101
|
Leibowitz-Amit R, Lebowitz-Amit R, Mete O, Asa SL, Ezzat S, Joshua AM. Malignant pheochromocytoma secreting vasoactive intestinal peptide and response to sunitinib: a case report and literature review. Endocr Pract 2016; 20:e145-50. [PMID: 24936559 DOI: 10.4158/ep14093.cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Malignant pheochromocytoma is rare and may be sporadic or have a genetic basis. Vasoactive intestinal peptide (VIP)-secreting pheochromocytoma has rarely been described in the literature, and treatment remains challenging in the absence of well-controlled randomized trials. The hypoxia-inducible factor-vascular endothelial growth factor axis has been implicated in pheochromocytoma when associated with germline Von-Hippel-Lindau (VHL) or succinate dehydrogenase (SDH) mutations, suggesting potential clinical activity of sunitinib in this setting. METHODS We present a case report of a patient with a VIP-secreting malignant pheochromocytoma manifested as severe watery diarrhea, with an exquisite clinical response to sunitinib. We review this rare clinical entity and the potential role of sunitinib in this context. RESULTS A 51-year-old male initially presented with a pheochromocytoma causing symptoms related to norepinephrine excess. He underwent adrenalectomy, which resulted in complete resolution of his symptoms. Three years later, he developed multifocal metastatic disease from his primary tumor, showing immunohistochemical evidence of VIP production accompanied by severe watery diarrhea and hypokalemia. The patient had a rapid, complete, and durable clinical response to sunitinib, but with only a minor radiological response and without significant toxicity. Genetic testing was negative for germline mutations in VHL, SDHB, SDHC, SDHD, transmembrane protein 127 (TMEM127) and for neurofibromatosis type 1 (NF-1). CONCLUSION To the best of our knowledge, this is the first report of a case of malignant VIP-producing pheochromocytoma that was responsive to sunitinib.
Collapse
Affiliation(s)
| | - Raya Lebowitz-Amit
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Sylvia L Asa
- Department of Pathology, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Shereen Ezzat
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
102
|
Abstract
Stress as a modern civilization factor significantly affects our lives. While acute stress might have a positive effect on the organism, chronic stress is usually detrimental and might lead to serious health complications. It is known that stress induced by the physical environment (temperature-induced cold stress) can significantly impair the efficacy of cytotoxic chemotherapies and the anti-tumor immune response. On the other hand, epidemiological evidence has shown that patients taking drugs known as β-adrenergic antagonists ("β-blockers"), which are commonly prescribed to treat arrhythmia, hypertension, and anxiety, have significantly lower rates of several cancers. In this review, we summarize the current knowledge about catecholamines as important stress hormones in tumorigenesis and discuss the use of β-blockers as the potential therapeutic agents.
Collapse
Affiliation(s)
- O Krizanova
- a Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
- b Department of Physiology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - P Babula
- b Department of Physiology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - K Pacak
- c Development, Endocrinology, and Tumor Genetics Affinity Group, Section on Medical Neuroendocrinology , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
103
|
Bullova P, Cougnoux A, Abunimer L, Kopacek J, Pastorekova S, Pacak K. Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models. Oncotarget 2016; 7:40531-40545. [PMID: 27244895 PMCID: PMC5130026 DOI: 10.18632/oncotarget.9643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/23/2016] [Indexed: 01/05/2023] Open
Abstract
Hypoxia is a common feature of solid tumors that activates a plethora of pathways, resulting in proliferation and resistance of cancer cells to radio- and chemotherapy. Pheochromocytomas/paragangliomas (PHEOs/PGLs) with mutations in the gene coding for the subunit B of succinate dehydrogenase (SDHB) are the most aggressive forms of the disease, which is partially due to their pseudohypoxic character, metabolic abnormalities, and elevated reactive oxygen species (ROS) levels. We investigated the effect of piperlongumine (PL), a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular ROS levels, on PHEO cells. Here we report for the first time that PL mediates PHEO cell death by activating both apoptosis and necroptosis in vitro and in vivo. This effect is magnified in hypoxic conditions, making PL a promising potential candidate for use as a therapeutic option for patients with PHEO/PGL, including those with SDHB mutations.
Collapse
Affiliation(s)
- Petra Bullova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| | - Luma Abunimer
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| | - Juraj Kopacek
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
104
|
Yamamoto K, Namba N, Kubota T, Usui T, Takahashi K, Kitaoka T, Fujiwara M, Hori Y, Kogaki S, Oue T, Morii E, Ozono K. Pheochromocytoma complicated by cyanotic congenital heart disease: a case report. Clin Pediatr Endocrinol 2016; 25:59-65. [PMID: 27212797 PMCID: PMC4860516 DOI: 10.1297/cpe.25.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/16/2016] [Indexed: 11/04/2022] Open
Abstract
Coincidental cyanotic congenital heart disease and pheochromocytoma is uncommon, although some cases have been reported. We describe a girl aged 15 yr and 11 mo with pheochromocytoma and tricuspid atresia treated by performing the Fontan surgery. The patient did not have any specific symptoms of syndrome related to pheochromoytoma or a family history of pheochromocytoma. During cardiac catheterization, her blood pressure increased markedly, and an α-blocker was administered. Catecholamine hypersecretion was observed in the blood and urine, and abdominal computed tomography revealed a tumor in the right adrenal gland. Scintigraphy showed marked accumulation of (123)I-metaiodobenzylguanidine in the tumor, which led to a diagnosis of pheochromocytoma. We did not detect any germline mutations in the RET, VHL, SDHB, SDHD, TMEM127, or MAX genes. This patient had experienced mild systemic hypoxia since birth, which may have contributed to the development of pheochromocytoma.
