bones were assessed. MicroCT and histological analyses demonstrated that bone regeneration was significantly impaired by the HF diet in WT and Ldlr(-/-) mice. In femoral bone, cortical bone volume fraction (bone volume [BV]/tissue volume [TV]) was significantly reduced, whereas cortical porosity was increased by the HF diet in Ldlr(-/-) but not in WT mice. Femoral bone strength and stiffness, measured by three-point bending analysis, were significantly reduced by the HF diet in Ldlr(-/-), but not in WT mice. Serum analysis showed that the HF diet significantly increased levels of parathyroid hormone, tumor necrosis factor (TNF)-α, calcium, and phosphorus, whereas it reduced procollagen type I N-terminal propeptide, a serum marker of bone formation, in Ldlr(-/-), but not in WT mice. The serum level of carboxyl-terminal collagen crosslinks, a marker for bone resorption, was also 1.7-fold greater in Ldlr(-/-) mice. These findings suggest that hyperlipidemia induces secondary hyperparathyroidism and impairs bone regeneration and mechanical strength.
Collapse
Affiliation(s)
- Flavia Pirih
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Molecular Imaging of Macrophages in Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-011-9118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
143
|
Cockcroft JR, Pedersen ME. β-blockade: benefits beyond blood pressure reduction? J Clin Hypertens (Greenwich) 2012; 14:112-120. [PMID: 22277144 PMCID: PMC8108973 DOI: 10.1111/j.1751-7176.2011.00553.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/07/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
Abstract
Hypertension is a major cardiovascular (CV) risk factor, but several other common conditions, including chronic obstructive pulmonary disease (COPD), osteoporosis, and peripheral arterial disease (PAD), have been shown to independently increase the risk of CV events and death. The physiological basis for an increased CV risk in those conditions probably lies in the augmentations of oxidative stress, endothelial dysfunction, systemic inflammation, and arterial stiffness, which all are also hallmarks of hypertension. β-Blockers have been used for the treatment of hypertension for more than 40 years, but a number of meta-analyses have demonstrated that treatment with these agents may be associated with an increased risk of CV events and mortality. However, the majority of primary prevention β-blocker trials employed atenolol, an earlier-generation β(1) -selective blocker whose mechanism of action is based on a reduction of cardiac output. Available evidence suggests that vasodilatory β-blockers may be free of the deleterious effects of atenolol. The purpose of this review is to summarize pathophysiologic mechanisms thought to be responsible for the increased CV risk associated with COPD, osteoporosis, and PAD, and examine the possible benefits of vasodilatory β-blockade in those conditions. Our examination focused on nebivolol, a β(1) -selective agent with vasodilatory effects most likely mediated via β(3) activation.
Collapse
Affiliation(s)
- John R. Cockcroft
- From the Department of Cardiology, University of Cardiff, University Hospital, Cardiff, UK;
and the
Royal Brompton Hospital, London, UK
| | - Michala E. Pedersen
- From the Department of Cardiology, University of Cardiff, University Hospital, Cardiff, UK;
and the
Royal Brompton Hospital, London, UK
| |
Collapse
|
144
|
Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O'Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 2012; 124:1783-91. [PMID: 22007101 DOI: 10.1161/circulationaha.110.006767] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nalini M Rajamannan
- Division of Cardiology and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Alsalawy AM, Fathi AI, Kamel RA, Ewis I. Correlation between serum osteoprotegerin and atherosclerotic vascular disorders in rheumatoid arthritis patients. THE EGYPTIAN RHEUMATOLOGIST 2012. [DOI: 10.1016/j.ejr.2011.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
146
|
Abstract
Calcific aortic valve disease (CAVD) results in aortic valve stenosis and is one of the most common cardiac diseases in both Western and developing countries. The burden of this disease is expected to increase rapidly in the future, but there are still no relevant pharmacological therapies available and aortic valve replacement remains the sole definite therapy. This review presents an overview of the most common causes of CAVD, followed by current debates and trials related to the onset and progression of this disease. Several differences and similarities between the different causes of CAVD are presented. Additionally, stages of CAVD are compared with stages in atherosclerosis. Finally, future directions for research on CAVD will be discussed.
