101
|
Hussain A, Li X, Weng Y, Liu Z, Ashraf MF, Noman A, Yang S, Ifnan M, Qiu S, Yang Y, Guan D, He S. CaWRKY22 Acts as a Positive Regulator in Pepper Response to RalstoniaSolanacearum by Constituting Networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. Int J Mol Sci 2018; 19:E1426. [PMID: 29747470 PMCID: PMC5983767 DOI: 10.3390/ijms19051426] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022] Open
Abstract
The WRKY web, which is comprised of a subset of WRKY transcription factors (TFs), plays a crucial role in the regulation of plant immunity, however, the mode of organization and operation of this network remains obscure, especially in non-model plants such as pepper (Capsicum annuum). Herein, CaWRKY22, a member of a subgroup of IIe WRKY proteins from pepper, was functionally characterized in pepper immunity against Ralstonia Solanacearum. CaWRKY22 was found to target the nuclei, and its transcript level was significantly upregulated by Ralstonia Solanacearum inoculation (RSI) and exogenously applied salicylic acid (SA), Methyl jasmonate (MeJA), or ethephon (ETH). Loss-of-function CaWRKY22, caused by virus-induced gene silencing (VIGS), enhanced pepper’s susceptibility to RSI. In addition, the silencing of CaWRKY22 perturbed the hypersensitive response (HR)-like cell death elicited by RSI and downregulated defense-related genes including CaPO2, CaPR4, CaACC, CaBPR1, CaDEF1, CaHIR1, and CaWRKY40. CaWRKY22 was found to directly bind to the promoters of CaPR1, CaDEF1, and CaWRKY40 by chromatin immuno-precipitation (ChIP) analysis. Contrastingly, transient overexpression of CaWRKY22 in pepper leaves triggered significant HR-like cell death and upregulated the tested immunity associated maker genes. Moreover, the transient overexpression of CaWRKY22 upregulated the expression of CaWRKY6 and CaWRKY27 while it downregulated of the expression of CaWRKY58. Conversely, the transient overexpression of CaWRKY6, CaWRKY27, and CaWRKY40 upregulated the expression of CaWRKY22, while transient overexpression of CaWRKY58 downregulated the transcript levels of CaWRKY22. These data collectively recommend the role of CaWRKY22 as a positive regulator of pepper immunity against R. Solanacearum, which is regulated by signaling synergistically mediated by SA, jasmonic acid (JA), and ethylene (ET), integrating into WRKY networks with WRKY TFs including CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58.
Collapse
Affiliation(s)
- Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Furqan Ashraf
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Ifnan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shanshan Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yingjie Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
102
|
Ifnan Khan M, Zhang Y, Liu Z, Hu J, Liu C, Yang S, Hussain A, Furqan Ashraf M, Noman A, Shen L, Xia X, Yang F, Guan D, He S. CaWRKY40b in Pepper Acts as a Negative Regulator in Response to Ralstonia solanacearum by Directly Modulating Defense Genes Including CaWRKY40. Int J Mol Sci 2018; 19:E1403. [PMID: 29738468 PMCID: PMC5983674 DOI: 10.3390/ijms19051403] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
WRKY transcription factors (TFs) have been implicated in plant growth, development, and in response to environmental cues; however, the function of the majority of pepper WRKY TFs remains unclear. In the present study, we functionally characterized CaWRKY40b, a homolog of AtWRKY40, in pepper immunity. Ralstonia solanacearum inoculation (RSI) in pepper plants resulted in downregulation of CaWRKY40b transcript, and green fluorescent protein (GFP)-tagged CaWRKY40b was localized to the nuclei when transiently overexpressed in the leaves of Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of CaWRKY40b significantly decreased pepper’ susceptibility to RSI. Consistently, the transient over-expression of CaWRKY40b-SRDX (chimeric repressor version of CaWRKY40b) triggered cell death, as indicated by darker trypan blue and DAB staining. CaWRKY40b targets a number of immunity-associated genes, including CaWRKY40 JAR, RLK1, EIN3, FLS2, CNGIC8, CDPK13, and heat shock cognate protein 70 (HSC70), which were identified by ChIP-seq and confirmed using ChIP-real time PCR. Among these target genes, the negative regulator HSC70 was upregulated by transient overexpression of CaWRKY40b and downregulated by silencing of CaWRKY40b, whereas other positive regulators as well as two non-target genes, CaNPR1 and CaDEF1, were downregulated by the transient overexpression of CaWRKY40b and upregulated by CaWRKY40b silencing or transient overexpression of CaWRKY40b-SRDX. In addition, CaWRKY40b exhibited a positive feedback regulation at transcriptional level by directly targeting the promoter of itself. In conclusion, the findings of the present study suggest that CaWRKY40b acts as a negative regulator in pepper immunity against R. solanacearum by transcriptional modulation of a subset of immunity-associated genes; it also represses immunity in the absence of a pathogen, and derepresses immunity upon pathogen challenge.
