101
|
Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, Dawson VL, Dawson TM, Moore DJ. GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet 2010; 6:e1000902. [PMID: 20386743 PMCID: PMC2851569 DOI: 10.1371/journal.pgen.1000902] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/09/2010] [Indexed: 11/18/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson's disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker's yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human alpha-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration.
Collapse
Affiliation(s)
- Yulan Xiong
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Candice E. Coombes
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Austin Kilaru
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xiaojie Li
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Aaron D. Gitler
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William J. Bowers
- Center for Neural Development and Disease, Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Valina L. Dawson
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ted M. Dawson
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (TMD); (DJM)
| | - Darren J. Moore
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (TMD); (DJM)
| |
Collapse
|
102
|
Schengrund CL. Lipid rafts: Keys to neurodegeneration. Brain Res Bull 2010; 82:7-17. [DOI: 10.1016/j.brainresbull.2010.02.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 01/11/2023]
|
103
|
Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J Neurosci 2010; 30:1788-97. [PMID: 20130188 DOI: 10.1523/jneurosci.5604-09.2010] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.
Collapse
|
104
|
Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H, Hattori N. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 2010; 584:1073-9. [PMID: 20153330 DOI: 10.1016/j.febslet.2010.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive form of Parkinson's disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial integrity and functions. Here, we show that PINK1 in combination with parkin results in the perinuclear mitochondrial aggregation followed by their elimination. This elimination is reduced in cells expressing PINK1 mutants with wild-type parkin. Although wild-type PINK1 localizes in aggregated mitochondria, PINK1 mutants localization remains diffuse and mitochondrial elimination is not observed. This phenomenon is not observed in autophagy-deficient cells. These results suggest that mitophagy controlled by the PINK1/parkin pathway might be associated with PD pathogenesis.
Collapse
Affiliation(s)
- Sumihiro Kawajiri
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
105
|
Shen-Tu G, Schauer DB, Jones NL, Sherman PM. Detergent-resistant microdomains mediate activation of host cell signaling in response to attaching-effacing bacteria. J Transl Med 2010; 90:266-81. [PMID: 19997063 DOI: 10.1038/labinvest.2009.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes outbreaks of bloody diarrhea and the hemolytic-uremic syndrome. EHEC intimately adheres to epithelial cells, effaces microvilli and induces attaching-effacing (AE) lesions. Detergent-resistant microdomains (lipid rafts) serve as membrane platforms for the recruitment of signaling complexes to mediate host responses to infection. The aim of this study was to define the role of lipid rafts in activating signal transduction pathways in response to AE bacterial pathogens. Epithelial cell monolayers were infected with EHEC (MOI 100:1, 3 h, 37 degrees C) and lipid rafts isolated by buoyant density ultracentrifugation. Phosphoinositide 3-kinase (PI3K) localization to lipid rafts was confirmed using PI3K and anti-caveolin-1 antibodies. Mice with cholesterol storage disease Niemann-Pick, type C were used as in vivo models to confirm the role of lipid rafts in mediating signaling response to AE organisms. In contrast to uninfected cells, PI3K was recruited to lipid rafts in response to EHEC infection. Metabolically active bacteria and cells with intact cholesterol-rich microdomains were necessary for the recruitment of second messengers to lipid rafts. Recruitment of PI3K to lipid rafts was independent of the intimin (eaeA) gene, type III secretion system, and production of Shiga-like toxins. Colonization of NPC(-/-) colonic mucosa by Citrobacter rodentium and AE lesion formation were both delayed, compared with wild-type mice infected with the murine-specific AE bacterial pathogen. C. rodentium-infected NPC(-/-) mice had reduced colonic epithelial hyperplasia (64+/-8.251 vs 112+/-2.958 microm; P<0.05) and decreased secretion of IFN-gamma (17.6+/-17.6 vs 71+/-26.3 pg/ml, P<0.001). Lipid rafts mediate host cell signal transduction responses to AE bacterial infections both in vitro and in vivo. These findings advance the current understanding of microbial-eukaryotic cell interactions in response to enteric pathogens that hijack signaling responses mediated through lipid rafts.
Collapse
Affiliation(s)
- Grace Shen-Tu
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
106
|
Hsu CH, Chan D, Greggio E, Saha S, Guillily MD, Ferree A, Raghavan K, Shen GC, Segal L, Ryu H, Cookson MR, Wolozin B. MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J Neurochem 2010; 112:1593-604. [PMID: 20067578 DOI: 10.1111/j.1471-4159.2010.06568.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are prevalent causes of late-onset Parkinson's disease. Here, we show that LRRK2 binds to MAPK kinases (MKK) 3, 6, and 7, and that LRRK2 is able to phosphorylate MKK3, 6 and 7. Over-expression of LRRK2 and MKK6 increased the steady state levels of each protein beyond that observed with over-expression of either protein alone. Co-expression increased levels of MKK6 in the membrane more than in the cytoplasm. The increased expression of LRRK2 and MKK6 requires MKK6 activity. The disease-linked LRRK2 mutations, G2019S, R1441C and I2020T, enhance binding of LRRK2 to MKK6. This interaction was further supported by in vivo studies in C. elegans. RNAi knockdown in C. elegans of the endogenous orthologs for MKK6 or p38, sek-1 and pmk-1, abolishes LRRK2-mediated protection against mitochondrial stress. These results were confirmed by deletion of sek-1 in C. elegans. These data demonstrate that MKKs and LRRK2 function in similar biological pathways, and support a role for LRRK2 in modulating the cellular stress response.
Collapse
Affiliation(s)
- Cindy H Hsu
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118-2526, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Shadrina MI, Slominsky PA, Limborska SA. Molecular mechanisms of pathogenesis of Parkinson's disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:229-66. [PMID: 20460187 DOI: 10.1016/s1937-6448(10)81006-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a complex disease characterized by a progressive degeneration of nigrostriatal dopaminergic neurons. The development of this condition is defined by the interaction between the genetic constitution of an organism and environmental factors. Analysis of the genes associated with development of monogenic forms of disease has allowed pointing out several mechanisms involved in Parkinson's disease pathogenesis such as the ubiquitin-proteasome degradation, differentiation of dopaminergic neurons, mitochondrial dysfunction, oxidative damage, and others. In this review, a variety of data which throw light on molecular mechanisms underlying pathogenesis of Parkinson's disease will be considered.