Collapse
Affiliation(s)
- Keiko Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Japan Community Health Care Organization, Osaka Hospital, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Usui
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Kunihiko Takahashi
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigetoyo Kogaki
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takaharu Oue
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
105
|
Janssen I, Chen CC, Millo CM, Ling A, Taieb D, Lin FI, Adams KT, Wolf KI, Herscovitch P, Fojo AT, Buchmann I, Kebebew E, Pacak K. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2016; 43:1784-91. [PMID: 26996779 DOI: 10.1007/s00259-016-3357-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/26/2016] [Indexed: 01/10/2023]
Abstract
PURPOSE Pheochromocytomas/paragangliomas (PPGLs) and their metastases are tumors that predominantly express somatostatin receptor 2 (SSR2). (68)Ga-DOTA(0)-Tyr(3)-octreotate ((68)Ga-DOTATATE) is a PET radiopharmaceutical with both high and selective affinity for SSRs. The purpose of this study was to evaluate the utility of (68)Ga-DOTATATE in comparison with other specific and nonspecific radiopharmaceuticals recommended in the current guidelines for the localization of metastatic sporadic PPGL by PET/CT. METHODS This prospective study included 22 patients (15 men, 7 women; aged 50.0 ± 13.9 years) with confirmed metastatic PPGL, a negative family history for PPGL, and negative genetic testing, who underwent (68)Ga-DOTATATE, (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT, and CT/MRI. Only 12 patients underwent an additional (18)F-fluorodihydroxyphenylalanine ((18)F-FDOPA) PET/CT scan and only 11 patients underwent an additional (18)F-fluorodopamine ((18)F-FDA) PET/CT scan. The rates of detection of metastatic lesions were compared among all the imaging studies. A composite of all functional and anatomical imaging studies served as the imaging comparator. RESULTS (68)Ga-DOTATATE PET/CT showed a lesion-based detection rate of 97.6 % (95 % confidence interval, CI, 95.8 - 98.7 %). (18)F-FDG PET/CT, (18)F-FDOPA PET/CT, (18)F-FDA PET/CT, and CT/MRI showed detection rates of 49.2 % (CI 44.5 - 53.6 %; p < 0.01), 74.8 % (CI 69.0 - 79.9 %); p < 0.01), 77.7 % (CI 71.5 - 82.8 %; p < 0.01), and 81.6 % (CI 77.8 - 84.8 %; p < 0.01), respectively. CONCLUSION The results of this study demonstrate the superiority of (68)Ga-DOTATATE PET/CT in the localization of sporadic metastatic PPGLs compared to all other functional and anatomical imaging modalities, and suggest modification of future guidelines towards this new imaging modality.
Collapse
Affiliation(s)
- Ingo Janssen
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1E-3140, 10 Center Drive MSC-1109, Bethesda, MD, 20892, USA.,Department of Radiology and Nuclear Medicine, Section of Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Clara C Chen
- Nuclear Medicine Division, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - Corina M Millo
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander Ling
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Frank I Lin
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karen T Adams
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1E-3140, 10 Center Drive MSC-1109, Bethesda, MD, 20892, USA
| | - Katherine I Wolf
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1E-3140, 10 Center Drive MSC-1109, Bethesda, MD, 20892, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Antonio T Fojo
- Endocrine Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Inga Buchmann
- Department of Radiology and Nuclear Medicine, Section of Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Electron Kebebew
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1E-3140, 10 Center Drive MSC-1109, Bethesda, MD, 20892, USA.
| |
Collapse
|
106
|
Nambuba J, Därr R, Janssen I, Bullova P, Adams KT, Millo C, Bourdeau I, Kassai A, Yang C, Kebebew E, Zhuang Z, Pacak K. Functional Imaging Experience in a Germline Fumarate Hydratase Mutation–Positive Patient With Pheochromocytoma and Paraganglioma. AACE Clin Case Rep 2016. [DOI: 10.4158/ep15759.cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
107
|
Schovanek J, Bullova P, Tayem Y, Giubellino A, Wesley R, Lendvai N, Nölting S, Kopacek J, Frysak Z, Pommier Y, Kummar S, Pacak K. Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells. Endocrinology 2015; 156:4094-104. [PMID: 26267380 PMCID: PMC4606751 DOI: 10.1210/en.2015-1476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metastatic pheochromocytoma continues to be an incurable disease, and treatment with conventional cytotoxic chemotherapy offers limited efficacy. In the present study, we evaluated a novel topoisomerase I inhibitor, LMP-400, as a potential treatment for this devastating disease. We found a high expression of topoisomerase I in human metastatic pheochromocytoma, providing a basis for the evaluation of a topoisomerase 1 inhibitor as a therapeutic strategy. LMP-400 inhibited the cell growth of established mouse pheochromocytoma cell lines and primary human tumor tissue cultures. In a study performed in athymic female mice, LMP-400 demonstrated a significant inhibitory effect on tumor growth with two drug administration regimens. Furthermore, low doses of LMP-400 decreased the protein levels of hypoxia-inducible factor 1 (HIF-1α), one of a family of factors studied as potential metastatic drivers in these tumors. The HIF-1α decrease resulted in changes in the mRNA levels of HIF-1 transcriptional targets. In vitro, LMP-400 showed an increase in the growth-inhibitory effects in combination with other chemotherapeutic drugs that are currently used for the treatment of pheochromocytoma. We conclude that LMP-400 has promising antitumor activity in preclinical models of metastatic pheochromocytoma and its use should be considered in future clinical trials.
Collapse
MESH Headings
- Adrenal Gland Neoplasms/drug therapy
- Adrenal Gland Neoplasms/enzymology
- Adrenal Gland Neoplasms/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Benzodioxoles/administration & dosage
- Benzodioxoles/pharmacology
- Blotting, Western
- Cell Hypoxia
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Topoisomerases, Type I/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoquinolines/administration & dosage
- Isoquinolines/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/secondary
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/secondary
- Mice, Nude
- PC12 Cells
- Pheochromocytoma/drug therapy
- Pheochromocytoma/enzymology
- Pheochromocytoma/pathology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Topoisomerase I Inhibitors/administration & dosage
- Topoisomerase I Inhibitors/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jan Schovanek
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Petra Bullova
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Yasin Tayem
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Alessio Giubellino
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Robert Wesley
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Nikoletta Lendvai
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Svenja Nölting
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Juraj Kopacek
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Zdenek Frysak
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Yves Pommier
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Shivaani Kummar
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| |
Collapse
|
108
|
Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol 2015; 126:473-81. [PMID: 26514359 DOI: 10.1007/s11060-015-1983-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022]
Abstract
Central nervous system hemangioblastomas (CNS-HBs) occur sporadically or as a component of von Hippel-Lindau-VHL syndrome. CNS-HBs share some molecular similarities with pheochromocytomas/paragangliomas (PPGLs) and renal cell carcinomas (RCCs). Recently, hypoxia-inducible factors, particularly somatic HIF2A mutations, have been found to play an important role in the pathogenesis of PPGLs. Somatic mutations in HIF2A have been reported in PPGLs associated with polycythemia, which have been reported to also be present in patients with RCCs and HBs. However, whether CNS-HBs is associated with the presence of a HIF2A mutation is currently uknown. We analyzed somatic HIF2A and VHL mutations in a series of 28 sporadic CNS-HBs. We also investigated the expression of HIF target proteins and hypoxia-associated factor (HAF). Two sporadic CNS-HBs were found to have somatic HIF2A mutations. One tumor had 2 HIF2A missense mutations, one of which was previously described in a PPGL (c.1121 T>A, F374Y). The second patient had coexistence of somatic truncated mutations (c.1669 C>T, Q557*) in HIF2A together with a VHL mutation. Neither of the two patients had polycythemia at the time of diagnosis. We demonstrate that the novel truncated mutation in HIF2A (Q557*) affects HIF-2α prolyl hydroxylation with its reduced ubiquitination but intact transcriptional activity, resulting in an activating effect. Both CNS-HB samples showed positive expression of VEGFR2/CA9/Glut1 and HAF. Our data support the unique central role of the VHL/HIF-2α signaling pathway in the molecular pathogenesis of CNS-HBs and show for the first time the presence of HIF2A mutations in sporadic HB.
