101
|
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JRL. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 2014; 132 Suppl:S150-63. [PMID: 24252486 DOI: 10.1016/j.actatropica.2013.11.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/01/2013] [Accepted: 11/09/2013] [Indexed: 12/11/2022]
Abstract
Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs.
Collapse
Affiliation(s)
- Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Wagrammerstrasse 5, Vienna 1220, Austria.
| | - Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Maurizio Calvitti
- UTAGRI-ECO, CR ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy.
| | - Luciano A Moreira
- Laboratório de Malária, Centro de Pesquisas René Rachou, FIOCRUZ Minas, Avenida Augusto de Lima, 1715, Barro Preto, CEP 30190-002 Belo Horizonte, MG, Brazil.
| | - Hervé C Bossin
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, BP 30-98713 Papeete, French Polynesia.
| | - Riccardo Moretti
- UTAGRI-ECO, CR ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy.
| | - Luke Anthony Baton
- Laboratório de Malária, Centro de Pesquisas René Rachou, FIOCRUZ Minas, Avenida Augusto de Lima, 1715, Barro Preto, CEP 30190-002 Belo Horizonte, MG, Brazil.
| | - Grant L Hughes
- The Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Patrick Mavingui
- Université de Lyon, UMR 5557 CNRS, USC INRA 1364, VetAgro Sup, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.
| | - Jeremie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Wagrammerstrasse 5, Vienna 1220, Austria.
| |
Collapse
|
102
|
Mærk M, Johansen J, Ertesvåg H, Drabløs F, Valla S. Safety in numbers: multiple occurrences of highly similar homologs among Azotobacter vinelandii carbohydrate metabolism proteins probably confer adaptive benefits. BMC Genomics 2014; 15:192. [PMID: 24625193 PMCID: PMC4022178 DOI: 10.1186/1471-2164-15-192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication and horizontal gene transfer are common processes in bacterial and archaeal genomes, and are generally assumed to result in either diversification or loss of the redundant gene copies. However, a recent analysis of the genome of the soil bacterium Azotobacter vinelandii DJ revealed an abundance of highly similar homologs among carbohydrate metabolism genes. In many cases these multiple genes did not appear to be the result of recent duplications, or to function only as a means of stimulating expression by increasing gene dosage, as the homologs were located in varying functional genetic contexts. Based on these initial findings we here report in-depth bioinformatic analyses focusing specifically on highly similar intra-genome homologs, or synologs, among carbohydrate metabolism genes, as well as an analysis of the general occurrence of very similar synologs in prokaryotes. RESULTS Approximately 900 bacterial and archaeal genomes were analysed for the occurrence of synologs, both in general and among carbohydrate metabolism genes specifically. This showed that large numbers of highly similar synologs among carbohydrate metabolism genes are very rare in bacterial and archaeal genomes, and that the A. vinelandii DJ genome contains an unusually large amount of such synologs. The majority of these synologs were found to be non-tandemly organized and localized in varying but metabolically relevant genomic contexts. The same observation was made for other genomes harbouring high levels of such synologs. It was also shown that highly similar synologs generally constitute a very small fraction of the protein-coding genes in prokaryotic genomes. The overall synolog fraction of the A. vinelandii DJ genome was well above the data set average, but not nearly as remarkable as the levels observed when only carbohydrate metabolism synologs were considered. CONCLUSIONS Large numbers of highly similar synologs are rare in bacterial and archaeal genomes, both in general and among carbohydrate metabolism genes. However, A. vinelandii and several other soil bacteria harbour large numbers of highly similar carbohydrate metabolism synologs which seem not to result from recent duplication or transfer events. These genes may confer adaptive benefits with respect to certain lifestyles and environmental factors, most likely due to increased regulatory flexibility and/or increased gene dosage.
Collapse
Affiliation(s)
| | | | | | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | | |
Collapse
|
103
|
Schneider DI, Riegler M, Arthofer W, Merçot H, Stauffer C, Miller WJ. Uncovering Wolbachia diversity upon artificial host transfer. PLoS One 2013; 8:e82402. [PMID: 24376534 PMCID: PMC3869692 DOI: 10.1371/journal.pone.0082402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/23/2013] [Indexed: 11/27/2022] Open
Abstract
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.
Collapse
Affiliation(s)
- Daniela I. Schneider
- Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Markus Riegler
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia
| | - Wolfgang Arthofer
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Hervé Merçot
- UMR 7138, CNRS-Université Pierre & Marie Curie, Paris, France
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang J. Miller
- Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
104
|
Xiao JH, Yue Z, Jia LY, Yang XH, Niu LH, Wang Z, Zhang P, Sun BF, He SM, Li Z, Xiong TL, Xin W, Gu HF, Wang B, Werren JH, Murphy RW, Wheeler D, Niu LM, Ma GC, Tang T, Bian SN, Wang NX, Yang CY, Wang N, Fu YG, Li WZ, Yi SV, Yang XY, Zhou Q, Lu CX, Xu CY, He LJ, Yu LL, Chen M, Zheng Y, Wang SW, Zhao S, Li YH, Yu YY, Qian XJ, Cai Y, Bian LL, Zhang S, Wang JY, Yin Y, Xiao H, Wang GH, Yu H, Wu WS, Cook JM, Wang J, Huang DW. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol 2013; 14:R141. [PMID: 24359812 PMCID: PMC4053974 DOI: 10.1186/gb-2013-14-12-r141] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/20/2013] [Indexed: 12/23/2022] Open
Abstract
Background Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question. Results The genome size of the fig wasp C. solmsi is typical of insects, but has undergone dramatic reductions of gene families involved in environmental sensing and detoxification. The streamlined chemosensory ability reflects the overwhelming importance of females finding trees of their only host species, Ficus hispida, during their fleeting adult lives. Despite long-distance dispersal, little need exists for detoxification or environmental protection because fig wasps spend nearly all of their lives inside a largely benign host. Analyses of transcriptomes in females and males at four key life stages reveal that the extreme anatomical sexual dimorphism of fig wasps may result from a strong bias in sex-differential gene expression. Conclusions Our comparison of the C. solmsi genome with other insects provides new insights into the evolution of obligate mutualism. The draft genome of the fig wasp, and transcriptomic comparisons between both sexes at four different life stages, provide insights into the molecular basis for the extreme anatomical sexual dimorphism of this species.
Collapse
|
105
|
Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 2013; 9:e1003896. [PMID: 24348259 PMCID: PMC3861217 DOI: 10.1371/journal.pgen.1003896] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups--wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
106
|
Ellegaard KM, Klasson L, Andersson SGE. Testing the reproducibility of multiple displacement amplification on genomes of clonal endosymbiont populations. PLoS One 2013; 8:e82319. [PMID: 24312412 PMCID: PMC3842359 DOI: 10.1371/journal.pone.0082319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated.