Collapse
Affiliation(s)
- M I Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
108
|
Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 2009; 18:4022-34. [PMID: 19640926 PMCID: PMC2758136 DOI: 10.1093/hmg/ddp346] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022] Open
Abstract
Leucine rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease (PD) although LRRK2 function remains unclear. We report a new role for LRRK2 in regulating autophagy and describe the recruitment of LRRK2 to the endosomal-autophagic pathway and specific membrane subdomains. Using a novel human genomic reporter cellular model, we found LRRK2 to locate to membrane microdomains such as the neck of caveolae, microvilli/filopodia and intraluminal vesicles of multivesicular bodies (MVBs). In human brain and in cultured human cells LRRK2 was present in cytoplasmic puncta corresponding to MVBs and autophagic vacuoles (AVs). Expression of the common R1441C mutation from a genomic DNA construct caused impaired autophagic balance evident by the accumulation of MVBs and large AVs containing incompletely degraded material and increased levels of p62. Furthermore, the R1441C mutation induced the formation of skein-like abnormal MVBs. Conversely, LRRK2 siRNA knockdown increased autophagic activity and prevented cell death caused by inhibition of autophagy in starvation conditions. The work necessitated developing a new, more efficient recombineering strategy, which we termed Sequential insertion of Target with ovErlapping Primers (STEP) to seamlessly fuse the green fluorescent protein-derivative YPet to the human LRRK2 protein in the LRRK2 genomic locus carried by a bacterial artificial chromosome. Taken together our data demonstrate the functional involvement of LRRK2 in the endosomal-autophagic pathway and the recruitment to specific membrane microdomains in a physiological human gene expression model suggesting a novel function for this important PD-related protein.
Collapse
Affiliation(s)
| | - Helen Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Michele M.P. Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Ruxandra Mutihac
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Lara Lourenço Venda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Olaf Ansorge
- Department of Neuropathology, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
109
|
Ohta E, Katayama Y, Kawakami F, Yamamoto M, Tajima K, Maekawa T, Iida N, Hattori S, Obata F. I(2020)T leucine-rich repeat kinase 2, the causative mutant molecule of familial Parkinson's disease, has a higher intracellular degradation rate than the wild-type molecule. Biochem Biophys Res Commun 2009; 390:710-5. [PMID: 19833102 DOI: 10.1016/j.bbrc.2009.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been identified as the causal gene for autosomal dominant familial Parkinson's disease (PD), although the mechanism of neurodegeneration involving the mutant LRRK2 molecules remains unknown. In the present study, we found that the protein level of transfected I(2020)T mutant LRRK2 was significantly lower than that of wild-type and G(2019)S mutant LRRK2, although the intracellular localization of the I(2020)T and wild-type molecules did not differ. Pulse-chase experiments proved that the I(2020)T LRRK2 molecule has a higher degradation rate than wild-type or G(2019)S LRRK2. Upon addition of proteasome and lysosome inhibitors, the protein level of I(2020)T mutant LRRK2 reached that of the wild-type. These results indicate that I(2020)T mutant LRRK2 is more susceptible to post-translational degradation than the wild-type molecule. Our results indicate a novel molecular feature characteristic to I(2020)T LRRK2, and provide a new insight into the mechanism of neurodegeneration caused by LRRK2.
Collapse
Affiliation(s)
- Etsuro Ohta
- Division of Clinical Immunology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, complex, multidomain protein containing kinase and GTPase enzymatic activities and multiple protein-protein interaction domains. Mutations linked to autosomal dominant forms of Parkinson's disease result in amino acid changes throughout the protein and alterations in both its enzymatic properties and interactions. The best characterized mutation to date, G2019S, leads to increased kinase activity, and mutations in the GTPase domain, such as R1441C and R1441G, have also been reported to influence kinase activity. Therefore, an examination of LRRK2's properties as a kinase is important for understanding the mechanisms underlying the disorder and has the potential to lead to therapeutics. These findings also suggest that there may be complex interplay between the functional domains of LRRK2. Here, we review LRRK2's biochemical functions based on structural and kinetic studies of the enzymatic domains, its potential substrates and the role of its interactions. Despite the field's embryonic understanding of the true relevance of these substrates and interactions, initial studies are providing clues with respect to its pathophysiological functions. Together, these findings should increase our understanding of mechanisms underlying Parkinson's disease and place LRRK2 as a unique molecular target for effective therapeutic development.
Collapse
|
111
|
Abstract
The detailed characterization of the function of leucine-rich repeat kinase 2 (LRRK2) may provide insight into the molecular basis of neurodegeneration in Parkinson's disease (PD) because mutations in LRRK2 cause a phenotype with strong overlap to typical late-onset disease and LRRK2 mutations are responsible for significant proportions of PD in some populations. The complexity of large multidomain protein kinases such as LRRK2 challenges traditional functional approaches, although initial studies have successfully defined the basic mechanisms of enzyme activity with respect to the putative effects of pathogenic mutations on kinase activity. The role of LRRK2 in cells remains elusive, with potential function in mitogen-activated protein kinase pathways, protein translation control, programmed cell death pathways and activity in cytoskeleton dynamics. The initial focus on LRRK2-kinase-dependent phenomena places emphasis on the discovery of LRRK2 kinase substrates, although candidate substrates are so far confined to in vitro assays. Here, hypothetical mechanisms for LRRK2-mediated cell death and kinase activation are proposed. As a promising target for neuroprotection strategies in PD, in vitro and in vivo models that accurately demonstrate LRRK2's function relevant to neurodegeneration will aide in the identification of molecules with the highest chance of success in the clinic.
