101
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
102
|
Rühle A, Nicolay NH. [Aggressive radiotherapy de-escalation for HPV-associated oropharyngeal carcinoma based on hypoxia dynamics]. Strahlenther Onkol 2021; 197:570-573. [PMID: 33765185 PMCID: PMC8154749 DOI: 10.1007/s00066-021-01765-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Alexander Rühle
- Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Deutschland.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Freiburg, Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Deutschland.
| | - Nils H Nicolay
- Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Deutschland.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Freiburg, Deutsches Krebsforschungszentrum (dkfz), Heidelberg, Deutschland.
| |
Collapse
|
103
|
Burtness B, Contessa J. Hypoxia-Guided Therapy for Human Papillomavirus-Associated Oropharynx Cancer. J Natl Cancer Inst 2021; 113:652-653. [PMID: 33429429 DOI: 10.1093/jnci/djaa187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Barbara Burtness
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Joseph Contessa
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
104
|
Chundury A, Cosper PF, Kim S. Reply to A. J. Cmelak et al and B. Kalra et al. J Clin Oncol 2021; 39:2735-2736. [PMID: 34043438 DOI: 10.1200/jco.21.00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Anupama Chundury
- Anupama Chundury, MD, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Pippa F. Cosper, MD, Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; and Sung Kim, MD, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Pippa F Cosper
- Anupama Chundury, MD, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Pippa F. Cosper, MD, Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; and Sung Kim, MD, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Sung Kim
- Anupama Chundury, MD, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Pippa F. Cosper, MD, Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; and Sung Kim, MD, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| |
Collapse
|
105
|
Rühle A, Grosu AL, Nicolay NH. De-Escalation Strategies of (Chemo)Radiation for Head-and-Neck Squamous Cell Cancers-HPV and Beyond. Cancers (Basel) 2021; 13:2204. [PMID: 34064321 PMCID: PMC8124930 DOI: 10.3390/cancers13092204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022] Open
Abstract
Oncological outcomes for head-and-neck squamous cell carcinoma (HNSCC) patients are still unsatisfactory, especially for advanced tumor stages. Besides the moderate survival rates, the prevalence of severe treatment-induced normal tissue toxicities is high after multimodal cancer treatments, both causing significant morbidity and decreasing quality of life of surviving patients. Therefore, risk-adapted and individualized treatment approaches are urgently needed for HNSCC patients to optimize the therapeutic gain. It has been a well-known fact that especially HPV-positive oropharyngeal squamous cell carcinoma (OSCC) patients exhibit an excellent prognosis and may therefore be subject to overtreatment, resulting in long-term treatment-related toxicities. Regarding the superior prognosis of HPV-positive OSCC patients, treatment de-escalation strategies are currently investigated in several clinical trials, and HPV-positive OSCC may potentially serve as a model for treatment de-escalation also for other types of HNSCC. We performed a literature search for both published and ongoing clinical trials and critically discussed the presented concepts and results. Radiotherapy dose or volume reduction, omission or modification of concomitant chemotherapy, and usage of induction chemotherapy are common treatment de-escalation strategies that are pursued in clinical trials for biologically selected subgroups of HNSCC patients. While promising data have been reported from various Phase II trials, evidence from Phase III de-escalation trials is either lacking or has failed to demonstrate comparable outcomes for de-escalated treatments. Therefore, further data and a refinement of biological HNSCC stratification are required before deescalated radiation treatments can be recommended outside of clinical trials.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg—Medical Center, Robert-Koch-Str. 3, 79106 Freiburg, Germany; (A.R.); (A.-L.G.)
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg—Medical Center, Robert-Koch-Str. 3, 79106 Freiburg, Germany; (A.R.); (A.-L.G.)
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, University of Freiburg—Medical Center, Robert-Koch-Str. 3, 79106 Freiburg, Germany; (A.R.); (A.-L.G.)