Collapse
Affiliation(s)
- Muhammad Ifnan Khan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yangwen Zhang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiong Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Cailing Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ansar Hussain
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Furqan Ashraf
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqin Xia
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Feng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
103
|
Noman A, Liu Z, Yang S, Shen L, Hussain A, Ashraf MF, Khan MI, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog 2018; 118:336-346. [PMID: 29614367 DOI: 10.1016/j.micpath.2018.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
Extensive transcriptional reprogramming after pathogen attack determines immunity to these invaders and plant development. Zinc finger (ZNF) transcription factors regulate important processes in plants such as development, vegetative activities and plant immunity. Despite their immense significance, majority of ZNF transcription factors (TF) involved in pepper immunity and resistance to heat stress have not been focused much. Herein, we identified and functionally characterized CaZNF830 in pepper defense against Ralstonia solanacearum inoculation (RSI) and tolerance to high temperature and high humidity (HTHH). Transient expression analysis of CaZNF830-GFP fusion protein in tobacco leaves revealed its localization to the nucleus. Transcription of CaZNF830 is induced in pepper plants upon RSI or HTHH. Consistent with this, fluorometric GUS enzymatic assay driven by pCaZNF830 presented significantly enhanced activity under RSI and HTHH in comparison with the control plants. The silencing of CaZNF830 by virus induced gene silencing (VIGS) significantly compromised pepper immunity against RSI with enhanced growth of Ralstonia solanacearum in pepper plants. Silencing of CaZNF830 also impaired tolerance to HTHH coupled with decreased expression levels of immunity and thermo-tolerance associated marker genes including CaHIR1, CaNPR1, CaPR1, CaABR1 and CaHSP24. By contrast, the transient over-expression of CaZNF830 in pepper leaves by infiltration of GV3101 cells containing 35S::CaZNF830-HA induced HR mimic cell death, H2O2 accumulation and activated the transcriptions of the tested defense-relative or thermo-tolerance associated marker genes. RT-PCR and immune-blotting assay confirmed the stable expression of HA-tagged CaZNF830 mRNA and protein in pepper. All these results suggest that CaZNF830 acts as a positive regulator of plant immunity against RSI or tolerance to HTHH, it is induced by RSI or HTHH and consequently activate pepper immunity against RSI or tolerance to HTHH by directly or indirectly transcriptional modulation of many defense-linked genes.