Collapse
Affiliation(s)
- Kirsten Maren Ellegaard
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Siv G. E. Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
107
|
Pinto SB, Stainton K, Harris S, Kambris Z, Sutton ER, Bonsall MB, Parkhill J, Sinkins SP. Transcriptional regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 2013; 9:e1003647. [PMID: 24204251 PMCID: PMC3814344 DOI: 10.1371/journal.ppat.1003647] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/06/2013] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic incompatibility (CI) induced by the endosymbiont Wolbachia pipientis causes complex patterns of crossing sterility between populations of the Culex pipiens group of mosquitoes. The molecular basis of the phenotype is yet to be defined. In order to investigate what host changes may underlie CI at the molecular level, we examined the transcription of a homolog of the Drosophila melanogaster gene grauzone that encodes a zinc finger protein and acts as a regulator of female meiosis, in which mutations can cause sterility. Upregulation was observed in Wolbachia-infected C. pipiens group individuals relative to Wolbachia-cured lines and the level of upregulation differed between lines that were reproductively incompatible. Knockdown analysis of this gene using RNAi showed an effect on hatch rates in a Wolbachia infected Culex molestus line. Furthermore, in later stages of development an effect on developmental progression in CI embryos occurs in bidirectionally incompatible crosses. The genome of a wPip Wolbachia strain variant from Culex molestus was sequenced and compared with the genome of a wPip variant with which it was incompatible. Three genes in inserted or deleted regions were newly identified in the C. molestus wPip genome, one of which is a transcriptional regulator labelled wtrM. When this gene was transfected into adult Culex mosquitoes, upregulation of the grauzone homolog was observed. These data suggest that Wolbachia-mediated regulation of host gene expression is a component of the mechanism of cytoplasmic incompatibility. Wolbachia are maternally inherited bacteria that manipulate invertebrate reproduction. Cytoplasmic incompatibility is embryo death that occurs when males carrying Wolbachia mate with females that do not, or that carry a different Wolbachia variant; its mechanism is poorly understood. In Culex mosquitoes, in the presence of Wolbachia a gene related to a Drosophila melanogaster gene, grauzone, which has been shown to act as a regulator of the meiotic cell cycle, showed an elevated level of expression. When lower levels of expression were achieved through RNA interference, embryo hatch rates were affected and the stage of development at which embryo death occurs was altered. To find Wolbachia genes that influence cytoplasmic incompatibility, we compared the genomes of two variants of Wolbachia from Culex that produce cytoplasmic incompatibility with one another. Although most segments of these genomes were very similar, one newly identified gene is predicted to be a regulator of gene transcription. We cloned this gene into a plasmid, expressed it in adult mosquitoes and found higher levels of expression of the Culex grauzone homolog. This suggests that the Wolbachia transcriptional regulator may play an important role in manipulating the host in order to induce cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Sofia B. Pinto
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kirsty Stainton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zakaria Kambris
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth R. Sutton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steven P. Sinkins
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
108
|
High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) for determination of a highly degenerated prophage WO genome in a Wolbachia strain infecting a fig wasp species. Appl Environ Microbiol 2013; 79:7476-81. [PMID: 24077701 DOI: 10.1128/aem.02261-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophage WO is a model system for studying tripartite interactions among viruses, bacteria, and eukaryotes, especially investigations of the genomic stability of obligate intracellular bacteria. Few WO genomes exist because of the difficulty in isolating viral DNA from eukaryotic hosts, and most reports are by-products of Wolbachia sequencing. Only one partial genome of a WO phage has been determined directly from isolated particles. We determine the complete genome sequence of prophage WO (WOSol) in Wolbachia strain wSol, which infects the fig wasp Ceratosolen solmsi (Hymenoptera: Chalcidoidea), by high-efficiency thermal asymmetric interlaced PCR. The genome of WOSol is highly degenerated and disrupted by a large region (14,267 bp) from Wolbachia. Consistent with previous molecular studies of multiple WO genomes, the genome of WOSol appears to have evolved by single nucleotide mutations and recombinations.
Collapse
|
109
|
Dumas E, Atyame CM, Milesi P, Fonseca DM, Shaikevich EV, Unal S, Makoundou P, Weill M, Duron O. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol 2013; 13:181. [PMID: 24006922 PMCID: PMC3846486 DOI: 10.1186/1471-2148-13-181] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022] Open
Abstract
Background The maternally inherited bacterium Wolbachia often acts as a subtle parasite that manipulates insect reproduction, resulting potentially in reproductive isolation between host populations. Whilst distinct Wolbachia strains are documented in a group of evolutionarily closely related mosquitoes known as the Culex pipiens complex, their impact on mosquito population genetics remains unclear. To this aim, we developed a PCR-RFLP test that discriminates the five known Wolbachia groups found in this host complex. We further examined the Wolbachia genetic diversity, the variability in the coinherited host mitochondria and their partitioning among members of the Cx. pipiens complex, in order to assess the impact of Wolbachia on host population structure. Results There was a strong association between Wolbachia and mitochondrial haplotypes indicating a stable co-transmission in mosquito populations. Despite evidence that members of the Cx. pipiens complex are genetically distinct on the basis of nuclear DNA, the association of Wolbachia and mtDNA with members of the Cx. pipiens complex were limited. The Wolbachia wPip-I group, by far the most common, was associated with divergent Cx. pipiens members, including Cx. quinquefasciatus, Cx. pipiens pipiens form pipiens and Cx. pipiens pipiens form molestus. Four other wPip groups were also found in mosquito populations and all were shared between diverse Cx. pipiens members. Conclusion This data overall supports the hypothesis that wPip infections, and their allied mitochondria, are associated with regular transfers between Cx. pipiens members rather than specific host associations. Overall, this is suggestive of a recent and likely ongoing cytoplasmic introgression through hybridization events across the Cx. pipiens complex.
Collapse
Affiliation(s)
- Emilie Dumas
- Institut des Sciences de l'Evolution, UMR5554 CNRS, Université Montpellier 2, 34095 Montpellier cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Beckmann JF, Fallon AM. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:867-78. [PMID: 23856508 PMCID: PMC3839623 DOI: 10.1016/j.ibmb.2013.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 05/25/2023]
Abstract
Cytoplasmic incompatibility (CI) is a conditional sterility induced by the bacterium Wolbachia pipientis that infects reproductive tissues in many arthropods. Although CI provides a potential tool to control insect vectors of arthropod-borne diseases, the molecular basis for CI induction is unknown. We hypothesized that a Wolbachia-encoded, CI-inducing factor would be enriched in sperm recovered from spermathecae of female mosquitoes. Using SDS-PAGE and mass spectrometry, we detected peptides from the 56 kDa hypothetical protein, encoded by wPip_0282, associated with sperm transferred to females by Wolbachia infected males. We also detected peptides from the same protein in Wolbachia infected ovaries. Homologs of wPip_0282 and the co-transcribed downstream gene, wPip_0283, occur as multiple divergent copies in genomes of CI-inducing strains of Wolbachia. The operon is located in a genomic context that includes mobile genetic elements. The absence of wPip_0282 and wPip_0283 homologs from genomes of Wolbachia in filarial nematodes, as well as other members of the Rickettsiales, suggests a role as a candidate CI effector.
Collapse
Affiliation(s)
- John F Beckmann
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
111
|
Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts. Heredity (Edinb) 2013; 111:330-7. [PMID: 23759724 DOI: 10.1038/hdy.2013.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 11/09/2022] Open
Abstract
Various bacteria live exclusively within arthropod cells and collectively act as an important driver of arthropod evolutionary ecology. Whereas rampant intra-generic DNA transfers were recently shown to have a pivotal role in the evolution of the most common of these endosymbionts, Wolbachia, the present study show that inter-generic DNA transfers also commonly take place, constituting a potent source of rapid genomic change. Bioinformatic, molecular and phylogenetic data provide evidence that a selfish genetic element, the insertion sequence ISRpe1, is widespread in the Wolbachia, Cardinium and Rickettsia endosymbionts and experiences recent (and likely ongoing) transfers over long evolutionary distances. Although many ISRpe1 copies were clearly expanding and leading to rapid endosymbiont diversification, degraded copies are also frequently found, constituting an unusual genomic fossil record suggestive of ancient ISRpe1 expansions. Overall, the present data highlight how ecological connections within the arthropod intracellular environment facilitate lateral DNA transfers between distantly related bacterial lineages.