Collapse
Affiliation(s)
- Philip J Webber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
112
|
Hatano T, Kubo SI, Sato S, Hattori N. Pathogenesis of familial Parkinson's disease: new insights based on monogenic forms of Parkinson's disease. J Neurochem 2009; 111:1075-93. [PMID: 19780902 DOI: 10.1111/j.1471-4159.2009.06403.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common movement disorders caused by the loss of dopaminergic neuronal cells. The molecular mechanisms underlying neuronal degeneration in PD remain unknown; however, it is now clear that genetic factors contribute to the pathogenesis of this disease. Approximately, 5% of patients with clinical features of PD have clear familial etiology, which show a classical recessive or dominant Mendelian mode of inheritance. Over the decade, more than 15 loci and 11 causative genes have been identified so far and many studies shed light on their implication in not only monogenic but also sporadic form of PD. Recent studies revealed that PD-associated genes play important roles in cellular functions, such as mitochondrial functions, ubiquitin-proteasomal system, autophagy-lysosomal pathway and membrane trafficking. Furthermore, the proteins encoded by PD-associated genes can interact with each other and such gene products may share a common pathway that leads to nigral degeneration. However, their precise roles in the disease and their normal functions remain poorly understood. In this study, we review recent progress in knowledge about the genes associated with familial PD.
Collapse
Affiliation(s)
- Taku Hatano
- Department of Neurology, Juntendo University, School of Medicine, Hongo Bunkyo Tokyo, Japan
| | | | | | | |
Collapse
|
113
|
Paisán-Ruiz C. LRRK2gene variation and its contribution to Parkinson disease. Hum Mutat 2009; 30:1153-60. [DOI: 10.1002/humu.21038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
114
|
Benedetto A, Au C, Aschner M. Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson’s Disease. Chem Rev 2009; 109:4862-84. [DOI: 10.1021/cr800536y] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandre Benedetto
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Catherine Au
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| |
Collapse
|
115
|
Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 2009; 4:24. [PMID: 19500376 PMCID: PMC2701947 DOI: 10.1186/1750-1326-4-24] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/05/2009] [Indexed: 12/21/2022] Open
Abstract
While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.
Collapse
|
116
|
Gandhi PN, Chen SG, Wilson-Delfosse AL. Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson's disease. J Neurosci Res 2009; 87:1283-95. [PMID: 19025767 DOI: 10.1002/jnr.21949] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, with a prevalence of more than 1% after the age of 65 years. Mutations in the gene encoding leucine-rich repeat kinase-2 (LRRK2) have recently been linked to autosomal dominant, late-onset PD that is clinically indistinguishable from typical, idiopathic disease. LRRK2 is a multidomain protein containing several protein interaction motifs as well as dual enzymatic domains of GTPase and protein kinase activities. Disease-associated mutations are found throughout the multidomain structure of the protein. LRRK2, however, is unique among the PD-causing genes, because a missense mutation, G2019S, is a frequent determinant of not only familial but also sporadic PD. Thus, LRRK2 has emerged as a promising therapeutic target for combating PD. In this Mini-Review, we look at the current state of knowledge regarding the domain structure, amino acid substitutions, and potential functional roles of LRRK2.
Collapse
Affiliation(s)
- Payal N Gandhi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
117
|
Aivatiadou E, Ripolone M, Brunetti F, Berruti G. cAMP-Epac2-mediated activation of Rap1 in developing male germ cells: RA-RhoGAP as a possible direct down-stream effector. Mol Reprod Dev 2009; 76:407-16. [PMID: 18937323 DOI: 10.1002/mrd.20963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rap1 is a small GTPase that functions as a positional signal and organizer of cell architecture. Recently Rap1 is emerged to play a critical role during sperm differentiation since its inactivation in haploid cells leads to a premature release of spermatids from the supporting Sertoli cell resulting in male infertility. How Rap1 is activated in spermatogenic cells has not yet been determined. Our objective was to investigate on a possible cAMP-mediated activation of Rap1 employing a cAMP analogue selective to Epac, the Rap1 activator directly responsive to cAMP, for stimulating cultured testis germ cells. Here we provide biochemical, cellular and functional evidence that the Epac variant known as Epac2 is expressed as both a transcript and a protein and that it is able to promote Rap1 activation in the cultured cells. A time course immunofluorescence analysis carried out on stimulated cells revealed the translocation of endogenous Epac2, which is cytosolic, towards the site where Rap1 is located, i.e., the Golgi complex, thus documenting the effective Rap1-Epac2 protein interaction 'in vivo' leading to Rap1-GTP loading. A combination of biochemical and molecular techniques supported the immunofluorescence data. The search for the presence of a putative Rap1 downstream effector, described in differentiating somatic cells as a target of cAMP-Epac-activated Rap1, revealed the presence in spermatogenic cells of RA-RhoGAP, a Rap1-activated Rho GTPase-activating protein. Taken together, our results, obtained with endogenously expressed proteins, are consistent with a cAMP/Epac2/Rap1-mediated signaling that could exert its action, among others, through RA-RhoGAP to promote the progression of spermatogenesis.
Collapse
Affiliation(s)
- Evanthia Aivatiadou
- Laboratory of Cellular and Molecular Biology of Reproduction, Department of Biology, University of Milan, Italy
| | | | | | | |
Collapse
|
118
|
Abstract
Mutations in the gene encoding LRRK2 (leucine-rich repeat kinase 2) were first identified in 2004 and have since been shown to be the single most common cause of inherited Parkinson’s disease. The protein is a large GTP-regulated serine/threonine kinase that additionally contains several protein–protein interaction domains. In the present review, we discuss three important, but unresolved, questions concerning LRRK2. We first ask: what is the normal function of LRRK2? Related to this, we discuss the evidence of LRRK2 activity as a GTPase and as a kinase and the available data on protein–protein interactions. Next we raise the question of how mutations affect LRRK2 function, focusing on some slightly controversial results related to the kinase activity of the protein in a variety of in vitro systems. Finally, we discuss what the possible mechanisms are for LRRK2-mediated neurotoxicity, in the context of known activities of the protein.