Collapse
Affiliation(s)
- Ali Noman
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Furqan Ashraf
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Ifnan Khan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
104
|
Yang L, Chen J, Liu Y, Zhang S, Li S, Ding W. Validation of reference genes for quantitative gene expression analysis in Ralstonia pseudosolanacearum CQPS-1 under environment stress. J Microbiol Methods 2018; 148:104-109. [PMID: 29653150 DOI: 10.1016/j.mimet.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/31/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022]
Abstract
Quantitative real-time reverse transcriptase PCR (qRT-PCR) has become the method choice for quantification of gene expression changes, however, the accuracy of the method depends on the stability of reference genes. Ralstonia pseudosolanacearum (R. pseudosolanacearum) is an important plant pathogen, infecting >450 plant species and causing bacterial wilt. In order to identify stable reference genes in R. pseudosolanacearum CQPS-1 under different environment stresses. We used five tools (△Ct method, GeNorm, NormFinder, BestKeeper, and RefFinder) to evaluate the stability of seven candidate reference genes including phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 16S ribosomal RNA (16S), cell division protein ftsZ (ftsZ), DNA gyrase subunit A (gyrA), Ribosomal protein L13 (rplM), and phosphoserine aminotransferase (serC) under biotic (growth phases) and abiotic stress (temperature, hydroxycoumarins, nutrition). Overall, gyrA and serC were the most stable genes under different growth phases, while serC, gyrA and ftsZ during temperature stress, gyrA, ftsZ and 16S under hydroxycoumarins stress, and serC and 16S under nutrition stress conditions. This study provides useful resources for normalizing expression changes of target genes in R. pseudosolanacearum subjected to environment stress.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Juanni Chen
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ying Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shuting Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
105
|
Genome-Wide Analysis of DCL, AGO, and RDR Gene Families in Pepper (Capsicum Annuum L.). Int J Mol Sci 2018; 19:ijms19041038. [PMID: 29601523 PMCID: PMC5979589 DOI: 10.3390/ijms19041038] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
RNA silencing is an evolutionarily conserved mechanism that regulates variety of cellular processes in plants. Argonaute protein (AGO), Dicer-like protein (DCL) and RNA-dependent RNA polymerase (RDR) are critical components of RNA silencing. These efficient and indispensable components of the RNAi pathway have not been identified and characterized in pepper. In this study, we identified 12 CaAGO, 4 CaDCL and 6 CaRDR genes in pepper and compared them with those of Arabidopsis, tobacco, potato and tomato. Detailed phylogenetic analyses revealed that each CaAGO, CaDCL and CaRDR protein family were classified into four clades. The tissue specific expression and respond to abiotic or biotic stress were studied. The real-time quantitative polymerase chain reaction (PCR) results demonstrated that CaAGO2, CaAGO10b, CaDCL2 and CaDCL4 were upregulated with cucumber mosaic virus (CMV), potato virus Y (PVY) and tobacco mosaic virus (TMV) infections, whereas they showed difference expression patterns in response to abiotic stress. In addition, we found that many of the candidate genes were induced by phytohormones and H2O2 treatment. Our results provide useful information for further elucidation of gene silencing pathways and RNAi-mediated host immunity in pepper.
Collapse
|
106
|
Kelly S, Mun T, Stougaard J, Ben C, Andersen SU. Distinct Lotus japonicus Transcriptomic Responses to a Spectrum of Bacteria Ranging From Symbiotic to Pathogenic. FRONTIERS IN PLANT SCIENCE 2018; 9:1218. [PMID: 30177945 PMCID: PMC6110179 DOI: 10.3389/fpls.2018.01218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/30/2018] [Indexed: 05/12/2023]
Abstract
Lotus japonicus is a well-studied nodulating legume and a model organism for the investigation of plant-microbe interactions. The majority of legume transcriptome studies have focused on interactions with compatible symbionts, whereas responses to non-adapted rhizobia and pathogenic bacteria have not been well-characterized. In this study, we first characterized the transcriptomic response of L. japonicus to its compatible symbiont, Mesorhizobium loti R7A, through RNA-seq analysis of various plant tissues. Early symbiotic signaling was largely Nod factor-dependent and enhanced within root hairs, and we observed large-scale transcriptional reprogramming in nodule primordia and mature nitrogen-fixing nodules. We then characterized root transcriptional responses to a spectrum of L. japonicus interacting bacteria ranging from semi-compatible symbionts to pathogens. M. loti R7A and the semi-compatible strain Sinorhizobium fredii HH103 showed remarkably similar responses, allowing us to identify a small number of genes potentially involved in differentiating between fully and semi-compatible symbionts. The incompatible symbiont Bradyrhizobium elkanii USDA61 induced a more attenuated response, but the weakest response was observed for the foliar pathogen Pseudomonas syringae pv. tomato DC3000, where the affected genes also responded to other tested bacteria, pointing to a small set of common bacterial response genes. In contrast, the root pathogen Ralstonia solanacearum JS763 induced a pronounced and distinct transcriptomic pathogen response, which we compared to the results of the other treatments. This comparative analysis did not support the concept that an early defense-like response is generally evoked by compatible rhizobia during establishment of symbiosis.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Terry Mun
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Cécile Ben
- ECOLAB, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Stig U. Andersen,
| |
Collapse
|
107
|
Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson AM, Sudhakar C. A Novel WRKY Transcription Factor, MuWRKY3 ( Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut ( Arachis hypogaea L.) Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:346. [PMID: 29616059 PMCID: PMC5864901 DOI: 10.3389/fpls.2018.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/01/2018] [Indexed: 05/19/2023]
Abstract
Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion (O2∙-), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.