Collapse
|
147
|
Ladich E, Nakano M, Carter-Monroe N, Virmani R. Pathology of calcific aortic stenosis. Future Cardiol 2011; 7:629-42. [DOI: 10.2217/fca.11.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
148
|
New SEP, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 2011. [PMID: 21617135 DOI: 10.1161/circr esaha.110.234146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional imaging modalities such as computed tomography, although perfectly adept at identifying and quantifying advanced calcification, cannot detect the early stages of this disorder and offer limited insight into the mechanisms of mineral dysregulation. This review presents optical molecular imaging as a promising tool that simultaneously detects pathobiological processes associated with inflammation and early stages of calcification in vivo at the (sub)cellular levels. Research into treatment of cardiovascular calcification is lacking, as shown by clinical trials that have failed to demonstrate the reduction of calcific aortic stenosis. Hence, the need to elucidate the pathways that contribute to cardiovascular calcification and to develop new therapeutic strategies to prevent or reverse calcification has driven investigations into the use of molecular imaging. This review discusses studies that have used molecular imaging methods to advance knowledge of cardiovascular calcification, focusing in particular on the inflammation-dependent mechanisms of arterial and aortic valve calcification.
Collapse
Affiliation(s)
- Sophie E P New
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
149
|
Sider KL, Blaser MC, Simmons CA. Animal models of calcific aortic valve disease. Int J Inflam 2011; 2011:364310. [PMID: 21826258 PMCID: PMC3150155 DOI: 10.4061/2011/364310] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022] Open
Abstract
Calcific aortic valve disease (CAVD), once thought to be a degenerative disease, is now recognized to be an active pathobiological process, with chronic inflammation emerging as a predominant, and possibly driving, factor. However, many details of the pathobiological mechanisms of CAVD remain to be described, and new approaches to treat CAVD need to be identified. Animal models are emerging as vital tools to this end, facilitated by the advent of new models and improved understanding of the utility of existing models. In this paper, we summarize and critically appraise current small and large animal models of CAVD, discuss the utility of animal models for priority CAVD research areas, and provide recommendations for future animal model studies of CAVD.
Collapse
Affiliation(s)
- Krista L Sider
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
| | | | | |
Collapse
|
150
|
Demer L, Tintut Y. The roles of lipid oxidation products and receptor activator of nuclear factor-κB signaling in atherosclerotic calcification. Circ Res 2011; 108:1482-93. [PMID: 21659652 PMCID: PMC3128471 DOI: 10.1161/circresaha.110.234245] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/05/2011] [Indexed: 12/20/2022]
Abstract
This review focuses on the roles of oxylipids and receptor activator of nuclear factor-κB ligand signaling in calcific cardiovascular disease. Both intimal and valvular calcifications are closely associated with atherosclerosis, leading investigators to study the role of atherogenic oxidatively modified lipids (oxylipids). Results have identified the molecular signaling through which oxylipids induce osteogenic differentiation and calcification in vascular cells. A surprising concomitant finding was that, in bona fide osteoblasts from skeletal bone, oxylipids have the opposite effect, ie, inhibiting osteoblastic maturation. This is the basis for the lipid hypothesis of osteoporosis. Oxylipids also induce resorptive osteoclastic cells within the bone environment, raising the question of whether resorptive osteoclasts can be harnessed in the vascular context for cell-based therapy to remove artery wall mineral deposits. The challenge is that vascular cells produce antiosteoclastogenic factors, including the soluble decoy receptor for receptor activator of nuclear factor-κB ligand, possibly accounting for the paucity of resorptive cells and the dominance of mineral in atherosclerotic plaque. These factors may have therapeutic use in osteoclastogenic removal of mineral deposits from arteries.
Collapse
Affiliation(s)
- Linda Demer
- Department of Medicine, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|