101
|
Abstract
INTRODUCTION Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. AREAS COVERED In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). EXPERT OPINION We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE).
Collapse
Affiliation(s)
- Maria C Scimia
- Temple University, Translational Medicine/Pharmacology , 3500 N. Broad Street, Philadelphia, 19140 , USA
| | | | | |
Collapse
|
102
|
Neuber C, Müller OJ, Hansen FC, Eder A, Witten A, Rühle F, Stoll M, Katus HA, Eschenhagen T, El-Armouche A. Paradoxical Effects on Force Generation after Efficient β1-Adrenoceptor Knockdown in Reconstituted Heart Tissue. J Pharmacol Exp Ther 2014; 349:39-46. [DOI: 10.1124/jpet.113.210898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
103
|
Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P, Ritterhoff J, Jungmann A, Remppis AB, Stangassinger M, Koch WJ, Katus HA, Müller OJ, Most P, Pleger ST. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther 2013; 21:131-8. [PMID: 24305416 DOI: 10.1038/gt.2013.63] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/29/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
Low levels of the molecular inotrope S100A1 are sufficient to rescue post-ischemic heart failure (HF). As a prerequisite to clinical application and to determine the safety of myocardial S100A1 DNA-based therapy, we investigated the effects of high myocardial S100A1 expression levels on the cardiac contractile function and occurrence of arrhythmia in a preclinical large animal HF model. At 2 weeks after myocardial infarction domestic pigs presented significant left ventricular (LV) contractile dysfunction. Retrograde application of AAV6-S100A1 (1.5 × 10(13) tvp) via the anterior cardiac vein (ACV) resulted in high-level myocardial S100A1 protein peak expression of up to 95-fold above control. At 14 weeks, pigs with high-level myocardial S100A1 protein overexpression did not show abnormalities in the electrocardiogram. Electrophysiological right ventricular stimulation ruled out an increased susceptibility to monomorphic ventricular arrhythmia. High-level S100A1 protein overexpression in the LV myocardium resulted in a significant increase in LV ejection fraction (LVEF), albeit to a lesser extent than previously reported with low S100A1 protein overexpression. Cardiac remodeling was, however, equally reversed. High myocardial S100A1 protein overexpression neither increases the occurrence of cardiac arrhythmia nor causes detrimental effects on myocardial contractile function in vivo. In contrast, this study demonstrates a broad therapeutic range of S100A1 gene therapy in post-ischemic HF using a preclinical large animal model.
Collapse
Affiliation(s)
- C Weber
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - I Neacsu
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - B Krautz
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - P Schlegel
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - S Sauer
- Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - P Raake
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - J Ritterhoff
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - A Jungmann
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - A B Remppis
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - M Stangassinger
- Institute for Animal Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - W J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - H A Katus
- 1] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany [2] Deutsches Zentrum für Herz-/Kreislaufforschung, University Hospital Heidelberg, Heidelberg, Germany
| | - O J Müller
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - P Most
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany [3] Deutsches Zentrum für Herz-/Kreislaufforschung, University Hospital Heidelberg, Heidelberg, Germany [4] Laboratory for Cardiac Stem Cell and Gene Therapy, Temple University School of Medicine, Philadelphia, PA, USA
| | - S T Pleger
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
104
|
Structural insights into G protein-coupled receptor kinase function. Curr Opin Cell Biol 2013; 27:25-31. [PMID: 24680427 DOI: 10.1016/j.ceb.2013.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022]
Abstract
The atomic structure of a protein can greatly advance our understanding of molecular recognition and catalysis, properties of fundamental importance in signal transduction. However, a single structure is incapable of fully describing how a protein functions, particularly when allostery is involved. Recent advances in the structure and function of G protein-coupled receptor (GPCR) kinases (GRKs) have concentrated on the mechanism of their inhibition by small and large molecules. These studies have generated a wealth of new information on the conformational flexibility of these enzymes, which opens new avenues for the development of selective chemical probes and provides deeper insights into the molecular basis for activation of these enzymes by GPCRs and phospholipids.