Collapse
Affiliation(s)
- Kurnool Kiranmai
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Gunupuru Lokanadha Rao
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Merum Pandurangaiah
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Ambekar Nareshkumar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | | | - Uppala Lokesh
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Boya Venkatesh
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - A. M. Anthony Johnson
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Chinta Sudhakar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
- *Correspondence: Chinta Sudhakar,
| |
Collapse
|
108
|
Mou S, Liu Z, Gao F, Yang S, Su M, Shen L, Wu Y, He S. CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:960-973. [PMID: 28840788 DOI: 10.1094/mpmi-06-17-0130-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Homeodomain-leucine zipper class I (HD-Zip I) transcription factors have been functionally characterized in plant responses to abiotic stresses, but their roles in plant immunity are poorly understood. Here, a HD-Zip I gene, CaHZ27, was isolated from pepper (Capsicum annum) and characterized for its role in pepper immunity. Quantitative real-time polymerase chain reaction showed that CaHDZ27 was transcriptionally induced by Ralstonia solanacearum inoculation and exogenous application of methyl jasmonate, salicylic acid, or ethephon. The CaHDZ27-green fluorescent protein fused protein was targeted exclusively to the nucleus. Chromatin immunoprecipitation demonstrated that CaHDZ27 bound to the 9-bp pseudopalindromic element (CAATAATTG) and triggered β-glucuronidase expression in a CAATAATTG-dependent manner. Virus-induced gene silencing of CaHDZ27 significantly attenuated the resistance of pepper plants against R. solanacearum and downregulated defense-related marker genes, including CaHIR1, CaACO1, CaPR1, CaPR4, CaPO2, and CaBPR1. By contrast, transient overexpression of CaHDZ27 triggered strong cell death mediated by the hypersensitive response and upregulated the tested immunity-associated marker genes. Ectopic CaHDZ27 expression in tobacco enhances its resistance against R. solanacearum. These results collectively suggest that CaHDZ27 functions as a positive regulator in pepper resistance against R. solanacearum. Bimolecular fluorescence complementation and coimmunoprecipitation assays indicate that CaHDZ27 monomers bind with each other, and this binding is enhanced significantly by R. solanacearum inoculation. We speculate that homodimerization of CaHZ27 might play a role in pepper response to R. solanacearum, further direct evidence is required to confirm it.