Collapse
|
119
|
LRRK2 and neurodegeneration. Acta Neuropathol 2009; 117:227-46. [PMID: 19142648 DOI: 10.1007/s00401-008-0478-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/24/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 gene (PARK8/LRRK2) encoding the protein Lrrk2 are causative of inherited and sporadic Parkinson's disease (PD) with phenotypic manifestations of frontotemporal lobar degeneration, corticobasal degeneration and associated motor neuron disease in some patients, and with variable penetrance. Neuropathology is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta in all cases with accompanying Lewy pathology, or tau pathology or without intraneuronal inclusions, thus indicating that mutations in LRRK2 are not always manifested as Lewy body disease (LBD) or as alpha-synucleinopathy. Molecular studies have not disclosed clear association between nerve cell degeneration and modifications in the kinase activity of Lrrk2, and the pathogenesis of LRRK2 mutations remains unknown. Several morphological studies have suggested that Lrrk2 is a component of Lewy bodies and aberrant neurites in sporadic PD and Dementia with Lewy bodies, whereas other studies have indicated that Lrrk2 does not participate in Lewy body composition. Likewise, some studies have shown Lrrk2 immunoreactivity in hyper-phosphorylated tau inclusions in Alzheimer's disease (AD) and other tauopathies, whereas other studies did not find Lrrk2 in hyper-phosphorylated tau inclusions. We have used three currently used anti-Lrrk2 antibodies (NB-300-268, NB-300-267 and AP7099b) and concluded that these differences are largely dependent on the antibodies used and, particularly, on the interpretation of the origin of the multiple bands of low molecular weight species, in addition to the band corresponding to full-length Lrrk2, that recognize the majority of these antibodies. A review of the available data and our results indicate that full-length Lrrk2 is not a major component of Lewy bodies in LBDs, and of hyper-phosphorylated tau inclusions in AD and tauopathies. Bands of low molecular weight are probably not the result of post-mortem artefacts as they are also present in cultured cells processed under optimal conditions. Truncated forms of Lrrk2 and additional transcripts related with LRRK2, in the absence of spliced forms of Lrrk2 may account for Lrrk2 immunoreactivity in distinct intraneuronal inclusions.
Collapse
|
120
|
Sämann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 2009; 284:16482-16491. [PMID: 19251702 DOI: 10.1074/jbc.m808255200] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in two genes encoding the putative kinases LRRK2 and PINK1 have been associated with inherited variants of Parkinson disease. The physiological role of both proteins is not known at present, but studies in model organisms have linked their mutants to distinct aspects of mitochondrial dysfunction, increased vulnerability to oxidative and endoplasmic reticulum stress, and intracellular protein sorting. Here, we show that a mutation in the Caenorhabditits elegans homologue of the PTEN-induced kinase pink-1 gene resulted in reduced mitochondrial cristae length and increased paraquat sensitivity of the nematode. Moreover, the mutants also displayed defects in axonal outgrowth of a pair of canal-associated neurons. We demonstrate that in the absence of lrk-1, the C. elegans homologue of human LRRK2, all phenotypic aspects of pink-1 loss-of-function mutants were suppressed. Conversely, the hypersensitivity of lrk-1 mutant animals to the endoplasmic reticulum stressor tunicamycin was reduced in a pink-1 mutant background. These results provide the first evidence of an antagonistic role of PINK-1 and LRK-1. Due to the similarity of the C. elegans proteins to human LRRK2 and PINK1, we suggest a common role of both factors in cellular functions including stress response and regulation of neurite outgrowth. This study might help to link pink-1/PINK1 and lrk-1/LRRK2 function to the pathological processes resulting from Parkinson disease-related mutants in both genes, the first manifestations of which are cytoskeletal defects in affected neurons.
Collapse
Affiliation(s)
- Julia Sämann
- From Bioinformatics and Molecular Genetics (Faculty of Biology), ZBMZ (Faculty of Medicine), and ZBSA-Center for Systems Biology, Albert-Ludwigs-Universitaet Freiburg, 79104
| | - Jan Hegermann
- Freiburg and the European Neuroscience Institute (ENI) and Deutsche Forsch ungs ge mein schaft (DFG) Research Center for Molecular Physiology of the Brain (CMPB), University Medical Faculty, 37077 Göttingen, Germany
| | - Erika von Gromoff
- From Bioinformatics and Molecular Genetics (Faculty of Biology), ZBMZ (Faculty of Medicine), and ZBSA-Center for Systems Biology, Albert-Ludwigs-Universitaet Freiburg, 79104
| | - Stefan Eimer
- Freiburg and the European Neuroscience Institute (ENI) and Deutsche Forsch ungs ge mein schaft (DFG) Research Center for Molecular Physiology of the Brain (CMPB), University Medical Faculty, 37077 Göttingen, Germany
| | - Ralf Baumeister
- From Bioinformatics and Molecular Genetics (Faculty of Biology), ZBMZ (Faculty of Medicine), and ZBSA-Center for Systems Biology, Albert-Ludwigs-Universitaet Freiburg, 79104; Freiburg Institute for Advanced Studies, School of Life Sciences (LIFENET), and Centre for Biological Signalling Studies (BIOSS), 79104.
| | - Enrico Schmidt
- From Bioinformatics and Molecular Genetics (Faculty of Biology), ZBMZ (Faculty of Medicine), and ZBSA-Center for Systems Biology, Albert-Ludwigs-Universitaet Freiburg, 79104
| |
Collapse
|
121
|
Abstract
The ROCO family of multidomain proteins extends across the eukaryotes, and has been implicated in numerous cellular processes. Following the description of mutations causing PD (Parkinson's disease) in a human representative of the ROCO family, LRRK2 (leucine-rich repeat kinase 2), a great deal of research has been carried out into these proteins. This review examines the published data regarding the roles the ROCO proteins are thought to play in cell processes, and how the structure and domain organization of these proteins relates to their function.
Collapse
|
122
|
Devine MJ, Lewis PA. Emerging pathways in genetic Parkinson's disease: tangles, Lewy bodies and LRRK2. FEBS J 2009; 275:5748-57. [PMID: 19021752 DOI: 10.1111/j.1742-4658.2008.06707.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The last decade has seen clear links emerge between the genetic determinants and neuropathological hallmarks of parkinsonism and dementia, notably with the discovery of mutations in alpha-synuclein and tau. Following the description of mutations in LRRK2 linked to Parkinson's disease, characterized by variable pathology including either alpha-synuclein or tau deposition, it has been suggested that LRRK2 functions as an upstream regulator of Parkinson's disease pathogenesis. This minireview explores this model, in the context of our current understanding of the biochemistry of LRRK2, alpha-synuclein and tau.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Clinical Neuroscience, Imperial College London, UK
| | | |
Collapse
|
123
|
Shadrina MI, Slominsky PA. Mitochondrial dysfunction and oxidative damage in the molecular pathology of Parkinson’s disease. Mol Biol 2008. [DOI: 10.1134/s0026893308050099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
124
|
Abstract
The etiology of Parkinson's disease (PD) was long thought to be due to environmental factors. Following the discovery of autosomal-dominant mutations in the α-synuclein gene, and later recessive mutations in the DJ-1, Parkin and PINK-1 genes, the field of PD genetics exploded. In 2004, it was discovered that mutations in the PARK8 locus - leucine-rich repeat kinase 2 (LRRK2, Lrrk2) - are the most important genetic cause of autosomal-dominant PD. Lrrk2 substitutions also account for sporadic PD in certain ethnic populations and have been shown to increase the risk of PD in Asian populations. Drug therapies targeting Lrrk2 activity may therefore be beneficial to both familial and sporadic PD patients, hence understanding the role of Lrrk2 in health and disease is critical. This review aims to highlight the research effort concentrated on elucidating the functional biological role of Lrrk2, and to provide some future therapeutic perspectives.