Collapse
|
112
|
Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet 2013; 9:e1003381. [PMID: 23593012 PMCID: PMC3616963 DOI: 10.1371/journal.pgen.1003381] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/30/2013] [Indexed: 02/04/2023] Open
Abstract
The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally transmitted genes. Speciation in sexual organisms is defined as the inability of two populations to get viable offspring. Speciation in asexual, obligate endosymbionts is thought to be an indirect consequence of host-specialization. An important question is if divergent endosymbionts would start blending if the host barrier isolating them were removed. Here, we have studied Wolbachia, an abundant group of bacteria in the insect world. Wolbachia is classified into supergroups based on multi-locus sequence typing. We have sequenced the genomes from the Wolbachia strains wNo and wHa. These are particularly interesting since they belong to different supergroups yet co-occur as a double-infection in natural populations of Drosophila simulans. A comparative genomics study showed that wHa and wNo contain no uniquely shared genes. Instead, each strain shares unique gene functions with members of the same supergroup that infect other hosts. This unexpected finding suggests an alternative means of ecological speciation, indicating that speciation is not restricted to host-specialization but rather that related endosymbionts can coexist as separate species in the same host. Our study sheds light on the genomic divergence between different partners inhabiting the intracellular niche of the same host organism.
Collapse
|
113
|
Siozios S, Ioannidis P, Klasson L, Andersson SGE, Braig HR, Bourtzis K. The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 2013; 8:e55390. [PMID: 23390535 PMCID: PMC3563639 DOI: 10.1371/journal.pone.0055390] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022] Open
Abstract
Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.
Collapse
Affiliation(s)
- Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Lisa Klasson
- Department of Molecular Evolution, Uppsala University, Uppsala, Sweden
| | | | - Henk R. Braig
- School of Biological Sciences Bangor University, Bangor Gwynedd, United Kingdom
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
114
|
Duplouy A, Iturbe-Ormaetxe I, Beatson SA, Szubert JM, Brownlie JC, McMeniman CJ, McGraw EA, Hurst GDD, Charlat S, O'Neill SL, Woolfit M. Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. BMC Genomics 2013; 14:20. [PMID: 23324387 PMCID: PMC3639933 DOI: 10.1186/1471-2164-14-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/02/2013] [Indexed: 02/06/2023] Open
Abstract
Background The endosymbiont Wolbachia pipientis causes diverse and sometimes dramatic phenotypes in its invertebrate hosts. Four Wolbachia strains sequenced to date indicate that the constitution of the genome is dynamic, but these strains are quite divergent and do not allow resolution of genome diversification over shorter time periods. We have sequenced the genome of the strain wBol1-b, found in the butterfly Hypolimnas bolina, which kills the male offspring of infected hosts during embyronic development and is closely related to the non-male-killing strain wPip from Culex pipiens. Results The genomes of wBol1-b and wPip are similar in genomic organisation, sequence and gene content, but show substantial differences at some rapidly evolving regions of the genome, primarily associated with prophage and repetitive elements. We identified 44 genes in wBol1-b that do not have homologs in any previously sequenced strains, indicating that Wolbachia’s non-core genome diversifies rapidly. These wBol1-b specific genes include a number that have been recently horizontally transferred from phylogenetically distant bacterial taxa. We further report a second possible case of horizontal gene transfer from a eukaryote into Wolbachia. Conclusions Our analyses support the developing view that many endosymbiotic genomes are highly dynamic, and are exposed and receptive to exogenous genetic material from a wide range of sources. These data also suggest either that this bacterial species is particularly permissive for eukaryote-to-prokaryote gene transfers, or that these transfers may be more common than previously believed. The wBol1-b-specific genes we have identified provide candidates for further investigations of the genomic bases of phenotypic differences between closely-related Wolbachia strains.
Collapse
Affiliation(s)
- Anne Duplouy
- School of Biological Sciences, University of Queensland, 4072, Brisbane, QLD, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Geniez S, Foster JM, Kumar S, Moumen B, Leproust E, Hardy O, Guadalupe M, Thomas SJ, Boone B, Hendrickson C, Bouchon D, Grève P, Slatko BE. Targeted genome enrichment for efficient purification of endosymbiont DNA from host DNA. Symbiosis 2013; 58:201-207. [PMID: 23482460 PMCID: PMC3589621 DOI: 10.1007/s13199-012-0215-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
Wolbachia endosymbionts are widespread in arthropods and are generally considered reproductive parasites, inducing various phenotypes including cytoplasmic incompatibility, parthenogenesis, feminization and male killing, which serve to promote their spread through populations. In contrast, Wolbachia infecting filarial nematodes that cause human diseases, including elephantiasis and river blindness, are obligate mutualists. DNA purification methods for efficient genomic sequencing of these unculturable bacteria have proven difficult using a variety of techniques. To efficiently capture endosymbiont DNA for studies that examine the biology of symbiosis, we devised a parallel strategy to an earlier array-based method by creating a set of SureSelect™ (Agilent) 120-mer target enrichment RNA oligonucleotides ("baits") for solution hybrid selection. These were designed from Wolbachia complete and partial genome sequences in GenBank and were tiled across each genomic sequence with 60 bp overlap. Baits were filtered for homology against host genomes containing Wolbachia using BLAT and sequences with significant host homology were removed from the bait pool. Filarial parasite Brugia malayi DNA was used as a test case, as the complete sequence of both Wolbachia and its host are known. DNA eluted from capture was size selected and sequencing samples were prepared using the NEBNext® Sample Preparation Kit. One-third of a 50 nt paired-end sequencing lane on the HiSeq™ 2000 (Illumina) yielded 53 million reads and the entirety of the Wolbachia genome was captured. We then used the baits to isolate more than 97.1 % of the genome of a distantly related Wolbachia strain from the crustacean Armadillidium vulgare, demonstrating that the method can be used to enrich target DNA from unculturable microbes over large evolutionary distances.
Collapse
Affiliation(s)
- Sandrine Geniez
- New England Biolabs, Inc., Ipswich, MA 01938 USA ; Écologie et Biologie des Interactions, Équipe Écologie, Évolution, Symbiose, University of Poitiers UMR CNRS 7267, 86022 Poitiers, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 2012; 22:2467-77. [PMID: 22919073 PMCID: PMC3514676 DOI: 10.1101/gr.138420.112] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023]
Abstract
The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response.
Collapse
Affiliation(s)
- Alistair C. Darby
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Stuart D. Armstrong
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Germanus S. Bah
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, Ngaoundéré, BP65 Adamawa Region, Cameroon
| | - Gaganjot Kaur
- Institute of Evolutionary Biology and the GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Margaret A. Hughes
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Suzanne M. Kay
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Pia Koldkjær
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Lucille Rainbow
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Alan D. Radford
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Mark L. Blaxter
- Institute of Evolutionary Biology and the GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Vincent N. Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, Ngaoundéré, BP65 Adamawa Region, Cameroon
| | - Alexander J. Trees
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions (UMR CNRS 7267), Equipe Ecologie Evolution Symbiose, Université de Poitiers, 86022 Poitiers CEDEX, France
| | - Jonathan M. Wastling
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Benjamin L. Makepeace
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| |
Collapse
|
117
|
Saha S, Hunter WB, Reese J, Morgan JK, Marutani-Hert M, Huang H, Lindeberg M. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PLoS One 2012; 7:e50067. [PMID: 23166822 PMCID: PMC3500351 DOI: 10.1371/journal.pone.0050067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/17/2012] [Indexed: 02/03/2023] Open
Abstract
Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.