Collapse
|
109
|
Isaacson B, Bullova P, Frone M, Click A, Hamplova B, Rabaglia J, Woodruff S, Nwariaku F, Kathuria A, Pacak K, Ghayee HK. AN AGGRESSIVE TEMPORAL BONE SDHC PARAGANGLIOMA ASSOCIATED WITH INCREASED HIF-2α SIGNALING. Endocr Pract 2015; 22:190-5. [PMID: 26492543 DOI: 10.4158/ep15889.or] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To describe a patient with a germline succinate dehydrogenase (SDHC) gene mutation presenting with primary hyperparathyroidism and a large catecholamine-producing temporal bone paraganglioma (PGL). METHODS Evaluation of a SDHC mutation-positive PGL tumor biology using staining for tyrosine hydroxylase (TH), hypoxia-inducible factors 1α (HIF-1α) and 2α (HIF-2α). RESULTS A 66-year-old man was noted to have a lytic skull base mass during work-up for his primary hyperparathyroidism. Biochemical evaluation with 24-hour urine catecholamines and metanephrines revealed marked elevation of norepinephrine and normetanephrine. Genetic testing revealed a germline SDHC mutation. A partial excision of skull base tumor was performed, which upon further examination revealed PGL. Immunohistochemistry of skull base PGL demonstrated heavy expression of TH and HIF-2α but reduced expression of HIF-1α. The remaining skull base PGL was treated with adjuvant radiation therapy. The patient's normetanephrine levels significantly decreased after surgery and radiation. CONCLUSION Here, we report an unusual case of a patient presenting with a germline SDHC mutation-related functional PGL along with concomitant primary hyperparathyroidism. The present case illustrates that overexpression of HIF-2α but not of HIF-1α is linked to the pathogenesis of SDHC mutation-related PGL, and it may be responsible for the aggressive clinical behavior of a usually indolent course of SDHC-related PGLs.
Collapse
|
110
|
Jochmanová I, Zhuang Z, Pacak K. Pheochromocytoma: Gasping for Air. Discov Oncol 2015; 6:191-205. [PMID: 26138106 DOI: 10.1007/s12672-015-0231-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
There has been increasing evidence that pseudohypoxia--a phenomenon that we refer to as "gasping for air"--along with mitochondrial enzyme dysregulation play a crucial role in tumorigenesis, particularly in several hereditary pheochromocytomas (PHEOs) and paragangliomas (PGLs). Alterations in key tricarboxylic acids (TCA) cycle enzymes (SDH, FH, MDH2) have been shown to induce pseudohypoxia via activation of the hypoxia-inducible transcription factor (HIF) signaling pathway that is involved in tumorigenesis, invasiveness, and metastatic spread, including an association with resistance to various cancer therapies and worse prognosis. This review outlines the ongoing story of the pathogenesis of hereditary PHEOs/PGLs, showing the unique and most updated evidence of TCA cycle dysregulation that is tightly linked to hypoxia signaling.
Collapse
Affiliation(s)
- Ivana Jochmanová
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Building 10, CRC, 1-East, Room 1E-3140, 10 Center Drive, MSC-1109, Bethesda, MD, 20892-1109, USA.,1st Department of Internal Medicine, Medical Faculty, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Building 10, CRC, 1-East, Room 1E-3140, 10 Center Drive, MSC-1109, Bethesda, MD, 20892-1109, USA.
| |
Collapse
|
111
|
Xekouki P, Szarek E, Bullova P, Giubellino A, Quezado M, Mastroyannis SA, Mastorakos P, Wassif CA, Raygada M, Rentia N, Dye L, Cougnoux A, Koziol D, Sierra MDLL, Lyssikatos C, Belyavskaya E, Malchoff C, Moline J, Eng C, Maher LJ, Pacak K, Lodish M, Stratakis CA. Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metab 2015; 100:E710-9. [PMID: 25695889 PMCID: PMC4422891 DOI: 10.1210/jc.2014-4297] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Germline mutations in genes coding succinate dehydrogenase (SDH) subunits A, B, C, and D have been identified in familial paragangliomas (PGLs)/pheochromocytomas (PHEOs) and other tumors. We described a GH-secreting pituitary adenoma (PA) caused by SDHD mutation in a patient with familial PGLs. Additional patients with PAs and SDHx defects have since been reported. DESIGN We studied 168 patients with unselected sporadic PA and with the association of PAs, PGLs, and/or pheochromocytomas, a condition we named the 3P association (3PAs) for SDHx germline mutations. We also studied the pituitary gland and hormonal profile of Sdhb(+/-) mice and their wild-type littermates at different ages. RESULTS No SDHx mutations were detected among sporadic PA, whereas three of four familial cases were positive for a mutation (75%). Most of the SDHx-deficient PAs were either prolactinomas or somatotropinomas. Pituitaries of Sdhb(+/-) mice older than 12 months had an increased number mainly of prolactin-secreting cells and several ultrastructural abnormalities such as intranuclear inclusions, altered chromatin nuclear pattern, and abnormal mitochondria. Igf-1 levels of mutant mice tended to be higher across age groups, whereas Prl and Gh levels varied according to age and sex. CONCLUSION The present study confirms the existence of a new association that we termed 3PAs. It is due mostly to germline SDHx defects, although sporadic cases of 3PAs without SDHx defects also exist. Using Sdhb(+/-) mice, we provide evidence that pituitary hyperplasia in SDHx-deficient cells may be the initial abnormality in the cascade of events leading to PA formation.