Collapse
|
105
|
Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJG. Structural and functional analysis of g protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog. Mol Pharmacol 2013; 85:237-48. [PMID: 24220010 DOI: 10.1124/mol.113.089631] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently we identified the serotonin reuptake inhibitor paroxetine as an inhibitor of G protein-coupled receptor kinase 2 (GRK2) that improves cardiac performance in live animals. Paroxetine exhibits up to 50-fold selectivity for GRK2 versus other GRKs. A better understanding of the molecular basis of this selectivity is important for the development of even more selective and potent small molecule therapeutics and chemical genetic probes. We first sought to understand the molecular mechanisms underlying paroxetine selectivity among GRKs. We directly measured the K(D) for paroxetine and assessed its mechanism of inhibition for each of the GRK subfamilies and then determined the atomic structure of its complex with GRK1, the most weakly inhibited GRK tested. Our results suggest that the selectivity of paroxetine for GRK2 largely reflects its lower affinity for adenine nucleotides. Thus, stabilization of off-pathway conformational states unique to GRK2 will likely be key for the development of even more selective inhibitors. Next, we designed a benzolactam derivative of paroxetine that has optimized interactions with the hinge of the GRK2 kinase domain. The crystal structure of this compound in complex with GRK2 confirmed the predicted interactions. Although the benzolactam derivative did not significantly alter potency of inhibition among GRKs, it exhibited 20-fold lower inhibition of serotonin reuptake. However, there was an associated increase in the potency for inhibition of other AGC kinases, suggesting that the unconventional hydrogen bond formed by the benzodioxole ring of paroxetine is better accommodated by GRKs.
Collapse
Affiliation(s)
- Kristoff T Homan
- Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
| | | | | | | | | | | |
Collapse
|
106
|
Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24:906-13. [PMID: 24164238 PMCID: PMC3815036 DOI: 10.1089/hum.2013.2515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The naturally occurring adeno-associated virus (AAV) isolates display diverse tissue tropisms in different hosts. Robust cardiac transduction in particular has been reported for certain AAV strains. Successful applications of these AAV strains in preclinical and clinical settings with a focus on treating cardiovascular disease continue to be reported. At the same time, these studies have highlighted challenges such as cross-species variability in AAV tropism, transduction efficiency, and immunity. Continued progress in our understanding of AAV capsid structure and biology has provided the rationale for designing improved vectors that can possibly address these concerns. The current report provides an overview of cardiotropic AAV, existing gaps in our knowledge, and newly engineered AAV strains that are viable candidates for the cardiac gene therapy clinic.
Collapse
Affiliation(s)
- Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| | - R. Jude Samulski
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| |
Collapse
|
107
|
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA.
| | | | | |
Collapse
|
108
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Germany
| | | | | | | | | | | | | |
Collapse
|
109
|
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4:264. [PMID: 24133451 PMCID: PMC3783981 DOI: 10.3389/fphys.2013.00264] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022] Open
Abstract
Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs). β-adrenergic receptors (βARs) are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS). In compromised conditions such as heart failure (HF), chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data accumulated over the last two decades indicates that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2), which was originally known as βARK1 (for βAR kinase). GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition; in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
110
|
Sorriento D, Fusco A, Ciccarelli M, Rungi A, Anastasio A, Carillo A, Dorn GW, Trimarco B, Iaccarino G. Mitochondrial G protein coupled receptor kinase 2 regulates proinflammatory responses in macrophages. FEBS Lett 2013; 587:3487-94. [PMID: 24036448 DOI: 10.1016/j.febslet.2013.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 01/09/2023]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) levels are elevated in inflammation but its role is not clear yet. Here we show that GRK2 expression is dependent on NFκB transcriptional activity. In macrophages, LPS induces GRK2 accumulation in mitochondria increasing biogenesis. The overexpression of the carboxy-terminal domain of GRK2 (βARK-ct), known to displace GRK2 from plasma membranes, induces earlier localization of GRK2 to mitochondria in response to LPS leading to increased mt-DNA transcription and reduced ROS production and cytokine expression. Our study shows the relevance of GRK2 subcellular localization in macrophage biology and its potential therapeutic properties in inflammation.