Collapse
Affiliation(s)
- Surya Saha
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Justin Reese
- Genformatic, LLC., Alpharetta, Georgia, United States of America
| | - J. Kent Morgan
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Mizuri Marutani-Hert
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Hong Huang
- School of Information, University of South Florida, Tampa, Florida, United States of America
| | - Magdalen Lindeberg
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
118
|
Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012; 8:e1003012. [PMID: 23133394 PMCID: PMC3486910 DOI: 10.1371/journal.pgen.1003012] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/22/2012] [Indexed: 11/28/2022] Open
Abstract
Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI–inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI. Many arthropods are infected with bacterial symbionts that are maternally transmitted and have a great impact on their hosts' biology, ecology, and evolution. One of the most common phenotypes of facultative symbionts appears to be cytoplasmic incompatibility (CI), a type of reproductive failure in which bacteria in males modify sperm in a way that reduces the reproductive success of uninfected female mates. In spite of considerable interest, the genetic basis for CI is largely unknown. Cardinium hertigii, a symbiont of tiny parasitic wasps, is the only bacterial group other than the well-studied Wolbachia that is known to cause CI. Analysis of the Cardinium genome indicates that CI evolved independently in Wolbachia and Cardinium. However, a suite of shared proteins was likely involved in mediating host cell interactions, and CI shows functional overlap in both lineages. Our analysis suggests the presence of an unusual phage-derived, putative secretion system and reveals that Cardinium encodes biosynthetic pathways that suggest a potential role in host nutrition. Our findings provide a novel comparative context for understanding the mechanistic basis of CI and substantially increase our knowledge on reproductive manipulator symbionts that do not only severely affect population genetic structure of arthropods but may also serve as powerful tools in pest management.
Collapse
|
119
|
Factors behind junk DNA in bacteria. Genes (Basel) 2012; 3:634-50. [PMID: 24705080 PMCID: PMC3899985 DOI: 10.3390/genes3040634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/11/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022] Open
Abstract
Although bacterial genomes have been traditionally viewed as being very compact, with relatively low amounts of repetitive and non-coding DNA, this view has dramatically changed in recent years. The increase of available complete bacterial genomes has revealed that many species present abundant repetitive DNA (i.e., insertion sequences, prophages or paralogous genes) and that many of these sequences are not functional but can have evolutionary consequences as concerns the adaptation to specialized host-related ecological niches. Comparative genomics analyses with close relatives that live in non-specialized environments reveal the nature and fate of this bacterial junk DNA. In addition, the number of insertion sequences and pseudogenes, as well as the size of the intergenic regions, can be used as markers of the evolutionary stage of a genome.
Collapse
|
120
|
Duron O, Bernard J, Atyame CM, Dumas E, Weill M. Rapid evolution of Wolbachia incompatibility types. Proc Biol Sci 2012; 279:4473-80. [PMID: 22951738 DOI: 10.1098/rspb.2012.1368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In most insects, the endosymbiont Wolbachia induces cytoplasmic incompatibility (CI), an embryonic mortality observed when infected males mate either with uninfected females or with females infected by an incompatible Wolbachia strain. Although the molecular mechanism of CI remains elusive, it is classically viewed as a modification-rescue model, in which a Wolbachia mod function disables the reproductive success of the sperm of infected males, unless eggs are infected and express a compatible resc function. The extent to which the modification-rescue model can predict highly complex CI pattern remains a challenging issue. Here, we show the rapid evolution of the mod-resc system in the Culex pipiens mosquito. We have surveyed four incompatible laboratory isofemale lines over 50 generations and observed in two of them that CI has evolved from complete to partial incompatibility (i.e. the production of a mixture of compatible and incompatible clutches). Emergence of the new CI types depends only on Wolbachia determinants and can be simply explained by the gain of new resc functions. Evolution of CI types in Cx. pipiens thus appears as a gradual process, in which one or several resc functions can coexist in the same individual host in addition to the ones involved in the self-compatibility. Our data identified CI as a very dynamic process. We suggest that ancestral and mutant Wolbachia expressing distinct resc functions can co-infect individual hosts, opening the possibility for the mod functions to evolve subsequently. This gives a first clue towards the understanding of how Wolbachia reached highly complex CI pattern in host populations.
Collapse
Affiliation(s)
- Olivier Duron
- Institut des Sciences de l'Evolution, UMR5554 CNRS-Université Montpellier 2, Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|
121
|
Doudoumis V, Alam U, Aksoy E, Abd-Alla AMM, Tsiamis G, Brelsfoard C, Aksoy S, Bourtzis K. Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control. J Invertebr Pathol 2012; 112 Suppl:S94-103. [PMID: 22835476 DOI: 10.1016/j.jip.2012.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 02/03/2023]
Abstract
Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis.
Collapse
Affiliation(s)
- Vangelis Doudoumis
- Department of Environmental and Natural Resources Management, University of Ioannina, 2 Seferi St., 30100 Agrinio, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Scott AL, Ghedin E, Nutman TB, McReynolds LA, Poole CB, Slatko BE, Foster JM. Filarial and Wolbachia genomics. Parasite Immunol 2012; 34:121-9. [PMID: 22098559 DOI: 10.1111/j.1365-3024.2011.01344.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics.
Collapse
Affiliation(s)
- A L Scott
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
123
|
Metcalf JA, Bordenstein SR. The complexity of virus systems: the case of endosymbionts. Curr Opin Microbiol 2012; 15:546-52. [PMID: 22609369 DOI: 10.1016/j.mib.2012.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 12/16/2022]
Abstract
Host-microbe symbioses involving bacterial endosymbionts comprise some of the most intimate and long-lasting interactions on the planet. While restricted gene flow might be expected due to their intracellular lifestyle, many endosymbionts, especially those that switch hosts, are rampant with mobile DNA and bacteriophages. One endosymbiont, Wolbachia pipientis, infects a vast number of arthropod and nematode species and often has a significant portion of its genome dedicated to prophage sequences of a virus called WO. This phage has challenged fundamental theories of bacteriophage and endosymbiont evolution, namely the phage Modular Theory and bacterial genome stability in obligate intracellular species. WO has also opened up exciting windows into the tripartite interactions between viruses, bacteria, and eukaryotes.
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
124
|
MORNINGSTAR REBECCAJ, HAMER GABRIELL, GOLDBERG TONYL, HUANG SHAOMING, ANDREADIS THEODOREG, WALKER EDWARDD. Diversity of Wolbachia pipientis strain wPip in a genetically admixtured, above-ground Culex pipiens (Diptera: Culicidae) population: association with form molestus ancestry and host selection patterns. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:474-81. [PMID: 22679853 PMCID: PMC4053172 DOI: 10.1603/me11283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Analysis of molecular genetic diversity in nine marker regions of five genes within the bacteriophage WO genomic region revealed high diversity of the Wolbachia pipentis strain wPip in a population of Culex pipiens L. sampled in metropolitan Chicago, IL. From 166 blood fed females, 50 distinct genetic profiles of wPip were identified. Rarefaction analysis suggested a maximum of 110 profiles out of a possible 512 predicted by combinations of the nine markers. A rank-abundance curve showed that few strains were common and most were rare. Multiple regression showed that markers associated with gene Gp2d, encoding a partial putative capsid protein, were significantly associated with ancestry of individuals either to form molestus or form pipiens, as determined by prior microsatellite allele frequency analysis. None of the other eight markers was associated with ancestry to either form, nor to ancestry to Cx. quinquefasciatus Say. Logistic regression of host choice (mammal vs. avian) as determined by bloodmeal analysis revealed that significantly fewer individuals that had fed on mammals had the Gp9a genetic marker (58.5%) compared with avian-fed individuals (88.1%). These data suggest that certain wPip molecular genetic types are associated with genetic admixturing in the Cx. pipiens complex of metropolitan Chicago, IL, and that the association extends to phenotypic variation related to host preference.