Collapse
Affiliation(s)
- Paraskevi Xekouki
- Section on Endocrinology and Genetics (P.X., E.S., S.A.M., P.M., M.R., N.R., M.d.L.L.S., C.L., E.B., M.L., C.A.S.), Program on Developmental Endocrinology and Genetics, Section on Medical Neuroendocrinology (P.B., A.G.), Program in Reproductive and Adult Endocrinology, Section on Molecular Dysmorphology (C.A.W., A.C.), Program in Developmental Endocrinology and Genetics, Microscopy and Imaging Core (L.D.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Laboratory of Pathology (A.G., M.Q., K.P.), National Cancer Institute, and Biostatistics and Clinical Epidemiology Service (D.K.), Clinical Center, National Institutes of Health, Bethesda, Maryland 20892; Department of Endocrinology (C.M.), University of Connecticut Health Center, Farmington, Connecticut 06030; Genomic Medicine Institute (J.M., C.E.), Cleveland Clinic, Cleveland, Ohio 44195; Department of Biochemistry and Molecular Biology (L.J.M.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905; and Department of Molecular Medicine (P.B.), Institute of Virology, Slovak Academy of Sciences, 833 06 Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Janssen I, Blanchet EM, Adams K, Chen CC, Millo CM, Herscovitch P, Taieb D, Kebebew E, Lehnert H, Fojo AT, Pacak K. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res 2015; 21:3888-95. [PMID: 25873086 DOI: 10.1158/1078-0432.ccr-14-2751] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Patients with succinate dehydrogenase subunit B(SDHB) mutation-related pheochromocytoma/paraganglioma (PHEO/PGL) are at a higher risk for metastatic disease than other hereditary PHEOs/PGLs. Current therapeutic approaches are limited, but the best outcomes are based on the early and proper detection of as many lesions as possible. Because PHEOs/PGLs overexpress somatostatin receptor 2 (SSTR2), the goal of our study was to assess the clinical utility of [(68)Ga]-DOTA(0)-Tyr(3)-octreotate ([(68)Ga]-DOTATATE) positron emission tomography/computed tomography (PET/CT) and to evaluate its diagnostic utility in comparison with the currently recommended functional imaging modalities [(18)F]-fluorodopamine ([(18)F]-FDA), [(18)F]-fluorodihydroxyphenylalanine ([(18)F]-FDOPA), [(18)F]-fluoro-2-deoxy-d-glucose ([(18)F]- FDG) PET/CT as well as CT/MRI. EXPERIMENTAL DESIGN [(68)Ga]-DOTATATE PET/CT was prospectively performed in 17 patients with SDHB-related metastatic PHEOs/PGLs. All patients also underwent [(18)F]-FDG PET/CT and CT/MRI, with 16 of the 17 patients also receiving [(18)F]-FDOPA and [(18)F]-FDA PET/CT scans. Detection rates of metastatic lesions were compared between all these functional imaging studies. A composite synthesis of all used functional and anatomical imaging studies served as the imaging comparator. RESULTS [(68)Ga]-DOTATATE PET/CT demonstrated a lesion-based detection rate of 98.6% [95% confidence interval (CI), 96.5%-99.5%], [(18)F]-FDG, [(18)F]-FDOPA, [(18)F]-FDA PET/CT, and CT/MRI showed detection rates of 85.8% (CI, 81.3%-89.4%; P < 0.01), 61.4% (CI, 55.6%-66.9%; P < 0.01), 51.9% (CI, 46.1%-57.7%; P < 0.01), and 84.8% (CI, 80.0%-88.5%; P < 0.01), respectively. CONCLUSIONS [(68)Ga]-DOTATATE PET/CT showed a significantly superior detection rate to all other functional and anatomical imaging modalities and may represent the preferred future imaging modality in the evaluation of SDHB-related metastatic PHEO/PGL.
Collapse
Affiliation(s)
- Ingo Janssen
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland. Department of Radiology and Nuclear Medicine, Section of Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Karen Adams
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Clara C Chen
- Nuclear Medicine Division, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland
| | - Corina M Millo
- Positron Emission Tomography Department, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, NIH Clinical Center, NIH, Bethesda, Maryland
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Hendrik Lehnert
- Department of Internal Medicine I, University Hospital Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Antonio T Fojo
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Karel Pacak
- Program in Adult and Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.
| |
Collapse
|
113
|
Opotowsky AR, Moko LE, Ginns J, Rosenbaum M, Greutmann M, Aboulhosn J, Hageman A, Kim Y, Deng LX, Grewal J, Zaidi AN, Almansoori G, Oechslin E, Earing M, Landzberg MJ, Singh MN, Wu F, Vaidya A. Pheochromocytoma and paraganglioma in cyanotic congenital heart disease. J Clin Endocrinol Metab 2015; 100:1325-34. [PMID: 25581599 PMCID: PMC4399286 DOI: 10.1210/jc.2014-3863] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Aberrant cellular oxygen sensing is a leading theory for development of pheochromocytoma (PHEO) and paraganglioma (PGL). OBJECTIVE The objective of the study was to test the hypothesis that chronic hypoxia in patients with cyanotic congenital heart disease (CCHD) increases the risk for PHEO-PGL. DESIGN/SETTING/PARTICIPANTS We investigated the association between CCHD and PHEO-PGL with two complementary studies: study 1) an international consortium was established to identify congenital heart disease (CHD) patients with a PHEO-PGL diagnosis confirmed by pathology or biochemistry and imaging; study 2) the 2000-2009 Nationwide Inpatient Survey, a nationally representative discharge database, was used to determine population-based cross-sectional PHEO-PGL frequency in hospitalized CCHD patients compared with noncyanotic CHD and those without CHD using multivariable logistic regression adjusted for age, sex, and genetic PHEO-PGL syndromes. RESULTS In study 1, we identified 20 PHEO-PGL cases, of which 18 had CCHD. Most presented with cardiovascular or psychiatric symptoms. Median cyanosis duration for the CCHD PHEO-PGL cases was 20 years (range 1-57 y). Cases were young at diagnosis (median 31.5 y, range 15-57 y) and 7 of 18 had multiple tumors (two bilateral PHEO; six multifocal or recurrent PGL), whereas 11 had single tumors (seven PHEO; four PGL). PGLs were abdominal (13 of 17) or head/neck (4 of 17). Cases displayed a noradrenergic biochemical phenotype similar to reported hypoxia-related PHEO-PGL genetic syndromes but without clinical signs of such syndromes. In study 2, hospitalized CCHD patients had an increased likelihood of PHEO-PGL (adjusted odds ratio 6.0, 95% confidence interval 2.6-13.7, P < .0001) compared with those without CHD; patients with noncyanotic CHD had no increased risk (odds ratio 0.9, P = .48). CONCLUSIONS There is a strong link between CCHD and PHEO-PGL. Whether these rare diseases coassociate due to hypoxic stress, common genetic or developmental factors, or some combination requires further investigation.