Collapse
Affiliation(s)
- D Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Cardiac progenitor cells engineered with βARKct have enhanced β-adrenergic tolerance. Mol Ther 2013; 22:178-85. [PMID: 24002692 DOI: 10.1038/mt.2013.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
Stem cell survival and retention in myocardium after injury following adoptive transfer is low. Elevated catecholamine levels coinciding with myocardial injury adversely affect cardiac progenitor cell (CPC) survival. The G protein-coupled receptor kinase 2 (GRK2)-derived inhibitory peptide, βARKct, enhance myocyte contractility, survival, and normalize the neurohormonal axis in failing heart, however salutary effects of βARKct on CPC survival and proliferation are unknown. Herein, we investigated whether the protective effects of βARKct expression seen in the failing heart relate to CPCs. Modified CPCs expressing βARKct enhanced AKT/eNOS signaling through protective β2-adrenergic receptors (β2-ARs). In addition, to the actions of βARKct expression on β2- AR signaling, pharmacologic inhibition of GRK2 also increased β2-AR signaling in nonengineered CPCs (lacking βARKct) but had limited effects in βARKct engineered CPCs providing evidence for the strength of the βARKct in inhibiting GRK2 in these cells. Increased proliferation and metabolic activity were observed in βARKct-engineered CPCs following catecholamine stimulation indicating improved adrenergic tolerance. βARKct modification of CPCs increased survival and proliferation following adoptive transfer in an acute myocardial infarction model concomitant with increased expression of β-AR. Thus, βARKct engineering of CPCs promotes survival and proliferation of injected cells following myocardial infarction, which includes improved β-adrenergic tolerance essential for stem cell survival.
Collapse
|
112
|
Gao WQ, Han CG, Lu XC, Liu YX, Hui HP, Wang H. GRK 2 level in peripheral blood lymphocytes of elderly patients with acute myocardial infarction. J Geriatr Cardiol 2013; 10:281-285. [PMID: 24133517 PMCID: PMC3796703 DOI: 10.3969/j.issn.1671-5411.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/22/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE To investigate the G protein-coupled receptor kinase 2 (GRK 2) level in peripheral blood lymphocytes with cardiac function in elderly patients with acute myocardial infarction. METHODS This study enrolled 40 patients with acute ST-segment elevation myocardial infarction (STEMI) and 40 patients with unstable angina. All patients were 65 years or older. Cardiac function was evaluated by echocardiography, and the GRK 2 level in peripheral blood lymphocytes was measured. Patients with STEMI were followed up for 2 years. RESULTS The GRK 2 level in peripheral blood lymphocytes was significantly higher in patients with STEMI than in patients with unstable angina, and was negatively correlated with left ventricular ejection fraction, cardiac output, stroke volume, and left ventricular fractional shortening. The GRK 2 level was significantly elevated in some patients with acute STEMI and poor cardiac function. CONCLUSIONS Increased GRK 2 level in patients with acute STEMI may contribute to poor myocardial systolic function and myocardial remodeling. Measurement of the GRK 2 level in peripheral blood lymphocytes may assist in the evaluation of cardiac function and myocardial remodeling in elderly patients with acute STEMI.