Collapse
Affiliation(s)
- REBECCA J. MORNINGSTAR
- Comparative Medicine and Integrative Biology Program, G100 Veterinary Medical Center, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, 2215 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824
| | - GABRIEL L. HAMER
- Department of Microbiology and Molecular Genetics, 2215 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824
- Department of Pathobiological Sciences, 2015 Linden Drive, University of Wisconsin, Madison, WI 53706
| | - TONY L. GOLDBERG
- Department of Pathobiological Sciences, 2015 Linden Drive, University of Wisconsin, Madison, WI 53706
| | - SHAOMING HUANG
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511
| | - THEODORE G. ANDREADIS
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511
| | - EDWARD D. WALKER
- Department of Microbiology and Molecular Genetics, 2215 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
125
|
Whole-genome sequence of Wolbachia strain wAlbB, an endosymbiont of tiger mosquito vector Aedes albopictus. J Bacteriol 2012; 194:1840. [PMID: 22408242 DOI: 10.1128/jb.00036-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although bacteria of the genus Wolbachia induced significant extended phenotypes to infected hosts, most molecular mechanisms involved are still unknown. To gain insight into the bacterial genetic determinants, we sequenced the whole genome of Wolbachia wAlbB strain, a commensal obligate intracellular of the tiger mosquito Aedes albopictus.
Collapse
|
126
|
Pichon S, Bouchon D, Liu C, Chen L, Garrett RA, Grève P. The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods. BMC Microbiol 2012; 12:55. [PMID: 22497736 PMCID: PMC3431249 DOI: 10.1186/1471-2180-12-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/12/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The maternally inherited α-Proteobacteria Wolbachia pipientis is an obligate endosymbiont of nematodes and arthropods, in which they induce a variety of reproductive alterations, including Cytoplasmic Incompatibility (CI) and feminization. The genome of the feminizing wVulC Wolbachia strain harboured by the isopod Armadillidium vulgare has been sequenced and is now at the final assembly step. It contains an unusually high number of ankyrin motif-containing genes, two of which are homologous to the phage-related pk1 and pk2 genes thought to contribute to the CI phenotype in Culex pipiens. These genes encode putative bacterial effectors mediating Wolbachia-host protein-protein interactions via their ankyrin motifs. RESULTS To test whether these Wolbachia homologs are potentially involved in altering terrestrial isopod reproduction, we determined the distribution and expression of both pk1 and pk2 genes in the 3 Wolbachia strains that induce CI and in 5 inducing feminization of their isopod hosts. Aside from the genes being highly conserved, we found a substantial copy number variation among strains, and that is linked to prophage diversity. Transcriptional analyses revealed expression of one pk2 allele (pk2b2) only in the feminizing Wolbachia strains of isopods. CONCLUSIONS These results reveal the need to investigate the functions of Wolbachia ankyrin gene products, in particular those of Pk2, and their host targets with respect to host sex manipulation.
Collapse
Affiliation(s)
- Samuel Pichon
- Ecologie, Evolution, Symbiose, UMR CNRS 6556, Université de Poitiers, Poitiers, France
| | | | | | | | | | | |
Collapse
|
127
|
Schneider DI, Garschall KI, Parker AG, Abd-Alla AMM, Miller WJ. Global Wolbachia prevalence, titer fluctuations and their potential of causing cytoplasmic incompatibilities in tsetse flies and hybrids of Glossina morsitans subgroup species. J Invertebr Pathol 2012; 112 Suppl:S104-15. [PMID: 22516306 PMCID: PMC3625123 DOI: 10.1016/j.jip.2012.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 11/24/2022]
Abstract
We demonstrate the high applicability of a novel VNTR-based (Variable-Number-Tandem-Repeat) molecular screening tool for fingerprinting Wolbachia-infections in tsetse flies. The VNTR-141 locus provides reliable and concise differentiation between Wolbachia strains deriving from Glossina morsitans morsitans, Glossina morsitans centralis, and Glossina brevipalpis. Moreover, we show that certain Wolbachia-infections in Glossina spp. are capable of escaping standard PCR screening methods by 'hiding' as low-titer infections below the detection threshold. By applying a highly sensitive PCR-blot technique to our Glossina specimen, we were able to enhance the symbiont detection limit substantially and, consequently, trace unequivocally Wolbachia-infections at high prevalence in laboratory-reared G. swynnertoni individuals. To our knowledge, Wolbachia-persistence was reported exclusively for field-collected samples, and at low prevalence only. Finally, we highlight the substantially higher Wolbachia titer levels found in hybrid Glossina compared to non-hybrid hosts and the possible impact of these titers on hybrid host fitness that potentially trigger incipient speciation in tsetse flies.
Collapse
Affiliation(s)
- Daniela I Schneider
- Laboratories of Genome Dynamics, Department Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
128
|
Tyson T, O'Mahony Zamora G, Wong S, Skelton M, Daly B, Jones JT, Mulvihill ED, Elsworth B, Phillips M, Blaxter M, Burnell AM. A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags. BMC Res Notes 2012; 5:68. [PMID: 22281184 PMCID: PMC3296651 DOI: 10.1186/1756-0500-5-68] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/26/2012] [Indexed: 11/13/2022] Open
Abstract
Background Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. Panagrolaimus superbus is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that P. superbus uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis. Results To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of P. superbus. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at http://www.nematodes.org/nembase4/species_info.php?species=PSC. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from P. superbus. Notable among those is a putative lineage expansion of the lea (late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific sxp/ral-2 family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from Phytophthora infestans. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This P. superbus sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants glutathione peroxidase, dj-1 and 1-Cys peroxiredoxin, an shsp sequence and an lea gene. Conclusions P. superbus appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of lea genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of P. superbus.
Collapse
Affiliation(s)
- Trevor Tyson
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co, Kildare, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Riegler M, Iturbe-Ormaetxe I, Woolfit M, Miller WJ, O'Neill SL. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia. BMC Microbiol 2012; 12 Suppl 1:S12. [PMID: 22375862 PMCID: PMC3287509 DOI: 10.1186/1471-2180-12-s1-s12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group tightly on the basis of existing gene marker systems, including Multiple Locus Sequence Typing (MLST). There is an urgent need for higher resolution fingerprinting markers of Wolbachia for studies of population genetics, horizontal transmission and experimental evolution. Results The genome of the wMel Wolbachia strain that infects Drosophila melanogaster contains inter- and intragenic tandem repeats that may evolve through expansion or contraction. We identified hypervariable regions in wMel, including intergenic Variable Number Tandem Repeats (VNTRs), and genes encoding ankyrin (ANK) repeat domains. We amplified these markers from 14 related Wolbachia strains belonging to supergroup A and were successful in differentiating size polymorphic alleles. Because of their tandemly repeated structure and length polymorphism, the markers can be used in a PCR-diagnostic multilocus typing approach, analogous to the Multiple Locus VNTR Analysis (MLVA) established for many other bacteria and organisms. The isolated markers are highly specific for supergroup A and not informative for other supergroups. However, in silico analysis of completed genomes from other supergroups revealed the presence of tandem repeats that are variable and could therefore be useful for typing target strains. Conclusions Wolbachia genomes contain inter- and intragenic tandem repeats that evolve through expansion or contraction. A selection of polymorphic tandem repeats is a novel and useful PCR diagnostic extension to the existing MLST typing system of Wolbachia, as it allows rapid and inexpensive high-throughput fingerprinting of closely related strains for which polymorphic markers were previously lacking.