Collapse
Affiliation(s)
- Alexander R Opotowsky
- Department of Cardiology (A.R.O., L.E.M., M.J.L., M.N.S., F.W.), Boston Children's Hospital, Boston, Massachusetts 02115; Division of Cardiovascular Medicine, (A.R.O., M.J.L., M.N.S., F.W.), Division of Endocrinology (A.V.), Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine (J.Gi., M.R.), Columbia University Medical Center, New York, New York 10027; Adult Congenital Heart Disease Program (M.G.), University Hospital Zurich, CH-8032 Zurich, Switzerland; Department of Medicine (J.A.,A.H.), Division of Cardiology, University of California, Los Angeles, Medical Center, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California 90095; Department of Cardiology (Y.K., L.X.D.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Medicine (Y.K., L.X.D.), Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Cardiology (J.Gr.), St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; The Heart Center (A.N.Z.), Nationwide Children's Hospital, Columbus, Ohio 43205; Department of Internal Medicine (A.N.Z.), The Ohio State University Wexner Medical Center, Columbus, Ohio 43210; Department of Medicine (G.A., E.O.), University Health Network and University of Toronto, Toronto, Ontario, CanadaM5G2C4; Department of Pediatrics (M.E.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226; Center for Adrenal Disorders (A.V.), Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Jochmanová I, Zelinka T, Widimský J, Pacak K. HIF signaling pathway in pheochromocytoma and other neuroendocrine tumors. Physiol Res 2015; 63:S251-62. [PMID: 24908231 DOI: 10.33549/physiolres.932789] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors controlling energy, iron metabolism, erythropoiesis, and development. Dysregulation of these proteins contributes to tumorigenesis and cancer progression. Recent findings revealed the important role of HIFs in the pathogenesis of neuroendocrine tumors, especially pheochromocytoma (PHEO) and paraganglioma (PGL). PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. To date, eighteen PHEO/PGL susceptibility genes have been identified. Based on the main signaling pathways, PHEOs/PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Recent data suggest that both clusters are interconnected via the HIF signaling and its role in tumorigenesis is supported by newly described somatic and germline mutations in HIF2A gene in patients with PHEOs/PGLs associated with polycythemia, and in some of them also with somatostatinoma. Moreover, HIFalpha signaling has also been shown to be upregulated in neuroendocrine tumors other than PHEO/PGL. Some of these tumors are components of hereditary tumor syndromes which can be associated with PHEO/PGL, but also in ileal carcinoids or melanoma. HIF signaling appears to be one of the crucial players in tumorigenesis, which could suggest new therapeutic approaches for treatment of neuroendocrine tumors.
Collapse
Affiliation(s)
- I Jochmanová
- Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia; Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
115
|
Zhu X, Li Q, Li S, Chen B, Zou H. HIF-1α decoy oligodeoxynucleotides inhibit HIF-1α signaling and breast cancer proliferation. Int J Oncol 2014; 46:215-22. [PMID: 25334080 DOI: 10.3892/ijo.2014.2715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 11/05/2022] Open
Abstract
Although HIF-1α is considered an attractive target for the development of cancer therapies, like other transcriptional factors, it has been regarded as 'undruggable'. The decoy approach is a new class of antigene strategy that can be used to modulate the function of endogenous transcriptional factors. Here, we designed a decoy oligodeoxynucleotide (ODN) and tested its effect on the function of HIF-1α. We found the HIF-1α decoy ODN could efficiently enter into cells. Furthermore, these decoy ODNs can significantly block the expression of VEGFA, a known targeted gene of HIF-1α suggesting that the HIF-1α decoy ODNs can inhibit the function of HIF-1α. More importantly, the HIF-1α decoy ODN induced apoptosis and cell cycle arrest in MDA-MB-231 breast cancer cells. In summary, HIF-1α decoy ODNs can inhibit the function of HIF-1α and induce cancer cell apoptosis. Therefore, HIF-1α decoy ODNs should be further modified to improve their biological activity in vivo.
Collapse
Affiliation(s)
- Xuhong Zhu
- Outpatient Department, Gansu Provincial Hospital, Lanzhou 730000, P.R. China
| | - Qin Li
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| | - Shuang Li
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| | - Bote Chen
- Department of Urology, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| | - Haidong Zou
- Department of Obstetrics and Gynecology, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| |
Collapse
|
116
|
Taïeb D, Kaliski A, Boedeker CC, Martucci V, Fojo T, Adler JR, Pacak K. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr Rev 2014; 35:795-819. [PMID: 25033281 PMCID: PMC4167435 DOI: 10.1210/er.2014-1026] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors belonging to the family of pheochromocytoma/paraganglioma neoplasms. Despite advances in understanding the pathogenesis of these tumors, the growth potential and clinical outcome of individual cases remains largely unpredictable. Over several decades, surgical resection has long been the treatment of choice for HNPGLs. However, increasing experience in various forms of radiosurgery has been reported to result in curative-like outcomes, even for tumors localized in the most inaccessible anatomical areas. The emergence of such new therapies challenges the traditional paradigm for the management of HNPGLs. This review will assist and guide physicians who encounter patients with such tumors, either from a diagnostic or therapeutic standpoint. This review will also particularly emphasize current and emerging knowledge in genetics, imaging, and therapeutic options as well as the health-related quality of life for patients with HNPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine (D.T.), La Timone University Hospital, CERIMED, Aix-Marseille Univ, F-13385 Marseille, France; Department of Radiation Oncology (A.K.), Besançon University Hospital, F-25030 Besançon, France; Department of Otorhinolaryngology/Head and Neck Surgery (C.C.B.), HELIOS Hanseklinikum Stralsund, D-18435 Stralsund, Germany; Department of Otorhinolaryngology/Head and Neck Surgery (C.C.B.), University Hospital, Freiburg, Germany; Program in Reproductive and Adult Endocrinology (V.M., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development and Medical Oncology Branch (T.F.), National Institutes of Health, Bethesda, Maryland 20892; Department of Neurosurgery (J.R.A.), Stanford Hospital and Clinics, Stanford University, Stanford, California 94305
| | | | | | | | | | | | | |
Collapse
|
117
|
Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J Mol Med (Berl) 2014; 93:93-104. [PMID: 25263965 DOI: 10.1007/s00109-014-1205-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED We have investigated genetic/pathogenetic factors associated with a new clinical entity in patients presenting with pheochromocytoma/paraganglioma (PHEO/PGL) and polycythemia. Two patients without hypoxia-inducible factor 2α (HIF2A) mutations, who presented with similar clinical manifestations, were analyzed for other gene mutations, including prolyl hydroxylase (PHD) mutations. We have found for the first time a germ-line mutation in PHD1 in one patient and a novel germ-line PHD2 mutation in a second patient. Both mutants exhibited reduced protein stability with substantial quantitative protein loss and thus compromised catalytic activities. Due to the unique association of patients' polycythemia with borderline or mildly elevated erythropoietin (EPO) levels, we also performed an in vitro sensitivity assay of erythroid progenitors to EPO and for EPO receptor (EPOR) expression. The results show inappropriate hypersensitivity of erythroid progenitors to EPO in these patients, indicating increased EPOR expression/activity. In addition, the present study indicates that HIF dysregulation due to PHD mutations plays an important role in the pathogenesis of these tumors and associated polycythemia. The PHD1 mutation appears to be a new member contributing to the genetic landscape of this novel clinical entity. Our results support the existence of a specific PHD1- and PHD2-associated PHEO/PGL-polycythemia disorder. KEY MESSAGE • A novel germ-l i n e PHD1 mutation causing heochromocytoma/paraganglioma and polycythemia. • Increased EPOR activity and inappropriate hypersensitivity of erythroid progenitors to EPO.