Collapse
Affiliation(s)
- Heather Melrose
- Morris K Udall Parkinson's Disease Research Center of Excellence, Neurogenetics Laboratories, Birdsall Bldg, Mayo Clinic, Department of Neuroscience, 4500 San Pablo Road, Jacksonville, FL 32224, USA, Tel.: +1 904 953 0158, ,
| |
Collapse
|
125
|
Noisakran S, Dechtawewat T, Avirutnan P, Kinoshita T, Siripanyaphinyo U, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Association of dengue virus NS1 protein with lipid rafts. J Gen Virol 2008; 89:2492-2500. [PMID: 18796718 DOI: 10.1099/vir.0.83620-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During the replication of dengue virus, a viral non-structural glycoprotein, NS1, associates with the membrane on the cell surface and in the RNA replication complex. NS1 lacks a transmembrane domain, and the mechanism by which it associates with the membrane remains unclear. This study aimed to investigate whether membrane-bound NS1 is present in lipid rafts in dengue virus-infected cells. Double immunofluorescence staining of infected HEK-293T cells revealed that NS1 localized with raft-associated molecules, ganglioside GM1 and CD55, on the cell surface. In a flotation gradient centrifugation assay, a small proportion of NS1 in Triton X-100 cell lysate consistently co-fractionated with raft markers. Association of NS1 with lipid rafts was detected for all four dengue serotypes, as well as for Japanese encephalitis virus. Analysis of recombinant NS1 forms showed that glycosylated NS1 dimers stably expressed in HEK-293T cells without an additional C-terminal sequence, or with a heterologous transmembrane domain, failed to associate with lipid rafts. In contrast, glycosylphosphatidylinositol-linked recombinant NS1 exhibited a predilection for lipid rafts. These results indicate an association of a minor subpopulation of NS1 with lipid rafts during dengue virus infection and suggest that modification of NS1, possibly lipidation, is required for raft association.
Collapse
Affiliation(s)
- Sansanee Noisakran
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Thanyaporn Dechtawewat
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute of Microbial Diseases, Osaka University, Osaka, Japan
| | - Uamporn Siripanyaphinyo
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand
| | - Chunya Puttikhunt
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Watchara Kasinrerk
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Prida Malasit
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| |
Collapse
|
126
|
Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:625-33. [PMID: 18973807 DOI: 10.1016/j.bbadis.2008.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/09/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022]
Abstract
The frequency and potency of mutations in the LRRK2 gene redefine the role of genetic susceptibility in Parkinson's disease. Dominant missense mutations that fulfill initial criteria for potential gain of function mechanisms coupled with enzymatic activity likely amenable to small molecule inhibition position LRRK2 as a promising therapeutic target. Herein, key observations from the clinic to the test tube are highlighted together with points of contention and outstanding critical issues. Resolution of the critical issues will expedite the development of therapies that exploit LRRK2 activity for neuroprotection strategies.
Collapse
|
127
|
Zhou C, Przedborski S. Intrabody and Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:634-42. [PMID: 18834937 DOI: 10.1016/j.bbadis.2008.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
The intrabody technology has become a promising therapeutic avenue for a variety of incurable diseases. This technology is an intracellular application of gene-engineered antibodies, aimed at ablating the abnormal function of intracellular molecules. Parkinson's disease (PD) is a common neurodegenerative disease with no cure. Recent studies have explored possible intrabody applications against alpha-synuclein (alpha-syn), whose misfolding is believed to cause a familial form of PD. Here, we review the origin, production, and therapeutic mechanisms of intrabodies and the potential of intrabody protection against alpha-syn toxicity. Furthermore, we propose possible intrabody applications against leucine-rich repeat kinase 2 (LRRK2), whose mutations are the most frequent known cause of familial and sporadic PD.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
128
|
|
129
|
Mizuno Y, Hattori N, Kubo SI, Sato S, Nishioka K, Hatano T, Tomiyama H, Funayama M, Machida Y, Mochizuki H. Progress in the pathogenesis and genetics of Parkinson's disease. Philos Trans R Soc Lond B Biol Sci 2008; 363:2215-27. [PMID: 18426756 DOI: 10.1098/rstb.2008.2273] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1-linked PD due to alpha-synuclein (SNCA) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of alpha-synuclein. In PARK1-linked PD, mutant alpha-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin-proteasome system and autophagy-lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.
Collapse
Affiliation(s)
- Yoshikuni Mizuno
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo, Tokyo 113, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Lrrk2 and alpha-synuclein are co-regulated in rodent striatum. Mol Cell Neurosci 2008; 39:586-91. [PMID: 18790059 DOI: 10.1016/j.mcn.2008.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/06/2008] [Accepted: 08/13/2008] [Indexed: 11/22/2022] Open
Abstract
LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.