Collapse
|
130
|
Kremer N, Charif D, Henri H, Gavory F, Wincker P, Mavingui P, Vavre F. Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol 2012; 12 Suppl 1:S7. [PMID: 22376153 PMCID: PMC3287518 DOI: 10.1186/1471-2180-12-s1-s7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Wolbachia are intracellular bacteria known to be facultative reproductive parasites of numerous arthropod hosts. Apart from these reproductive manipulations, recent findings indicate that Wolbachia may also modify the host's physiology, notably its immune function. In the parasitoid wasp, Asobara tabida, Wolbachia is necessary for oogenesis completion, and aposymbiotic females are unable to produce viable offspring. The absence of egg production is also associated with an increase in programmed cell death in the ovaries of aposymbiotic females, suggesting that a mechanism that ensures the maintenance of Wolbachia in the wasp could also be responsible for this dependence. In order to decipher the general mechanisms underlying host-Wolbachia interactions and the origin of the dependence, we developed transcriptomic approaches to compare gene expression in symbiotic and aposymbiotic individuals. RESULTS As no genetic data were available on A. tabida, we constructed several Expressed Sequence Tags (EST) libraries, and obtained 12,551 unigenes from this species. Gene expression was compared between symbiotic and aposymbiotic ovaries through in silico analysis and in vitro subtraction (SSH). As pleiotropic functions involved in immunity and development could play a major role in the establishment of dependence, the expression of genes involved in oogenesis, programmed cell death (PCD) and immunity (broad sense) was analyzed by quantitative RT-PCR. We showed that Wolbachia might interfere with these numerous biological processes, in particular some related to oxidative stress regulation. We also showed that Wolbachia may interact with immune gene expression to ensure its persistence within the host. CONCLUSIONS This study allowed us to constitute the first major dataset of the transcriptome of A. tabida, a species that is a model system for both host/Wolbachia and host/parasitoid interactions. More specifically, our results highlighted that symbiont infection may interfere with numerous pivotal processes at the individual level, suggesting that the impact of Wolbachia should also be investigated beyond reproductive manipulations.
Collapse
|
131
|
Almeida FD, Moura AS, Cardoso AF, Winter CE, Bijovsky AT, Suesdek L. Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae). INFECTION GENETICS AND EVOLUTION 2011; 11:2138-43. [DOI: 10.1016/j.meegid.2011.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/11/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
132
|
Biliske JA, Batista PD, Grant CL, Harris HL. The bacteriophage WORiC is the active phage element in wRi of Drosophila simulans and represents a conserved class of WO phages. BMC Microbiol 2011; 11:251. [PMID: 22085419 PMCID: PMC3235987 DOI: 10.1186/1471-2180-11-251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/15/2011] [Indexed: 11/16/2022] Open
Abstract
Background The alphaproteobacterium Wolbachia pipientis, the most common endosymbiont in eukaryotes, is found predominantly in insects including many Drosophila species. Although Wolbachia is primarily vertically transmitted, analysis of its genome provides evidence for frequent horizontal transfer, extensive recombination and numerous mobile genetic elements. The genome sequence of Wolbachia in Drosophila simulans Riverside (wRi) is available along with the integrated bacteriophages, enabling a detailed examination of phage genes and the role of these genes in the biology of Wolbachia and its host organisms. Wolbachia is widely known for its ability to modify the reproductive patterns of insects. One particular modification, cytoplasmic incompatibility, has previously been shown to be dependent on Wolbachia density and inversely related to the titer of lytic phage. The wRi genome has four phage regions, two WORiBs, one WORiA and one WORiC. Results In this study specific primers were designed to distinguish between these four prophage types in wRi, and quantitative PCR was used to measure the titer of bacteriophages in testes, ovaries, embryos and adult flies. In all tissues tested, WORiA and WORiB were not found to be present in excess of their integrated prophages; WORiC, however, was found to be present extrachromosomally. WORiC is undergoing extrachromosomal replication in wRi. The density of phage particles was found to be consistent in individual larvae in a laboratory population. The WORiC genome is organized in conserved blocks of genes and aligns most closely with other known lytic WO phages, WOVitA and WOCauB. Conclusions The results presented here suggest that WORiC is the lytic form of WO in D. simulans, is undergoing extrachromosomal replication in wRi, and belongs to a conserved family of phages in Wolbachia.
Collapse
Affiliation(s)
- Jennifer A Biliske
- Department of Biological Sciences University of Alberta CW 403 Biological Sciences Building Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
133
|
Schmitz-Esser S, Penz T, Spang A, Horn M. A bacterial genome in transition--an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus. BMC Evol Biol 2011; 11:270. [PMID: 21943072 PMCID: PMC3196728 DOI: 10.1186/1471-2148-11-270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Results The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction. Conclusions Taken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
134
|
Cerveau N, Leclercq S, Leroy E, Bouchon D, Cordaux R. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts. Genome Biol Evol 2011; 3:1175-86. [PMID: 21940637 PMCID: PMC3205602 DOI: 10.1093/gbe/evr096] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.
Collapse
Affiliation(s)
- Nicolas Cerveau
- UMR CNRS 6556, Ecologie, Evolution, Symbiose, Université de Poitiers, France
| | | | | | | | | |
Collapse
|
135
|
Kent BN, Funkhouser LJ, Setia S, Bordenstein SR. Evolutionary genomics of a temperate bacteriophage in an obligate intracellular bacteria (Wolbachia). PLoS One 2011; 6:e24984. [PMID: 21949820 PMCID: PMC3173496 DOI: 10.1371/journal.pone.0024984] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that despite the phage's rampant mobility between coinfections, the prophage's genome displays features of constraint related to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate, independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in composition with genes of similar function grouping together, the modules are generally not interchangeable with other unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in phages of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Bethany N. Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lisa J. Funkhouser
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shefali Setia
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
136
|
Renvoisé A, Merhej V, Georgiades K, Raoult D. Intracellular Rickettsiales: Insights into manipulators of eukaryotic cells. Trends Mol Med 2011; 17:573-83. [PMID: 21763202 DOI: 10.1016/j.molmed.2011.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 02/08/2023]
Abstract
The order Rickettsiales comprises obligate intracellular bacteria that are the ancestors of modern eukaryotes. These bacteria infect various vectors and hosts, with some species being pathogenic to man. Rickettsiales have small, degraded genomes and provide a paradigm for increased pathogenicity despite gene loss; significant levels of genetic exchange occur between bacteria that infect the same host and with the eukaryotic hosts themselves. Crosstalk between host and bacteria appears to be mediated by a Type IV secretion system and proteins containing eukaryotic-like repeat motifs. Rickettsiales also manipulate host reproduction and induce host resistance to viruses. Manipulation of its host by Rickettsiales has long been misunderstood because of technical difficulties, but recent advances in understanding bacterial-eukaryotes interactions have been made and are reviewed here.