Collapse
Affiliation(s)
- Shaoliang Mou
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Zhiqin Liu
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Feng Gao
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Meixia Su
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Lei Shen
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Yang Wu
- 4 College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| |
Collapse
|
109
|
Silva Monteiro de Almeida D, Oliveira Jordão do Amaral D, Del-Bem LE, Bronze dos Santos E, Santana Silva RJ, Peres Gramacho K, Vincentz M, Micheli F. Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease. PLoS One 2017; 12:e0187346. [PMID: 29084273 PMCID: PMC5662177 DOI: 10.1371/journal.pone.0187346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/18/2017] [Indexed: 12/01/2022] Open
Abstract
Transcriptional regulation, led by transcription factors (TFs) such as those of the WRKY family, is a mechanism used by the organism to enhance or repress gene expression in response to stimuli. Here, we report on the genome-wide analysis of the Theobroma cacao WRKY TF family and also investigate the expression of WRKY genes in cacao infected by the fungus Moniliophthora perniciosa. In the cacao genome, 61 non-redundant WRKY sequences were found and classified in three groups (I to III) according to the WRKY and zinc-finger motif types. The 61 putative WRKY sequences were distributed on the 10 cacao chromosomes and 24 of them came from duplication events. The sequences were phylogenetically organized according to the general WRKY groups. The phylogenetic analysis revealed that subgroups IIa and IIb are sister groups and share a common ancestor, as well as subgroups IId and IIe. The most divergent groups according to the plant origin were IIc and III. According to the phylogenetic analysis, 7 TcWRKY genes were selected and analyzed by RT-qPCR in susceptible and resistant cacao plants infected (or not) with M. perniciosa. Some TcWRKY genes presented interesting responses to M. perniciosa such as Tc01_p014750/Tc06_p013130/AtWRKY28, Tc09_p001530/Tc06_p004420/AtWRKY40, Tc04_p016130/AtWRKY54 and Tc10_p016570/ AtWRKY70. Our results can help to select appropriate candidate genes for further characterization in cacao or in other Theobroma species.
Collapse
Affiliation(s)
- Dayanne Silva Monteiro de Almeida
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | - Daniel Oliveira Jordão do Amaral
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | - Luiz-Eduardo Del-Bem
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - Emily Bronze dos Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | - Raner José Santana Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
| | | | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, Montpellier, France
- * E-mail:
| |
Collapse
|
110
|
Cheng W, Xiao Z, Cai H, Wang C, Hu Y, Xiao Y, Zheng Y, Shen L, Yang S, Liu Z, Mou S, Qiu A, Guan D, He S. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. MOLECULAR PLANT PATHOLOGY 2017; 18:1089-1100. [PMID: 27438958 PMCID: PMC6638248 DOI: 10.1111/mpp.12462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
The leucine-rich repeat (LRR) proteins play important roles in the recognition of corresponding ligands and signal transduction networks in plant defence responses. Herein, a novel LRR protein from Capsicum annuum, CaLRR51, was identified and characterized. It was localized to the plasma membrane and transcriptionally up-regulated by Ralstonia solanacearum infection (RSI), as well as the exogenous application of salicylic acid (SA), jasmonic acid (JA) and ethephon (ETH). Virus-induced gene silencing of CaLRR51 significantly increased the susceptibility of pepper to RSI. By contrast, transient overexpression of CaLRR51 in pepper plants activated hypersensitive response (HR)-like cell death, and up-regulated the defence-related marker genes, including PO2, HIR1, PR1, DEF1 and ACO1. Moreover, ectopic overexpression of CaLRR51 in transgenic tobacco plants significantly enhanced the resistance to RSI. Transcriptional expression of the corresponding defence-related marker genes in transgenic tobacco plants was also found to be enhanced by the overexpression of CaLRR51, which was potentiated by RSI. These loss- and gain-of-function assays suggest that CaLRR51 acts as a positive regulator in the response of pepper to RSI. In addition, the putative signal peptide and transmembrane region were found to be required for plasma membrane targeting of CaLRR51, which is indispensable for the role of CaLRR51 in plant immunity.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Chuanqing Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yang Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yueping Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yuxing Zheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| |
Collapse
|
111
|
Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, Hussain A, Noman A, He S. Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection. Int J Mol Sci 2017; 18:E1661. [PMID: 28763001 PMCID: PMC5578051 DOI: 10.3390/ijms18081661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5' deletion assay revealed that pChiIV3-712 to -459 bp was found to be sufficient for ChiIV3' response to PCI. Furthermore, a mutation assay indicated that W-box-466 to -461 bp in pChiIV3-712 to -459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youquan Lin
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
112
|
Qin L, Mo N, Zhang Y, Muhammad T, Zhao G, Zhang Y, Liang Y. CaRDR1, an RNA-Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. FRONTIERS IN PLANT SCIENCE 2017; 8:1068. [PMID: 28702034 PMCID: PMC5487767 DOI: 10.3389/fpls.2017.01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
RNA silencing functions as a major natural antiviral defense mechanism in plants. RNA-dependent RNA polymerases (RDRs) that catalyze the synthesis of double-stranded RNAs, are considered as a fundamental element in RNA silencing pathways. In Arabidopsis thaliana, RDR1, 2 and 6 play important roles in anti-viral RNA silencing. Expression of RDR1 can be elevated following plant treatment with defense hormones and virus infection. RDR1 has been studied in several crop species, but not in pepper (Capsicum annuum L.). Here, a RDR1 gene was isolated from Capsicum annuum L., designated as CaRDR1. The full-length cDNA of CaRDR1 was 3,351 bp, encoding a 1,116-amino acid protein, which contains conserved regions, such as the most remarkable motif DLDGD. The transcripts of CaRDR1 could be induced by salicylic acid (SA), abscisic acid (ABA), H2O2, and tobacco mosaic virus (TMV). Silencing of CaRDR1 in pepper resulted in increased susceptibility to TMV as evident by severe symptom, increased of TMV-CP transcript, higher malondialdehyde (MDA) content and lower antioxidant enzymes activities compared with that of control plants. CaRDR1-overexpressing in Nicotiana benthamiana showed mild disease symptom and reduced TMV-CP transcripts than that of empty vector (EV) following TMV inoculation. The RNA silencing related genes, including NbAGO2, NbDCL2, NbDCL3, and NbDCL4 elevated expression in overexpressed plants. Alternative oxidase (AOX), the terminal oxidase of the cyanide (CN)-resistant alternative respiratory pathway, catalyze oxygen-dependent oxidation of ubiquinol in plants. It has an important function in plant defense against TMV. In addition, CaRDR1 overexpression promoted the expression of NbAOX1a and NbAOX1b. In conclusion, these results suggest that CaRDR1 plays a positive role in TMV resistance by regulating antioxidant enzymes activities and RNA silencing-related genes expression to suppress the replication and movement of TMV.
Collapse
|
113
|
Liu Q, Liu Y, Tang Y, Chen J, Ding W. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1710. [PMID: 29075272 PMCID: PMC5641554 DOI: 10.3389/fpls.2017.01710] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/19/2017] [Indexed: 05/03/2023]
Abstract
WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco (Nicotiana tabacum) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum. Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica, hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50.
Collapse
|
114
|
Wang X, Guo R, Tu M, Wang D, Guo C, Wan R, Li Z, Wang X. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2017; 8:97. [PMID: 28197166 PMCID: PMC5281567 DOI: 10.3389/fpls.2017.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 05/10/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.
Collapse
Affiliation(s)
- Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Dejun Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Xiping Wang,
| |
Collapse
|
115
|
Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper. Sci Rep 2016; 6:39000. [PMID: 27991526 PMCID: PMC5171846 DOI: 10.1038/srep39000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY transcription factors play important roles in plant development and stress responses. Here, global expression patterns of pepper CaWRKYs in various tissues as well as response to environmental stresses and plant hormones were systematically analyzed, with an emphasis on fruit ripening. The results showed that most CaWRKYs were expressed in at least two of the tissues tested. Group I, a subfamily of the entire CaWRKY gene family, had a higher expression level in vegetative tissues, whereas groups IIa and III showed relatively lower expression levels. Comparative analysis showed that the constitutively highly expressed WRKY genes were conserved in tomato and pepper, suggesting potential functional similarities. Among the identified 61 CaWRKYs, almost 60% were expressed during pepper fruit maturation, and the group I genes were in higher proportion during the ripening process, indicating an as-yet unknown function of group I in the fruit maturation process. Further analysis suggested that many CaWRKYs expressed during fruit ripening were also regulated by abiotic stresses or plant hormones, indicating that these CaWRKYs play roles in the stress-related signaling pathways during fruit ripening. This study provides new insights to the current research on CaWRKY and contributes to our knowledge about the global regulatory network in pepper fruit ripening.