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
106
|
Cheng NM, Yao J, Cai J, Ye X, Zhao S, Zhao K, Zhou W, Nogues I, Huo Y, Liao CT, Wang HM, Lin CY, Lee LY, Xiao J, Lu L, Zhang L, Yen TC. Deep Learning for Fully Automated Prediction of Overall Survival in Patients with Oropharyngeal Cancer Using FDG-PET Imaging. Clin Cancer Res 2021; 27:3948-3959. [PMID: 33947697 DOI: 10.1158/1078-0432.ccr-20-4935] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Accurate prognostic stratification of patients with oropharyngeal squamous cell carcinoma (OPSCC) is crucial. We developed an objective and robust deep learning-based fully-automated tool called the DeepPET-OPSCC biomarker for predicting overall survival (OS) in OPSCC using [18F]fluorodeoxyglucose (FDG)-PET imaging. EXPERIMENTAL DESIGN The DeepPET-OPSCC prediction model was built and tested internally on a discovery cohort (n = 268) by integrating five convolutional neural network models for volumetric segmentation and ten models for OS prognostication. Two external test cohorts were enrolled-the first based on the Cancer Imaging Archive (TCIA) database (n = 353) and the second being a clinical deployment cohort (n = 31)-to assess the DeepPET-OPSCC performance and goodness of fit. RESULTS After adjustment for potential confounders, DeepPET-OPSCC was found to be an independent predictor of OS in both discovery and TCIA test cohorts [HR = 2.07; 95% confidence interval (CI), 1.31-3.28 and HR = 2.39; 95% CI, 1.38-4.16; both P = 0.002]. The tool also revealed good predictive performance, with a c-index of 0.707 (95% CI, 0.658-0.757) in the discovery cohort, 0.689 (95% CI, 0.621-0.757) in the TCIA test cohort, and 0.787 (95% CI, 0.675-0.899) in the clinical deployment test cohort; the average time taken was 2 minutes for calculation per exam. The integrated nomogram of DeepPET-OPSCC and clinical risk factors significantly outperformed the clinical model [AUC at 5 years: 0.801 (95% CI, 0.727-0.874) vs. 0.749 (95% CI, 0.649-0.842); P = 0.031] in the TCIA test cohort. CONCLUSIONS DeepPET-OPSCC achieved an accurate OS prediction in patients with OPSCC and enabled an objective, unbiased, and rapid assessment for OPSCC prognostication.
Collapse
Affiliation(s)
- Nai-Ming Cheng
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University, Taoyuan City, Taiwan, ROC
| | | | | | - Xianghua Ye
- Department of Radiotherapy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shilin Zhao
- Departments of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kui Zhao
- Department of PET Center, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenlan Zhou
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Isabella Nogues
- Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Hung-Ming Wang
- Department of Medical Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Chien-Yu Lin
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Li-Yu Lee
- Department of Pathology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Jing Xiao
- Ping An Technology Co., Ltd., Shenzhen, China
| | - Le Lu
- PAII Inc., Bethesda, Maryland
| | | | - Tzu-Chen Yen
- Department of Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan, ROC.
| |
Collapse
|
107
|
Rühle A, Grosu AL, Wiedenmann N, Stoian R, Haehl E, Zamboglou C, Baltas D, Werner M, Kayser G, Nicolay NH. Immunohistochemistry-based hypoxia-immune prognostic classifier for head-and-neck cancer patients undergoing chemoradiation - Post-hoc analysis from a prospective imaging trial. Radiother Oncol 2021; 159:75-81. [PMID: 33753155 DOI: 10.1016/j.radonc.2021.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE As both tumor hypoxia and an immunosuppressing tumor microenvironment hamper the anti-tumor activity of radiotherapy in head-and-neck squamous cell carcinoma (HNSCC), we aimed to develop an immunohistochemistry-based hypoxia-immune classifier. METHODS 39 patients receiving definitive chemoradiation for HNSCC within a prospective trial were included in this analysis. Baseline tumor samples were analyzed for the hypoxia marker carbonic anhydrase IX (CAIX) and tumor-infiltrating lymphocytes (TILs) and were correlated with [18F]-misonidazole ([18F]FMISO) PET measurements. The impact of the biomarkers on the locoregional control (LRC) was examined using Cox analyses and concordance index statistics. RESULTS Low CAIX (HR = 0.352, 95%CI 0.124-1.001, p = 0.050) and high TIL levels (HR = 0.308, 95%CI 0.114-0.828, p = 0.020) were independent parameters for improved LRC and did not correlate with each other (Spearman's ρ = 0.034, p = 0.846). Harrell's C was 0.66 for CAIX and TIL levels alone and 0.71 for the combination. 2-year LRC was 73%, 62% and 11% for the prognostically good (CAIXlow/TILhigh), intermediate (CAIXlow/TILlow or CAIXhigh/TILhigh) and poor groups (CAIXhigh/TILlow), respectively (p = 0.001). Focusing on T lymphocytes, the hypoxia-immune classifier could still stratify between favorable (CAIXlow/CD3 + TILhigh), intermediate (CAIXlow/CD3 + TILlow or CAIXhigh/CD3 + TILhigh) and poor subgroups (CAIXhigh/CD3 + TILlow) with a 2-year LRC of 80%, 59% and 14%, respectively (p = 0.001). There was a positive correlation between baseline CAIX levels and [18F]FMISO SUV in week 2 of chemoradiation (ρ = 0.324, p = 0.050), indicating an association between higher baseline CAIX expression and tumor hypoxia persistence. CONCLUSION We developed a clinically feasible hypoxia-immune prognostic classifier for HNSCC patients based on pre-treatment immunohistochemistry. However, external validation is required to determine the prognostic value and the potential usage for personalized radiation oncology.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raluca Stoian