Collapse
Affiliation(s)
- Aurélie Renvoisé
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | |
Collapse
|
137
|
Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 2011; 3:702-14. [PMID: 21737395 PMCID: PMC3157840 DOI: 10.1093/gbe/evr064] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obligate endocellular symbiotic bacteria of insects and other organisms generally exhibit drastic genome reduction. Recently, it was shown that symbiotic gut bacteria of some stinkbugs also have remarkably reduced genomes. Here, we report the complete genome sequence of such a gut bacterium Ishikawaella capsulata of the plataspid stinkbug Megacopta punctatissima. Gene repertoire and evolutionary patterns, including AT richness and elevated evolutionary rate, of the 745,590 bp genome were strikingly similar to those of obligate γ-proteobacterial endocellular insect symbionts like Buchnera in aphids and Wigglesworthia in tsetse flies. Ishikawaella was suggested to supply essential amino acids for the plant-sucking stinkbug as Buchnera does for the host aphid. Although Buchnera is phylogenetically closer to Wigglesworthia than to Ishikawaella, in terms of gene repertoire Buchnera was similar to Ishikawaella rather than to Wigglesworthia, providing a possible case of genome-level convergence of gene content. Meanwhile, several notable differences were identified between the genomes of Ishikawaella and Buchnera, including retention of TCA cycle genes and lack of flagellum-related genes in Ishikawaella, which may reflect their adaptation to distinct symbiotic habitats. Unexpectedly, Ishikawaella retained fewer genes related to cell wall synthesis and lipid metabolism than many endocellular insect symbionts. The plasmid of Ishikawaella encoded genes for arginine metabolism and oxalate detoxification, suggesting the possibility of additional Ishikawaella roles similar to those of human gut bacteria. Our data highlight strikingly similar evolutionary patterns that are shared between the extracellular and endocellular insect symbiont genomes.
Collapse
Affiliation(s)
- Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| | | | | | | | | |
Collapse
|
138
|
Duron O, Raymond M, Weill M. Many compatible Wolbachia strains coexist within natural populations of Culex pipiens mosquito. Heredity (Edinb) 2011; 106:986-93. [PMID: 21119702 PMCID: PMC3186242 DOI: 10.1038/hdy.2010.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/04/2010] [Accepted: 10/25/2010] [Indexed: 11/09/2022] Open
Abstract
Maternally inherited Wolbachia often manipulate the reproduction of arthropods to promote their transmission. In most species, Wolbachia exert a form of conditional sterility termed cytoplasmic incompatibility (CI), characterized by the death of embryos produced by the mating between individuals with incompatible Wolbachia infections. From a theoretical perspective, no stable coexistence of incompatible Wolbachia infections is expected within host populations and CI should induce the invasion of one strain or of a set of compatible strains. In this study, we investigated this prediction on CI dynamics in natural populations of the common house mosquito Culex pipiens. We surveyed the Wolbachia diversity and the expression of CI in breeding sites of the south of France between 1990 and 2005. We found that geographically close C. pipiens populations harbor considerable Wolbachia diversity, which is stably maintained over 15 years. We also observed a very low frequency of infertile clutches within each sampled site. Meanwhile, mating choice experiments conducted in laboratory conditions showed that assortative mating does not occur. Overall, this suggests that a large set of compatible Wolbachia strains are always locally dominant within mosquito populations thus, fitting with the theoretical expectations on CI dynamics.
Collapse
Affiliation(s)
- O Duron
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Place Eugène Bataillon, Montpellier cedex 05, France.
| | | | | |
Collapse
|
139
|
Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 2011; 12:508-18. [PMID: 21546911 DOI: 10.1038/embor.2011.84] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever and filariasis cause an enormous health burden to people living in tropical and subtropical regions of the world. Despite years of intense effort to control them, many of these diseases are increasing in prevalence, geographical distribution and severity, and options to control them are limited. The transinfection of mosquitos with the maternally inherited, endosymbiotic bacteria Wolbachia is a promising new biocontrol approach. Fruit fly Wolbachia strains can invade and sustain themselves in mosquito populations, reduce adult lifespan, affect mosquito reproduction and interfere with pathogen replication. Wolbachia-infected Aedes aegypti mosquitoes have been released in areas of Australia in which outbreaks of dengue fever occur, as a prelude to the application of this technology in dengue-endemic areas of south-east Asia.
Collapse
|
140
|
Saridaki A, Sapountzis P, Harris HL, Batista PD, Biliske JA, Pavlikaki H, Oehler S, Savakis C, Braig HR, Bourtzis K. Wolbachia prophage DNA adenine methyltransferase genes in different Drosophila-Wolbachia associations. PLoS One 2011; 6:e19708. [PMID: 21573076 PMCID: PMC3089641 DOI: 10.1371/journal.pone.0019708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/11/2011] [Indexed: 12/11/2022] Open
Abstract
Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Aggeliki Saridaki
- Department of Environmental and Natural Resources Management, University of Ioannina, Agrinio, Greece
| | - Panagiotis Sapountzis
- Department of Environmental and Natural Resources Management, University of Ioannina, Agrinio, Greece
| | - Harriet L. Harris
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Philip D. Batista
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Harris Pavlikaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Technological Educational Institute of Kalamata, Kalamata, Greece
| | - Stefan Oehler
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Charalambos Savakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Henk R. Braig
- School of Biological Sciences, University of Bangor, Bangor, Gwynedd, United Kingdom
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Ioannina, Agrinio, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- * E-mail:
| |
Collapse
|
141
|
Abstract
Host-adapted bacteria include mutualists and pathogens of animals, plants and insects. Their study is therefore important for biotechnology, biodiversity and human health. The recent rapid expansion in bacterial genome data has provided insights into the adaptive, diversifying and reductive evolutionary processes that occur during host adaptation. The results have challenged many pre-existing concepts built from studies of laboratory bacterial strains. Furthermore, recent studies have revealed genetic changes associated with transitions from parasitism to mutualism and opened new research avenues to understand the functional reshaping of bacteria as they adapt to growth in the cytoplasm of a eukaryotic host.
Collapse
|
142
|
Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 2011; 28:2761-72. [PMID: 21515811 DOI: 10.1093/molbev/msr083] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The α-proteobacteria Wolbachia are among the most common intracellular bacteria and have recently emerged as important drivers of arthropod biology. Wolbachia commonly act as reproductive parasites in arthropods by inducing cytoplasmic incompatibility (CI), a type of conditional sterility between hosts harboring incompatible infections. In this study, we examined the evolutionary histories of Wolbachia infections, known as wPip, in the common house mosquito Culex pipiens, which exhibits the greatest variation in CI crossing patterns observed in any insect. We first investigated a panel of 20 wPip strains for their genetic diversity through a multilocus scheme combining 13 Wolbachia genes. Because Wolbachia depend primarily on maternal transmission for spreading within arthropod populations, we also studied the variability in the coinherited Cx. pipiens mitochondria. In total, we identified 14 wPip haplotypes, which all share a monophyletic origin and clearly cluster into five distinct wPip groups. The diversity of Cx. pipiens mitochondria was extremely reduced, which is likely a consequence of cytoplasmic hitchhiking driven by a unique and recent Wolbachia invasion. Phylogenetic evidence indicates that wPip infections and mitochondrial DNA have codiverged through stable cotransmission within the cytoplasm and shows that a rapid diversification of wPip has occurred. The observed pattern demonstrates that a considerable degree of Wolbachia diversity can evolve within a single host species over short evolutionary periods. In addition, multiple signatures of recombination were found in most wPip genomic regions, leading us to conclude that the mosaic nature of wPip genomes may play a key role in their evolution.