Collapse
|
131
|
Han BS, Iacovitti L, Katano T, Hattori N, Seol W, Kim KS. Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neurosci Lett 2008; 442:190-4. [PMID: 18634852 DOI: 10.1016/j.neulet.2008.06.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/20/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
A hallmark of Parkinson's disease (PD) is the progressive loss of the A9 midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta. Recently, multiple causative mutations have been identified in the leucine-rich repeat kinase 2 (LRRK2) gene for both familial and sporadic PD cases. Therefore, to investigate functional roles of LRRK2 in normal and/or diseased brain, it is critical to define LRRK2 expression in mDA neurons. To address whether LRRK2 mRNA and protein are expressed in mDA neurons, we purified DA neurons from the tyrosine hydroxylase (TH)-GFP transgenic mouse using FACS-sorting and analyzed the expression of LRRK2 and other mDA markers. We observed that all mDA markers tested in this study (TH, Pitx3, DAT, Nurr1 and Lmx1a) are robustly expressed only in GFP(+) cells, but not in GFP(-) cells. Notably, LRRK2 was expressed in both GFP(+) and GFP(-) cells. Consistent with this, our immunohistochemical analyses showed that LRRK2 is expressed in TH-positive mDA neurons as well as in surrounding TH-negative cells in the rat brain. Importantly, in the midbrain region, LRRK2 protein was preferentially expressed in A9 DA neurons of the substantia nigra, compared to A10 DA neurons of the ventral tegmental area. However, LRRK2 was also highly expressed in the cortical and hippocampal regions. Taken together, our results suggest that LRRK2 may have direct functional role(s) in the neurophysiology of A9 DA neurons and that dysfunction of these neurons by mutant LRRK2 may directly cause their selective degeneration.
Collapse
Affiliation(s)
- Baek-Soo Han
- Molecular Neurobiology Laboratory, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
Parkinson's disease (PD), the second most common age-related neurodegenerative disease, results in abnormalities in motor functioning. Many fundamental questions regarding its aetiology remain unanswered. Pathologically, it is not until 70-80% of the dopaminergic neurons from the substantia nigra pars compacta are lost before clinical symptoms are observed. Thus research into PD is complicated by this apparent paradox in that what appears to be the beginning of the disease at the clinical level is really the end point neurochemically. Consequently, we can only second guess when the disease started and what initiated it. The causation is probably complex, with contributions from both genetic and environmental factors. Intracellular proteinaceous inclusions, Lewy bodies and Lewy neurites, found in surviving dopaminergic neurons, are the key pathological characteristic of PD. Their presence points to an inability within these terminally differentiated cells to deal with aggregating proteins. Recent advances in our knowledge of the underlying disease process have come about from studies on models based on genes associated with rare hereditary forms of PD, and mitochondrial toxins that mimic the behavioural effects of PD. The reason that dopaminergic neurons are particularly sensitive may be due to the additional cellular stress caused by the breakdown of the inherently chemically unstable neurotransmitter, dopamine. In the present review, I discuss the proposal that in sporadic disease, interlinked problems of protein processing and inappropriate mitochondrial activity seed the foundation for age-related increased levels of protein damage, and a reduced ability to deal with the damage, leading to inclusion formation and, ultimately, cell toxicity.
Collapse
|
133
|
|
134
|
Lu YW, Tan E. Molecular biology changes associated with LRRK2 mutations in Parkinson's disease. J Neurosci Res 2008; 86:1895-901. [DOI: 10.1002/jnr.21656] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
135
|
Marín I. Ancient origin of the Parkinson disease gene LRRK2. J Mol Evol 2008; 67:41-50. [PMID: 18523712 DOI: 10.1007/s00239-008-9122-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/05/2008] [Accepted: 04/29/2008] [Indexed: 12/01/2022]
Abstract
Dominant mutations in the LRRK2 gene, a member of the Roco family, cause both familial and sporadic Parkinson disease. LRRK genes had so far been detected only in bilaterian animals. In deuterostomes, including humans, two LRRK genes (LRRK1 and LRRK2) exist, while in protostomes a single LRRK gene has been found. In this study, I combine structural and phylogenetic analyses to show that the cnidarian Nematostella vectensis has four LRRK genes. One of them is a bona fide orthologue of the human LRRK2 gene, demonstrating that this gene has an ancient origin. Two others are, respectively, orthologues of the deuterostome LRRK1 and the protostome LRRK genes. The fourth gene is probably cnidarian-specific. This precise characterization of the early evolution of LRRK genes in animals has important implications, because it indicates that the Drosophila and Caenorhabditis LRRK genes, which are studied to gain an understanding of LRRK2 function, are not true orthologues of the human Parkinson disease gene. Novel functional insights are also gained by comparison of the structures of LRRK2 genes in distantly related species.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Calle Jaime Roig 11, Valencia 46010, Spain.
| |
Collapse
|
136
|
Marín I, van Egmond WN, van Haastert PJM. The Roco protein family: a functional perspective. FASEB J 2008; 22:3103-10. [PMID: 18523161 DOI: 10.1096/fj.08-111310] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this review, we discuss the evolutionary, biochemical, and functional data available for members of the Roco protein family. They are characterized by having a conserved supradomain that contains a Ras-like GTPase domain, called Roc, and a characteristic COR (C-terminal of Roc) domain. A kinase domain and diverse regulatory and protein-protein interaction domains are also often found in Roco proteins. First detected in the slime mold Dictyostelium discoideum, they have a broad phylogenetic range, being present in both prokaryotes and eukaryotes. The functions of these proteins are diverse. The best understood are Dictyostelium Rocos, which are involved in cell division, chemotaxis, and development. However, this family has received extensive attention because mutations in one of the human Roco genes (LRRK2) cause familial Parkinson disease. Other human Rocos are involved in epilepsy and cancer. Biochemical data suggest that Roc domains are capable of activating kinase domains intramolecularly. Interestingly, some of the dominant, disease-causing mutations in both the GTPase and kinase domains of LRRK2 increase kinase activity. Thus, Roco proteins may act as stand-alone transduction units, performing roles that were thought so far to require multiple proteins, as occur in the Ras transduction pathway.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| | | | | |
Collapse
|
137
|
Alegre-Abarrategui J, Ansorge O, Esiri M, Wade-Martins R. LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease. Neuropathol Appl Neurobiol 2008; 34:272-83. [PMID: 17971075 PMCID: PMC2833010 DOI: 10.1111/j.1365-2990.2007.00888.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Classical Parkinson's disease (PD) is characterized by the appearance of Lewy bodies (LBs) in affected brain regions, showing mostly compact alpha-synuclein deposition, in contrast with punctate or granular deposition, hypothesized to represent early stages of aggregation. Leucine-rich repeat kinase 2 (LRRK2) is the commonest mutated gene in inherited and idiopathic PD. LRRK2 mutation carriers display a diverse neuropathology, including alpha-synuclein and tau inclusions, suggesting an upstream role for LRRK2 in protein aggregation. We studied LRRK2 expression throughout the normal human brain with three different antibodies. We also examined the pattern of LRRK2 expression in relation to alpha-synuclein aggregation and LB formation in the brainstem of sporadic LB disease. Physiological LRRK2 expression was not restricted to regions preferentially affected in PD and LRRK2 often localized to the nuclear envelope in addition to the known cytoplasmic expression. In PD, we were able to consistently detect LRRK2 in the halo of a minority (approximately 10%) of nigral LBs using three different antibodies. Only one antibody detected LRRK2 in the core of approximately 80% of classic LBs. In the lower brainstem, most notably in the dorsal motor nucleus of the vagus, we found previously unrecognized LRRK2 labelling of complex globular lesions, filled with LB-like matter showing a punctate or granular staining for alpha-synuclein. This was often accompanied by strong LRRK2 expression within dystrophic neurites. Our findings confirm widespread physiological LRRK2 expression in the human brain and suggest an association of LRRK2 with possible early-stage alpha-synuclein pathology in the brainstem of PD.