Collapse
Affiliation(s)
- Wen-Qian Gao
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | | | - Xiao-Chun Lu
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Xue Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hai-Peng Hui
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Wang
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
113
|
Filigheddu F. Genetic prediction of heart failure incidence, prognosis and beta-blocker response. Mol Diagn Ther 2013; 17:205-19. [PMID: 23592012 DOI: 10.1007/s40291-013-0035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a widespread syndrome due to left ventricular dysfunction with high mortality, morbidity and health-care costs. Beta-blockers, together with diuretics and ACE-inhibitors or angiotensin receptor blockers, are a cornerstone of HF therapy, as they reduce mortality and morbidity. Nevertheless, their efficacy varies among patients, and genetics is likely to be one of the modifying factors. In this article, literature on the role of candidate genes on the development of HF, its prognosis and pharmacogenomics of β-blockers in patients with HF is reviewed. The available findings do not support, at the present time, a role for genetic tests in the treatment of HF. More large-scale genome-wide studies with adequate methodology and statistical analysis are required before considering genetic tailoring of HF therapy in patients with systolic HF.
Collapse
Affiliation(s)
- Fabiana Filigheddu
- Department of Clinical and Experimental Medicine, University of Sassari, Viale S.Pietro 8, 07100 Sassari, Italy.
| |
Collapse
|
114
|
Tang T, Hammond HK. Gene transfer for congestive heart failure: update 2013. Transl Res 2013; 161:313-20. [PMID: 23261978 PMCID: PMC3602385 DOI: 10.1016/j.trsl.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 01/08/2023]
Abstract
Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, University of California San Diego, and VA San Diego Healthcare System, San Diego, Calif., USA
| | | |
Collapse
|
115
|
Bojic T, Sudar E, Mikhailidis D, Alavantic D, Isenovic E. The role of G protein coupled receptor kinases in neurocardiovascular pathophysiology. Arch Med Sci 2012; 8:970-7. [PMID: 23319968 PMCID: PMC3542506 DOI: 10.5114/aoms.2012.29996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 12/15/2022] Open
Abstract
In coronary artery disease the G protein related kinases (GRKs) play a role in desensitization of β-adrenoreceptors (AR) after coronary occlusion. Targeted deletion and lowering of cardiac myocyte GRK-2 decreases the risk of post-ischemic heart failure (HF). Studies carried out in humans confirm the role of GRK-2 as a marker for the progression of HF after myocardial infarction (MI). The level of GRK-2 could be an indicator of β-AR blocker efficacy in patients with acute coronary syndrome. Elevated levels of GRK-2 are an early ubiquitous consequence of myocardial injury. In hypertension an increased level of GRK-2 was reported in both animal models and human studies. The role of GRKs in vagally mediated disorders such as vasovagal syncope and atrial fibrillation remains controversial. The role of GRKs in the pathogenesis of neurocardiological diseases provides an insight into the molecular pathogenesis process, opens potential therapeutic options and suggests new directins for scientific research.
Collapse
Affiliation(s)
- Tijana Bojic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Dimitri Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital Campus, University College London Medical School, UK
| | - Dragan Alavantic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Esma Isenovic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
116
|
Fang H, Lai NC, Gao MH, Miyanohara A, Roth DM, Tang T, Hammond HK. Comparison of adeno-associated virus serotypes and delivery methods for cardiac gene transfer. Hum Gene Ther Methods 2012; 23:234-41. [PMID: 22966786 PMCID: PMC3555516 DOI: 10.1089/hgtb.2012.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/08/2012] [Indexed: 01/28/2023] Open
Abstract
Cardiac gene transfer is a potentially useful strategy for cardiovascular diseases. The adeno-associated virus (AAV) is a common vector to obtain transgene expression in the heart. Initial studies conducted in rodents used indirect intracoronary delivery for cardiac gene transfer. More recently AAV vectors with so-called cardiac tropism have enabled significant cardiac transgene expression following intravenous injection. However, a direct comparison of intravenous versus intracoronary delivery with rigorous quantification of cardiac transgene expression has not been conducted. In the present study we tested the hypothesis that intracoronary AAV delivery would be superior to intravenous delivery vis-à-vis cardiac transgene expression. We compared intravenous and intracoronary delivery of AAV5, AAV6, and AAV9 (5×10(11) genome copies per mouse). Using enhanced green fluorescent protein as a reporter, we quantified transgene expression by fluorescence intensity and Western blotting. Quantitative polymerase chain reaction (PCR) was also performed to assess vector DNA copies, employing primers against common sequences on AAV5, AAV6, and AAV9. Intracoronary delivery resulted in 2.6- to 28-fold higher transgene protein expression in the heart 3 weeks after AAV injection compared to intravenous delivery depending on AAV serotype. The highest level of cardiac gene expression was achieved following intracoronary delivery of AAV9. Intracoronary delivery of AAV9 is a preferred method for cardiac gene transfer.