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Erik Haehl
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Werner
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Surgical Pathology, Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gian Kayser
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Surgical Pathology, Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
108
|
Paudyal R, Chen L, Oh JH, Zakeri K, Hatzoglou V, Tsai CJ, Lee N, Shukla-Dave A. Nongaussian Intravoxel Incoherent Motion Diffusion Weighted and Fast Exchange Regime Dynamic Contrast-Enhanced-MRI of Nasopharyngeal Carcinoma: Preliminary Study for Predicting Locoregional Failure. Cancers (Basel) 2021; 13:1128. [PMID: 33800762 PMCID: PMC7961986 DOI: 10.3390/cancers13051128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to identify whether the quantitative metrics from pre-treatment (TX) non-Gaussian intravoxel incoherent motion (NGIVIM) diffusion weighted (DW-) and fast exchange regime (FXR) dynamic contrast enhanced (DCE)-MRI can predict patients with locoregional failure (LRF) in nasopharyngeal carcinoma (NPC). Twenty-nine NPC patients underwent pre-TX DW- and DCE-MRI on a 3T MR scanner. DW imaging data from primary tumors were fitted to monoexponential (ADC) and NGIVIM (D, D*, f, and K) models. The metrics Ktrans, ve, and τi were estimated using the FXR model. Cumulative incidence (CI) analysis and Fine-Gray (FG) modeling were performed considering death as a competing risk. Mean ve values were significantly different between patients with and without LRF (p = 0.03). Mean f values showed a trend towards the difference between the groups (p = 0.08). Histograms exhibited inter primary tumor heterogeneity. The CI curves showed significant differences for the dichotomized cutoff value of ADC ≤ 0.68 × 10-3 (mm2/s), D ≤ 0.74 × 10-3 (mm2/s), and f ≤ 0.18 (p < 0.05). τi ≤ 0.89 (s) cutoff value showed borderline significance (p = 0.098). FG's modeling showed a significant difference for the K cutoff value of ≤0.86 (p = 0.034). Results suggest that the role of pre-TX NGIVIM DW- and FXR DCE-MRI-derived metrics for predicting LRF in NPC than alone.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
| | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - C. Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (L.C.); (K.Z.); (C.J.T.); (N.L.)
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (R.P.); (J.H.O.)
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
109
|
Jensen GL, Axelrud G, Fink D, Hammonds K, Walker K, Volz M, Gowan A, Rao A, Deb N, Jhavar SG. Improved local control in p16 negative oropharyngeal cancers with hypermethylated MGMT. Radiother Oncol 2021; 157:234-240. [PMID: 33577867 DOI: 10.1016/j.radonc.2021.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Patients with oropharyngeal cancers that are p16 negative (p16-) have worse outcomes than those who are p16 positive (p16+) and there is an unmet need for prognostic markers in this population. O6-Methylguanine (O6-MG)-DNA-methyltransferase (MGMT) gene methylation has been associated with response to chemoradiotherapy (CRT) in glioblastoma. We sought to find if MGMT promoter methylation was associated with outcomes of locally advanced oropharyngeal and oral cavity squamous cell carcinoma (OOSCC) in patients treated with definitive concurrent CRT. METHODS Patients were identified with primary OOSCC, known p16 status, retrievable pre-treatment biopsies, and at least 6 months of follow-up who received definitive concurrent CRT from 2004 to 2015. Biopsies were tested for MGMT hypermethylation (MGMT+) using a Qiagen pyrosequencing kit (Catalog number 970061). Outcomes were subsequently recorded and analyzed. RESULTS Fifty-eight patients were included with a median follow up of 78 (range 6-196) months. Fourteen patients (24.1%) had oral cavity cancer and 44 (75.9%) had oropharyngeal cancer. A significant difference was found for local recurrence free survival (LRFS) by combined MGMT and p16 status (p = 0.0004). Frequency of LR in MGMT+/p16+, MGMT+/p16-, MGMT-/p16+, and MGMT-p16- patients was 14.3%, 14.3%, 13.0%, and 69.2%, respectively (p = 0.0019). A significant difference was not found for distant recurrence free survival (p = 0.6165) or overall survival (p = 0.1615). LRFS remained significant on analysis restricted to oropharyngeal cancer patients (p-value = 0.0038). CONCLUSION Patients who are p16- and MGMT+ with oropharyngeal and oral cavity squamous cell carcinoma have significantly better LC with definitive CRT than those who are p16- and MGMT-. Prospective studies are needed to verify these findings.
Collapse
Affiliation(s)
- Garrett L Jensen
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA.
| | - Gabriel Axelrud
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA
| | - David Fink
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Kendall Hammonds
- Department of Biostatistics, Baylor Scott & White Health, Temple, USA
| | - Kimberly Walker
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Marcus Volz
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Alan Gowan
- Department of Medical Oncology, Baylor Scott & White Health, Temple, USA
| | - Arundhati Rao
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Niloyjyoti Deb
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA
| | - Sameer G Jhavar
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA.
| |
Collapse
|