Collapse
|
116
|
Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry. Sci Rep 2016; 6:30794. [PMID: 27477686 PMCID: PMC4967854 DOI: 10.1038/srep30794] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.
Collapse
|
117
|
Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Lin W, Wang R, Yu H, Mou S, Hussain A, Cheng W, Cai H, He L, Guan D, Wu Y, He S. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2439-51. [PMID: 26936828 PMCID: PMC4809298 DOI: 10.1093/jxb/erw069] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.
Collapse
Affiliation(s)
- Lei Shen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tong Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiaqi Liang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiayu Wen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanyan Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiazhi Li
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lanping Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Tang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Lin
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rongzhang Wang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Huanxin Yu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Cheng
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanyang Cai
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Li He
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Deyi Guan
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yang Wu
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
118
|
Chen M, Tan Q, Sun M, Li D, Fu X, Chen X, Xiao W, Li L, Gao D. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol Genet Genomics 2016; 291:1319-32. [PMID: 26951048 PMCID: PMC4875958 DOI: 10.1007/s00438-016-1171-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.
Collapse
Affiliation(s)
- Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
119
|
Shen L, Yang S, Yang T, Liang J, Cheng W, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Mou S, Liu Z, Cai H, He L, Guan D, Wu Y, He S. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling. Sci Rep 2016; 6:22439. [PMID: 26928570 PMCID: PMC4772545 DOI: 10.1038/srep22439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity.
Collapse
Affiliation(s)
- Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tong Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiaqi Liang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiayu Wen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanyan Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lanping Shi
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Tang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Shi
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Li He
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yang Wu
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
120
|
Phukan UJ, Jeena GS, Shukla RK. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:760. [PMID: 27375634 PMCID: PMC4891567 DOI: 10.3389/fpls.2016.00760] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/17/2016] [Indexed: 05/17/2023]
Abstract
Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research.
Collapse
|
121
|
Qiu A, Liu Z, Li J, Chen Y, Guan D, He S. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids. FRONTIERS IN PLANT SCIENCE 2016; 7:1177. [PMID: 27551287 PMCID: PMC4976107 DOI: 10.3389/fpls.2016.01177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/21/2016] [Indexed: 05/07/2023]
Abstract
In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes's response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery.
Collapse
Affiliation(s)
- Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Zhiqin Liu
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
| | - Jiazhi Li
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Yanshen Chen
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Deyi Guan
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
| | - Shuilin He
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
- *Correspondence: Shuilin He,
| |
Collapse
|
122
|
Menna A, Nguyen D, Guttman DS, Desveaux D. Elevated Temperature Differentially Influences Effector-Triggered Immunity Outputs in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:995. [PMID: 26617631 PMCID: PMC4637416 DOI: 10.3389/fpls.2015.00995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/30/2015] [Indexed: 05/20/2023]
Abstract
Pseudomonas syringae is a Gram-negative bacterium that infects multiple plant species by manipulating cellular processes via injection of type three secreted effectors (T3SEs) into host cells. Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins recognize specific T3SEs and trigger a robust immune response, called effector-triggered immunity (ETI), which limits pathogen proliferation and is often associated with localized programmed cell death, known as the hypersensitive response (HR). In this study, we examine the influence of elevated temperature on two ETI outputs: HR and pathogen virulence suppression. We found that in the Arabidopsis thaliana accession Col-0, elevated temperatures suppress the HR, but have minimal influence on ETI-associated P. syringae virulence suppression, thereby uncoupling these two ETI responses. We also identify accessions of Arabidopsis that exhibit impaired P. syringae virulence suppression at elevated temperature, highlighting the natural variation that exists in coping with biotic and abiotic stresses. These results not only reinforce the influence of abiotic factors on plant immunity but also emphasize the importance of carefully documented environmental conditions in studies of plant immunity.
Collapse
Affiliation(s)
- Alexandra Menna
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dang Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
- *Correspondence: Darrell Desveaux, ; David S. Guttman,
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
- *Correspondence: Darrell Desveaux, ; David S. Guttman,
| |
Collapse
|