Collapse
|
118
|
Nölting S, Giubellino A, Tayem Y, Young K, Lauseker M, Bullova P, Schovanek J, Anver M, Fliedner S, Korbonits M, Göke B, Vlotides G, Grossman A, Pacak K. Combination of 13-Cis retinoic acid and lovastatin: marked antitumor potential in vivo in a pheochromocytoma allograft model in female athymic nude mice. Endocrinology 2014; 155:2377-90. [PMID: 24762141 PMCID: PMC4060189 DOI: 10.1210/en.2014-1027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Currently, there are no reliably effective therapeutic options for metastatic pheochromocytoma (PCC) and paraganglioma. Moreover, there are no therapies that may prevent the onset or progression of tumors in patients with succinate dehydrogenase type B mutations, which are associated with very aggressive tumors. Therefore, we tested the approved and well-tolerated drugs lovastatin and 13-cis-retinoic acid (13cRA) in vitro in an aggressive PCC mouse cell line, mouse tumor tissue-derived (MTT) cells, and in vivo in a PCC allograft nude mouse model, in therapeutically relevant doses. Treatment was started 24 hours before sc tumor cell injection and continued for 30 more days. Tumor sizes were measured from outside by caliper and sizes of viable tumor mass by bioluminescence imaging. Lovastatin showed antiproliferative effects in vitro and led to significantly smaller tumor sizes in vivo compared with vehicle treatment. 13cRA promoted tumor cell growth in vitro and led to significantly larger viable tumor mass and significantly faster increase of viable tumor mass in vivo over time compared with vehicle, lovastatin, and combination treatment. However, when combined with lovastatin, 13cRA enhanced the antiproliferative effect of lovastatin in vivo. The combination-treated mice showed slowest tumor growth of all groups with significantly slower tumor growth compared with the vehicle-treated mice and significantly smaller tumor sizes. Moreover, the combination-treated group displayed the smallest size of viable tumor mass and the slowest increase in viable tumor mass over time of all groups, with a significant difference compared with the vehicle- and 13cRA-treated group. The combination-treated tumors showed highest extent of necrosis, lowest median microvessel density and highest expression of α-smooth muscle actin. The combination of high microvessel density and low α-smooth muscle actin is a predictor of poor prognosis in other tumor entities. Therefore, this drug combination may be a well-tolerated novel therapeutic or preventive option for malignant PCC.
Collapse
|
119
|
van Berkel A, Rao JU, Kusters B, Demir T, Visser E, Mensenkamp AR, van der Laak JAWM, Oosterwijk E, Lenders JWM, Sweep FCGJ, Wevers RA, Hermus AR, Langenhuijsen JF, Kunst DPM, Pacak K, Gotthardt M, Timmers HJLM. Correlation between in vivo 18F-FDG PET and immunohistochemical markers of glucose uptake and metabolism in pheochromocytoma and paraganglioma. J Nucl Med 2014; 55:1253-9. [PMID: 24925884 DOI: 10.2967/jnumed.114.137034] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Pheochromocytomas and paragangliomas (PPGLs) can be localized by (18)F-FDG PET. The uptake is particularly high in tumors with an underlying succinate dehydrogenase (SDH) mutation. SDHx-related PPGLs are characterized by compromised oxidative phosphorylation and a pseudohypoxic response, which mediates an increase in aerobic glycolysis, also known as the Warburg effect. The aim of this study was to explore the hypothesis that increased uptake of (18)F-FDG in SDHx-related PPGLs is reflective of increased glycolytic activity and is correlated with expression of different proteins involved in glucose uptake and metabolism through the glycolytic pathway. METHODS Twenty-seven PPGLs collected from patients with hereditary mutations in SDHB (n = 2), SDHD (n = 3), RET (n = 5), neurofibromatosis 1 (n = 1), and myc-associated factor X (n = 1) and sporadic patients (n = 15) were investigated. Preoperative (18)F-FDG PET/CT studies were analyzed; mean and maximum standardized uptake values (SUVs) in manually drawn regions of interest were calculated. The expression of proteins involved in glucose uptake (glucose transporters types 1 and 3 [GLUT-1 and -3, respectively]), phosphorylation (hexokinases 1, 2, and 3 [HK-1, -2, and -3, respectively]), glycolysis (monocarboxylate transporter type 4 [MCT-4]), and angiogenesis (vascular endothelial growth factor [VEGF], CD34) were examined in paraffin-embedded tumor tissues using immunohistochemical staining with peroxidase-catalyzed polymerization of diaminobenzidine as a read-out. The expression was correlated with corresponding SUVs. RESULTS Both maximum and mean SUVs for SDHx-related tumors were significantly higher than those for sporadic and other hereditary tumors (P < 0.01). The expression of HK-2 and HK-3 was significantly higher in SDHx-related PPGLs than in sporadic PPGLs (P = 0.022 and 0.025, respectively). The expression of HK-2 and VEGF was significantly higher in SDHx-related PPGLs than in other hereditary PPGLs (P = 0.039 and 0.008, respectively). No statistical differences in the expression were observed for GLUT-1, GLUT-3, and MCT-4. The percentage anti-CD 34 staining and mean vessel perimeter were significantly higher in SDHx-related PPGLs than in sporadic tumors (P = 0.050 and 0.010, respectively). Mean SUVs significantly correlated with the expression of HK-2 (P = 0.027), HK-3 (P = 0.013), VEGF (P = 0.049), and MCT-4 (P = 0.020). CONCLUSION The activation of aerobic glycolysis in SDHx-related PPGLs is associated with increased (18)F-FDG accumulation due to accelerated glucose phosphorylation by hexokinases rather than increased expression of glucose transporters.