Collapse
Affiliation(s)
- Javier Alegre-Abarrategui
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Olaf Ansorge
- Department of Neuropathology, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Margaret Esiri
- Department of Neuropathology, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Richard Wade-Martins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
138
|
Plowey ED, Cherra SJ, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008; 105:1048-56. [PMID: 18182054 PMCID: PMC2361385 DOI: 10.1111/j.1471-4159.2008.05217.x] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuritic retraction represents a prominent feature of the degenerative phenotype associated with mutations in leucine rich repeat kinase 2 (LRRK2) that are implicated in autosomal dominant and some cases of sporadic Parkinson's disease. Alterations in macroautophagy, the vacuolar catabolism of cytoplasmic constituents, have been described in Parkinson's disease. In this study, we utilized retinoic-acid differentiated SH-SY5Y cells to determine whether autophagy contributes to mutant LRRK2-associated neurite degeneration. Transfection of pre-differentiated SH-SY5Y cells with LRRK2 cDNA containing the common G2019S mutation resulted in significant decreases in neurite length, which were not observed in cells transfected with wild type LRRK2 or its kinase-dead K1906M mutation. G2019S LRRK2 transfected cells also exhibited striking increases in autophagic vacuoles in both neuritic and somatic compartments, as demonstrated by fluorescence and western blot analysis of the autophagy marker green fluorescent protein-tagged microtubule-associated protein Light Chain 3 and by transmission electron microscopy. RNA interference knockdown of LC3 or Atg7, two essential components of the conserved autophagy machinery, reversed the effects of G2019S LRRK2 expression on neuronal process length, whereas rapamycin potentiated these effects. The mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126) reduced LRRK2-induced neuritic autophagy and neurite shortening, implicating MAPK/ERK-related signaling. These results indicate an active role for autophagy in neurite remodeling induced by pathogenic mutation of LRRK2.
Collapse
Affiliation(s)
- Edward D. Plowey
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Salvatore J. Cherra
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yong-Jian Liu
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charleen T. Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
139
|
Perry G, Zhu X, Babar AK, Siedlak SL, Yang Q, Ito G, Iwatsubo T, Smith MA, Chen SG. Leucine-rich repeat kinase 2 colocalizes with alpha-synuclein in Parkinson's disease, but not tau-containing deposits in tauopathies. NEURODEGENER DIS 2008; 5:222-4. [PMID: 18322396 DOI: 10.1159/000113708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations in leucine-rich repeat kinase 2 (LRRK2) are thus far the most frequent genetic cause associated with autosomal dominant and idiopathic Parkinson's disease. OBJECTIVE To examine whether LRRK2 is directly associated with the pathological structures of Parkinson's disease, dementia with Lewy bodies, and other related disorders using highly specific antibodies to LRRK2. RESULTS LRRK2 antibodies strongly labeled brainstem and cortical Lewy bodies, the pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, respectively. We found that 20-100% (mean 60%) of alpha-synuclein-positive Lewy bodies contained LRRK2. While antibodies raised against various regions of LRRK2 were previously shown to label recombinant LRRK2 on Western blots, only antibodies raised against the N- and C-termini, but not the regions containing folded protein domains of LRRK2, immunolabeled Lewy bodies. In Alzheimer's disease, Hirano bodies were found to contain LRRK2 and the neurofibrillary tangles in progressive supranuclear palsy remained unlabeled. CONCLUSIONS Information on the cellular localization of LRRK2 under normal and pathological conditions will deepen our understanding of its functions and molecular pathways relevant to the progression of Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 2008; 314:2055-65. [PMID: 18445495 DOI: 10.1016/j.yexcr.2008.02.015] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
The leucine-rich repeat kinase 2 (LRRK2) has been identified as the defective gene at the PARK8 locus causing the autosomal dominant form of Parkinson's disease (PD). Although several LRRK2 mutations were found in familial as well as sporadic PD patients, its physiological functions are not clearly defined. In this study, using yeast two-hybrid screening, we report the identification of Rab5b as an LRRK2-interacting protein. Indeed, our GST pull down and co-immunoprecipitation assays showed that it specifically interacts with LRRK2. In addition, subcellular fractionation and immunocytochemical analyses confirmed that a fraction of both proteins co-localize in synaptic vesicles. Interestingly, we found that alteration of LRRK2 expression by either overexpression or knockdown of endogenous LRRK2 in primary neuronal cells significantly impairs synaptic vesicle endocytosis. Furthermore, this endocytosis defect was rescued by co-expression of functional Rab5b protein, but not by its inactive form. Taken together, we propose that LRRK2, in conjunction with its interaction with Rab5b, plays an important role in synaptic function by modulating the endocytosis of synaptic vesicles.