Collapse
Affiliation(s)
- Hongfei Fang
- Department of Medicine, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Ngai Chin Lai
- Department of Medicine, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Mei Hua Gao
- Department of Medicine, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Atsushi Miyanohara
- Department of Medicine, University of California San Diego, San Diego, California
| | - David M. Roth
- VA San Diego Healthcare System, San Diego, California
- Department of Anesthesiology, University of California San Diego, San Diego, California
| | - Tong Tang
- Department of Medicine, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - H. Kirk Hammond
- Department of Medicine, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
117
|
Abstract
Congestive heart failure is an inexorable disease associated with unacceptably high morbidity and mortality. Preclinical results indicate that gene transfer using various proteins is a safe and effective approach for increasing function of the failing heart. In the current review, we provide a summary of cardiac gene transfer in general and summarize findings using adenylyl cyclase 6 as therapeutic gene in the failing heart. We also discuss the potential usefulness of a new treatment for congestive heart failure, paracrine-based gene transfer.
Collapse
Affiliation(s)
- T Tang
- Department of Medicine, University of California San Diego, CA, USA
| | | | | |
Collapse
|
118
|
Abstract
Heart failure is a leading cause of morbidity and mortality with a prevalence that is rising throughout the world. Currently the pharmaceutical therapy of heart failure is mainly based on inhibition of the neurohumoral pathways that are activated secondary to the deterioration of cardiac function, and diuretics to alleviate the salt and water overload. With our increasing understanding of the pathophysiology of heart failure, it is now clear that the macroscopic and functional changes in the failing heart result from remodeling at the cellular, interstitial, and molecular levels. Therefore, emerging therapies propose to intervene directly in the remodeling process at the cellular and the molecular levels. Here, several experimental strategies that aim to correct the abnormalities in receptor and post-receptor-function, calcium handling, excitation and contraction coupling, signaling, and changes in the extra-cellular matrix in the failing heart will be discussed. These novel approaches, aiming to reverse the remodeling process at multiple levels, may appear on the clinical arena in the coming years.
Collapse
|
119
|
Reinkober J, Tscheschner H, Pleger ST, Most P, Katus HA, Koch WJ, Raake PWJ. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther 2012; 19:686-93. [PMID: 22336718 DOI: 10.1038/gt.2012.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a common pathological end point for several cardiac diseases. Despite reasonable achievements in pharmacological, electrophysiological and surgical treatments, prognosis for chronic HF remains poor. Modern therapies are generally symptom oriented and do not currently address specific intracellular molecular signaling abnormalities. Therefore, new and innovative therapeutic approaches are warranted and, ideally, these could at least complement established therapeutic options if not replace them. Gene therapy has potential to serve in this regard in HF as vectors can be directed toward diseased myocytes and directly target intracellular signaling abnormalities. Within this review, we will dissect the adrenergic system contributing to HF development and progression with special emphasis on G-protein-coupled receptor kinase 2 (GRK2). The levels and activity of GRK2 are increased in HF and we and others have demonstrated that this kinase is a major molecular culprit in HF. We will cover the evidence supporting gene therapy directed against myocardial as well as adrenal GRK2 to improve the function and structure of the failing heart and how these strategies may offer complementary and synergistic effects with the existing HF mainstay therapy of β-adrenergic receptor antagonism.
Collapse
Affiliation(s)
- J Reinkober
- Department of Internal Medicine III, Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|