Collapse
Affiliation(s)
- Anouk van Berkel
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jyotsna U Rao
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tuna Demir
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Eric Visser
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arjen R Mensenkamp
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands Department of Medicine and Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ad R Hermus
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Dirk P M Kunst
- Department of Otolaryngology, Radboud University Medical Centre, Nijmegen, The Netherlands; and
| | - Karel Pacak
- Eunice Kennedy Shriver, NICHD, National Institutes of Health, Bethesda, Maryland
| | - Martin Gotthardt
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
120
|
Rana HQ, Rainville IR, Vaidya A. Genetic testing in the clinical care of patients with pheochromocytoma and paraganglioma. Curr Opin Endocrinol Diabetes Obes 2014; 21:166-76. [PMID: 24739310 DOI: 10.1097/med.0000000000000059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Paraganglioma and pheochromocytoma (PGL/PCC) are tumours of neural crest origin that can present along a clinical spectrum ranging from apparently sporadic, isolated tumours to a more complex phenotype of one or multiple tumours in the context of other clinical features and family history suggestive of a defined hereditary syndrome. Genetic testing for hereditary PGL/PCC can help to confirm a genetic diagnosis for sporadic and syndromic cases. Informative genetic testing serves to clarify future risks for the patient and family members. RECENT FINDINGS Genetic discovery in the last decade has identified new PGL/PCC susceptibility loci. We summarize a contemporary approach adopted in our programme for genetic evaluation, testing and prospective management involving biochemical monitoring and imaging for hereditary PGL/PCC. A clinical vignette is presented to illustrate our practice. SUMMARY Current estimates that up to 40% of PGL/PCC are associated with germline mutations have implications for genetic testing recommendations. Prospective management of patients with defined hereditary susceptibility is based on established guidelines for well characterized syndromes. Management of tumour risk for rare syndromes, newly defined genetic associations and undefined genetic susceptibility in the setting of significant family history presents a challenge. Sustained discovery of new PGL/PCC genes underscores the need for a practice of continued genetic evaluation for patients with uninformative results. All patients with PGL/PCC should undergo genetic testing to identify potential hereditary tumour susceptibility.
Collapse
Affiliation(s)
- Huma Q Rana
- aCenter for Cancer Genetics and Prevention, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School bCenter for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
121
|
Vicha A, Taieb D, Pacak K. Current views on cell metabolism in SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 2014; 21:R261-77. [PMID: 24500761 PMCID: PMC4016161 DOI: 10.1530/erc-13-0398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Warburg's metabolic hypothesis is based on the assumption that a cancer cell's respiration must be under attack, leading to its damage, in order to obtain increased glycolysis. Although this may not apply to all cancers, there is some evidence proving that primarily abnormally functioning mitochondrial complexes are indeed related to cancer development. Thus, mutations in complex II (succinate dehydrogenase (SDH)) lead to the formation of pheochromocytoma (PHEO)/paraganglioma (PGL). Mutations in one of the SDH genes (SDHx mutations) lead to succinate accumulation associated with very low fumarate levels, increased glutaminolysis, the generation of reactive oxygen species, and pseudohypoxia. This results in significant changes in signaling pathways (many of them dependent on the stabilization of hypoxia-inducible factor), including oxidative phosphorylation, glycolysis, specific expression profiles, as well as genomic instability and increased mutability resulting in tumor development. Although there is currently no very effective therapy for SDHx-related metastatic PHEOs/PGLs, targeting their fundamental metabolic abnormalities may provide a unique opportunity for the development of novel and more effective forms of therapy for these tumors.
Collapse
Affiliation(s)
- Ales Vicha
- Department of Pediatric Hematology and Oncology, 2 Medical School, Charles University and University Hospital Motol, Prague, Czech Republic
| | - David Taieb
- Service Central de Biophysique et de Médecine Nucléaire, CERIMED Centre hospitalo-universitaire Timone, Marseille, France
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, 20892 USA
| |
Collapse
|
122
|
Welander J, Andreasson A, Brauckhoff M, Bäckdahl M, Larsson C, Gimm O, Söderkvist P. Frequent EPAS1/HIF2α exons 9 and 12 mutations in non-familial pheochromocytoma. Endocr Relat Cancer 2014; 21:495-504. [PMID: 24741025 DOI: 10.1530/erc-13-0384] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pheochromocytomas are neuroendocrine tumors arising from the adrenal medulla. While heritable mutations are frequently described, less is known about the genetics of sporadic pheochromocytoma. Mutations in genes involved in the cellular hypoxia response have been identified in tumors, and recently EPAS1, encoding HIF2α, has been revealed to be a new gene involved in the pathogenesis of pheochromocytoma and abdominal paraganglioma. The aim of this study was to further characterize EPAS1 alterations in non-familial pheochromocytomas. Tumor DNA from 42 adrenal pheochromocytoma cases with apparently sporadic presentation, without known hereditary mutations in predisposing genes, were analyzed for mutations in EPAS1 by sequencing of exons 9 and 12, which contain the two hydroxylation sites involved in HIF2α degradation, and also exon 2. In addition, the copy number at the EPAS1 locus as well as transcriptome-wide gene expression were studied by DNA and RNA microarray analyses, respectively. We identified six missense EPAS1 mutations, three in exon 9 and three in exon 12, in five of 42 pheochromocytomas (12%). The mutations were both somatic and constitutional, and had no overlap in 11 cases (26%) with somatic mutations in NF1 or RET. One sample had two different EPAS1 mutations, shown by cloning to occur in cis, possibly indicating a novel mechanism of HIF2α stabilization through inactivation of both hydroxylation sites. One of the tumors with an EPAS1 mutation also had a gain in DNA copy number at the EPAS1 locus. All EPAS1-mutated tumors displayed a pseudo-hypoxic gene expression pattern, indicating an oncogenic role of the identified mutations.
Collapse
Affiliation(s)
- Jenny Welander
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| | - Adam Andreasson
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| | - Michael Brauckhoff
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, SwedenDepartment of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| | - Martin Bäckdahl
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| | - Catharina Larsson
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| | - Oliver Gimm
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, SwedenDepartment of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| | - Peter Söderkvist
- Department of Clinical and Experimental MedicineFaculty of Health Sciences, Linköping University, Linköping SE-58185, SwedenDepartment of Oncology-PathologyKarolinska Institutet, CCK, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryHaukeland University Hospital, Bergen, NorwayDepartment of Clinical ScienceUniversity of Bergen, Bergen NO-5021, NorwayDepartment of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm SE-17176, SwedenDepartment of SurgeryCounty Council of Östergötland, Linköping SE-58185, Sweden
| |
Collapse
|
123
|
Toyoda H, Hirayama J, Sugimoto Y, Uchida K, Ohishi K, Hirayama M, Komada Y. Polycythemia and paraganglioma with a novel somatic HIF2A mutation in a male. Pediatrics 2014; 133:e1787-91. [PMID: 24819565 DOI: 10.1542/peds.2013-2419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recently, a new syndrome of paraganglioma, somatostatinoma, and polycythemia has been discovered (known as Pacak-Zhuang syndrome). This new syndrome, with somatic HIF2A gain-of-function mutations, has never been reported in male patients. We describe a male patient with Pacak-Zhuang syndrome who carries a newly discovered HIF2A mutation. Congenital polycythemias have diverse etiologies, including germline mutations in the oxygen-sensing pathway. These include von Hippel-Lindau (Chuvash polycythemia), prolyl hydroxylase domain-containing protein-2, and hypoxia-inducible factor-2α (HIF-2α). Somatic gain-of-function mutations in the gene encoding HIF-2α were reported in patients with paraganglioma and polycythemia and have been found exclusively in female patients. Through sequencing of the HIF2A using DNA from paraganglioma in 15-year-old male patient, we identified a novel mutation of HIF2A: a heterozygous C to A substitution at base 1589 in exon 12 of HIF2A. The mutation was not found in germline DNA from leukocytes. The C1589A mutations resulted in substitution of alanine 530 in the HIF-2α protein with glutamic acid. This mutation is undoubtedly associated with increased HIF-2α activity and increased protein half-life, because it affects the vicinity of the prolyl hydroxylase target residue, proline 531. To our knowledge, this is the first report describing Pacak-Zhuang syndrome with somatic gain-of-function mutation in HIF2A in a male patient. Congenital polycythemia of unknown origin should raise suspicion for the novel disorder Pacak-Zhuang syndrome, even in male patients.