Collapse
Affiliation(s)
- Narae Shin
- Department of Life Science, GIST, Buk-gu, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Di Napoli M, Shah IM, Stewart DA. Molecular pathways and genetic aspects of Parkinson's disease: from bench to bedside. Expert Rev Neurother 2008; 7:1693-729. [PMID: 18052765 DOI: 10.1586/14737175.7.12.1693] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by dopaminergic neuronal loss within the substantia nigra. The incidence and prevalence of PD is rising with an increasing aging population. PD is a slowly progressive condition and patients can develop debilitating motor and functional impairment. Current research has implicated oxidative stress, alpha-synucleinopathy and dysfunction of the ubiquitin-proteasome system in the pathogenesis of PD. A number of gene mutations have also been linked to the development of PD. The elucidation of these new molecular pathways has increased our knowledge of PD pathophysiology. This article reviews important molecular mechanisms and genetic causes implicated in the pathogenesis of PD, which has led to new areas of therapeutic drug research.
Collapse
Affiliation(s)
- Mario Di Napoli
- Neurological Service, San Camillo de'Lellis General Hospital, I-2100 Rieti, Italy.
| | | | | |
Collapse
|
142
|
Westerlund M, Belin AC, Anvret A, Bickford P, Olson L, Galter D. Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease. Neuroscience 2008; 152:429-36. [PMID: 18272292 DOI: 10.1016/j.neuroscience.2007.10.062] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/08/2007] [Accepted: 01/07/2008] [Indexed: 11/25/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most common known cause of Parkinson's disease (PD), accounting for both familial and sporadic forms of the disease. We analyzed the tempo-spatial activity of leucine-rich repeat kinase 1 (LRRK1) and LRRK2 at the cellular level in human and rat tissues including development and aging. Lrrk2 mRNA is expressed in adult rat striatum, hippocampus, cerebral cortex, sensory and sympathetic ganglia, lung, spleen and kidney. In the developing rat striatum, Lrrk2 transcription is first observed at postnatal day (P) 8 followed by increasing mRNA levels during the following 3 weeks, as revealed by quantitative in situ hybridization, after which levels remain up to 24 months of age. The time-course of postnatal development of Lrrk2 activity in striatum thus closely mirrors the postnatal development of the dopamine innervation of striatum. Lrrk2 mRNA is seen in P1 rat lung, heart, and kidney, whereas Lrrk1 is found in many areas of the P1 rat. Lrrk1 is present in adult rat brain, adrenal gland, liver, lung, spleen and kidney and also in embryonic brain, with declining gene activity after birth. LRRK1 and LRRK2 are active in the adult human cortex cerebri, hippocampus and LRRK2, but not LRRK1, in striatum. Transcription of both genes is also seen in the young human thymus and LRRK2 is active in tubular parts of the adult human kidney. Our findings suggest that the two paralogous genes have partly complementary expression patterns in the brain, as well as in certain peripheral organs including lymphatic tissues. While the strong presence of Lrrk2 message in striatum is intriguing in relation to PD, the many other neuronal and non-neuronal sites of Lrrk2 activity also needs to be taken into account in deciphering possible pathogenic pathways.
Collapse
Affiliation(s)
- M Westerlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
The purpose of this mini-symposium is to discuss some of the inherited forms of Parkinson's disease (PD) in view of recent data suggesting that some of the proteins affect cellular signaling pathways. As an illustration, we shall focus on two different kinases associated with recessive and dominant forms of PD. Mutations in the mitochondrial kinase PTEN (phosphatase and tensin homolog)-induced kinase 1 (PINK1) are loss-of-function mutations in a normally neuroprotective protein. Loss-of-function mutations in model organisms have variable effects, from dramatic muscle and spermatid defects in Drosophila to more subtle neurophysiological abnormalities in mice. Several lines of evidence relate these to the action of a second gene for familial PD, parkin, an E3 ubiquitin ligase shown recently to have effects on Akt signaling. Mutations in leucine-rich repeat kinase 2 (LRRK2), a cytosolic kinase, are dominant and have the opposite effect of causing neuronal damage. The mechanism(s) involved are uncertain at this time because LRRK2 is a large and complex molecule with several domains. Increased kinase activity accounts for the action of at least some of the mutations, suggesting that hyperactive or misregulated kinase activity may lead to the damaging effects of LRRK2 in neurons. For both PINK1 and LRRK2, the following key question that needs to be answered: what are the physiological substrates that mediate effects in cells? Here, we will discuss some of the recent thinking about physiological and pathological roles for signaling in PD and how these may have therapeutic implications for the future.
Collapse
|
144
|
Biskup S, Moore DJ, Rea A, Lorenz-Deperieux B, Coombes CE, Dawson VL, Dawson TM, West AB. Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neurosci 2007; 8:102. [PMID: 18045479 PMCID: PMC2233633 DOI: 10.1186/1471-2202-8-102] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 11/28/2007] [Indexed: 11/10/2022] Open
Abstract
Background Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene account for a significant proportion of autosomal-dominant and some late-onset sporadic Parkinson's disease. Elucidation of LRRK2 protein function in health and disease provides an opportunity for deciphering molecular pathways important in neurodegeneration. In mammals, LRRK1 and LRRK2 protein comprise a unique family encoding a GTPase domain that controls intrinsic kinase activity. The expression profiles of the murine LRRK proteins have not been fully described and insufficiently characterized antibodies have produced conflicting results in the literature. Results Herein, we comprehensively evaluate twenty-one commercially available antibodies to the LRRK2 protein using mouse LRRK2 and human LRRK2 expression vectors, wild-type and LRRK2-null mouse brain lysates and human brain lysates. Eleven antibodies detect over-expressed human LRRK2 while four antibodies detect endogenous human LRRK2. In contrast, two antibodies recognize over-expressed mouse LRRK2 and one antibody detected endogenous mouse LRRK2. LRRK2 protein resides in both soluble and detergent soluble protein fractions. LRRK2 and the related LRRK1 genes encode low levels of expressed mRNA species corresponding to low levels of protein both during development and in adulthood with largely redundant expression profiles. Conclusion Despite previously published results, commercially available antibodies generally fail to recognize endogenous mouse LRRK2 protein; however, several antibodies retain the ability to detect over-expressed mouse LRRK2 protein. Over half of the commercially available antibodies tested detect over-expressed human LRRK2 protein and some have sufficient specificity to detect endogenous LRRK2 in human brain. The mammalian LRRK proteins are developmentally regulated in several tissues and coordinated expression suggest possible redundancy in the function between LRRK1 and LRRK2.
Collapse
Affiliation(s)
- Saskia Biskup
- Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | | | | | | | | | | | | | | |
Collapse
|