Collapse
Affiliation(s)
| | | | | | - Keiichi Uchida
- Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan; and
| | - Kohshi Ohishi
- Transfusion Service, Mie University Hospital, Tsu, Japan
| | | | | |
Collapse
|
124
|
Jochmanova I, Lazurova I. A new twist in neuroendocrine tumor research: Pacak-Zhuang syndrome, HIF-2α as the major player in its pathogenesis and future therapeutic options. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:175-80. [PMID: 24781045 DOI: 10.5507/bp.2014.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/15/2014] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Backround. There is increasing evidence of the role of hypoxia or pseudohypoxia in tumorigenesis, including pheochromocytoma (PHEO) and paraganglioma (PGL). (Pseudo)hypoxia leads to activation of hypoxia-inducible transcription factors (HIFs) and thus, promotes the transcription of hypoxia-responsive genes which are involved in tumorigenesis. Recently identified is a new syndrome consisting of multiple and recurrent PGLs or PHEOs, somatostatinoma, and congenital polycythemia, due to somatic hypoxia-inducible factor 2α gene (HIF2A) mutations. METHODS AND RESULTS PubMed and Web of Science online databases were used to search reviews and original articles on the HIF, PHEO/PGL, and Pacak-Zhuang syndrome. CONCLUSIONS The novel somatic and germline gain-of-function HIF2A mutations described latterly emphasize the role of the HIF-2α in the PHEO/PGL development and these findings designate HIF, especially HIF-2α, as a promising treatment target.
Collapse
Affiliation(s)
- Ivana Jochmanova
- st Department of Internal Medicine, Medical Faculty, P.J. Safarik University, Trieda SNP 1, 04011, Kosice, Slovak Republic
| | | |
Collapse
|
125
|
Qin N, de Cubas AA, Garcia-Martin R, Richter S, Peitzsch M, Menschikowski M, Lenders JWM, Timmers HJLM, Mannelli M, Opocher G, Economopoulou M, Siegert G, Chavakis T, Pacak K, Robledo M, Eisenhofer G. Opposing effects of HIF1α and HIF2α on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC-associated factor X. Int J Cancer 2014; 135:2054-64. [PMID: 24676840 DOI: 10.1002/ijc.28868] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/03/2014] [Accepted: 03/13/2014] [Indexed: 01/19/2023]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are catecholamine-producing chromaffin cell tumors with diverse phenotypic features reflecting mutations in numerous genes, including MYC-associated factor X (MAX). To explore whether phenotypic differences among PPGLs reflect a MAX-mediated mechanism and opposing influences of hypoxia-inducible factor (HIF)s HIF2α and HIF1α, we combined observational investigations in PPGLs and gene-manipulation studies in two pheochromocytoma cell lines. Among PPGLs from 140 patients, tumors due to MAX mutations were characterized by gene expression profiles and intermediate phenotypic features that distinguished these tumors from other PPGLs, all of which fell into two expression clusters: one cluster with low expression of HIF2α and mature phenotypic features and the other with high expression of HIF2α and immature phenotypic features due to mutations stabilizing HIFs. Max-mutated tumors distributed to a distinct subcluster of the former group. In cell lines lacking Max, re-expression of the gene resulted in maturation of phenotypic features and decreased cell cycle progression. In cell lines lacking Hif2α, overexpression of the gene led to immature phenotypic features, failure of dexamethasone to induce differentiation and increased proliferation. HIF1α had opposing actions to HIF2α in both cell lines, supporting evolving evidence of their differential actions on tumorigenic processes via a MYC/MAX-related pathway. Requirement of a fully functional MYC/MAX complex to facilitate differentiation explains the intermediate phenotypic features in tumors due to MAX mutations. Overexpression of HIF2α in chromaffin cell tumors due to mutations affecting HIF stabilization explains their proliferative features and why the tumors fail to differentiate even when exposed locally to adrenal steroids.
Collapse
Affiliation(s)
- Nan Qin
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Martucci VL, Pacak K. Pheochromocytoma and paraganglioma: diagnosis, genetics, management, and treatment. Curr Probl Cancer 2014; 38:7-41. [PMID: 24636754 DOI: 10.1016/j.currproblcancer.2014.01.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
127
|
Rowbotham DA, Enfield KSS, Martinez VD, Thu KL, Vucic EA, Stewart GL, Bennewith KL, Lam WL. Multiple Components of the VHL Tumor Suppressor Complex Are Frequently Affected by DNA Copy Number Loss in Pheochromocytoma. Int J Endocrinol 2014; 2014:546347. [PMID: 25298778 PMCID: PMC4178909 DOI: 10.1155/2014/546347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas (PCC) are rare tumors that arise in chromaffin tissue of the adrenal gland. PCC are frequently inherited through predisposing mutations in genes such as the von Hippel-Lindau (VHL) tumor suppressor. VHL is part of the VHL elongin BC protein complex that also includes CUL2/5, TCEB1, TCEB2, and RBX1; in normoxic conditions this complex targets hypoxia-inducible factor 1 alpha (HIF1A) for degradation, thus preventing a hypoxic response. VHL inactivation by genetic mechanisms, such as mutation and loss of heterozygosity, inhibits HIF1A degradation, even in the presence of oxygen, and induces a pseudohypoxic response. However, the described <10% VHL mutation rate cannot account for the high frequency of hypoxic response observed. Indeed, little is known about genetic mechanisms disrupting other complex component genes. Here, we show that, in a panel of 171 PCC tumors, 59.6% harbored gene copy number loss (CNL) of at least one complex component. CNL significantly reduced gene expression and was associated with enrichment of gene targets controlled by HIF1. Interestingly, we show that VHL-related renal clear cell carcinoma harbored disruption of VHL alone. Our results indicate that VHL elongin BC protein complex components other than VHL could be important for PCC tumorigenesis and merit further investigation.
Collapse
Affiliation(s)
- David A. Rowbotham
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Victor D. Martinez
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
- BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- *Victor D. Martinez:
| | - Kelsie L. Thu
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Emily A. Vucic
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Kevin L. Bennewith
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|