Collapse
Affiliation(s)
- Célestine M Atyame
- Institut des Sciences de l'Evolution, CNRS, UMR5554, Université Montpellier 2, Place Eugène Bataillon, Montpellier, France
| | | | | | | | | |
Collapse
|
143
|
Petridis M, Chatzidimitriou D. Characterization of an intergenic polymorphic site (pp-hC1A_5) in Wolbachia pipientis (wPip). Mol Ecol Resour 2011; 11:753-6. [PMID: 21676204 DOI: 10.1111/j.1755-0998.2011.02991.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolbachia pipientis (wPip) is an intracellular bacterium causing cytoplasmic incompatibility in arthropods, including mosquitoes of the Culex pipiens complex. Here, we present a method useful for genotyping within the wPip group. Primers were designed using a Tandem Repeat Finder program to amplify an intergenic, polymorphic site (pp-hC1A_5) of wPip. The polymorphic site is located between genes that code for polynucleotide phosphorylase and a hypothetical protein (C1A_5). Comparison of these wPip genomic regions from C. pipiens mosquitoes sampled in different geographic regions revealed deletions of fragments that proved useful in phylogenetic analysis.
Collapse
Affiliation(s)
- Michael Petridis
- Department of Parasitology and Infectious Diseases, Veterinary School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
144
|
Kent BN, Salichos L, Gibbons JG, Rokas A, Newton ILG, Clark ME, Bordenstein SR. Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol 2011; 3:209-18. [PMID: 21292630 PMCID: PMC3068000 DOI: 10.1093/gbe/evr007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage flux can cause the majority of genetic diversity in free-living bacteria. This tenet of bacterial genome evolution generally does not extend to obligate intracellular bacteria owing to their reduced contact with other microbes and a predominance of gene deletion over gene transfer. However, recent studies suggest intracellular coinfections in the same host can facilitate exchange of mobile elements between obligate intracellular bacteria—a means by which these bacteria can partially mitigate the reductive forces of the intracellular lifestyle. To test whether bacteriophages transfer as single genes or larger regions between coinfections, we sequenced the genome of the obligate intracellular Wolbachia strain wVitB from the parasitic wasp Nasonia vitripennis and compared it against the prophage sequences of the divergent wVitA coinfection. We applied, for the first time, a targeted sequence capture array to specifically trap the symbiont's DNA from a heterogeneous mixture of eukaryotic, bacterial, and viral DNA. The tiled array successfully captured the genome with 98.3% efficiency. Examination of the genome sequence revealed the largest transfer of bacteriophage and flanking genes (52.2 kb) to date between two obligate intracellular coinfections. The mobile element transfer occurred in the recent evolutionary past based on the 99.9% average nucleotide identity of the phage sequences between the two strains. In addition to discovering an evolutionary recent and large-scale horizontal phage transfer between coinfecting obligate intracellular bacteria, we demonstrate that “targeted genome capture” can enrich target DNA to alleviate the problem of isolating symbiotic microbes that are difficult to culture or purify from the conglomerate of organisms inside eukaryotes.
Collapse
Affiliation(s)
- Bethany N Kent
- Department of Biological Sciences, Vanderbilt University, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Bai X, Mamidala P, Rajarapu SP, Jones SC, Mittapalli O. Transcriptomics of the bed bug (Cimex lectularius). PLoS One 2011; 6:e16336. [PMID: 21283830 PMCID: PMC3023805 DOI: 10.1371/journal.pone.0016336] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/10/2010] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Praveen Mamidala
- Department of Entomology, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Swapna P. Rajarapu
- Department of Entomology, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Susan C. Jones
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Omprakash Mittapalli
- Department of Entomology, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
146
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
147
|
Pérez-Brocal V, Latorre A, Moya A. Symbionts and pathogens: what is the difference? Curr Top Microbiol Immunol 2011; 358:215-43. [PMID: 22076025 DOI: 10.1007/82_2011_190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ecological relationships that organisms establish with others can be considered as broad and diverse as the forms of life that inhabit and interact in our planet. Those interactions can be considered as a continuum spectrum, ranging from beneficial to detrimental outcomes. However, this picture has revealed as more complex and dynamic than previously thought, involving not only factors that affect the two or more members that interact, but also external forces, with chance playing a crucial role in this interplay. Thus, defining a particular symbiont as mutualist or pathogen in an exclusive way, based on simple rules of classification is increasingly challenging if not unfeasible, since new methodologies are providing more evidences that depict exceptions, reversions and transitions within either side of this continuum, especially evident at early stages of symbiotic associations. This imposes a wider and more dynamic view of a complex landscape of interactions.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain.
| | | | | |
Collapse
|
148
|
Ling A, Cordaux R. Insertion sequence inversions mediated by ectopic recombination between terminal inverted repeats. PLoS One 2010; 5:e15654. [PMID: 21187977 PMCID: PMC3004938 DOI: 10.1371/journal.pone.0015654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/17/2010] [Indexed: 11/19/2022] Open
Abstract
Transposable elements are widely distributed and diverse in both eukaryotes and prokaryotes, as exemplified by DNA transposons. As a result, they represent a considerable source of genomic variation, for example through ectopic (i.e. non-allelic homologous) recombination events between transposable element copies, resulting in genomic rearrangements. Ectopic recombination may also take place between homologous sequences located within transposable element sequences. DNA transposons are typically bounded by terminal inverted repeats (TIRs). Ectopic recombination between TIRs is expected to result in DNA transposon inversions. However, such inversions have barely been documented. In this study, we report natural inversions of the most common prokaryotic DNA transposons: insertion sequences (IS). We identified natural TIR-TIR recombination-mediated inversions in 9% of IS insertion loci investigated in Wolbachia bacteria, which suggests that recombination between IS TIRs may be a quite common, albeit largely overlooked, source of genomic diversity in bacteria. We suggest that inversions may impede IS survival and proliferation in the host genome by altering transpositional activity. They may also alter genomic instability by modulating the outcome of ectopic recombination events between IS copies in various orientations. This study represents the first report of TIR-TIR recombination within bacterial IS elements and it thereby uncovers a novel mechanism of structural variation for this class of prokaryotic transposable elements.
Collapse
Affiliation(s)
- Alison Ling
- Université de Poitiers, CNRS UMR 6556 Ecologie, Evolution, Symbiose, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, CNRS UMR 6556 Ecologie, Evolution, Symbiose, Poitiers, France
- * E-mail:
| |
Collapse
|
149
|
Atyame CM, Duron O, Tortosa P, Pasteur N, Fort P, Weill M. Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Mol Ecol 2010; 20:286-98. [PMID: 21114563 DOI: 10.1111/j.1365-294x.2010.04937.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.
Collapse
Affiliation(s)
- Celestine M Atyame
- Université Montpellier II, UMR CNRS 5554, Institut des Sciences de l'Evolution, Génétique de l'Adaptation, Montpellier, France
| | | | | | | | | | | |
Collapse
|
150
|
Iturbe-Ormaetxe I, Woolfit M, Rancès E, Duplouy A, O'Neill SL. A simple protocol to obtain highly pure Wolbachia endosymbiont DNA for genome sequencing. J Microbiol Methods 2010; 84:134-6. [PMID: 21047535 DOI: 10.1016/j.mimet.2010.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Most genome sequencing projects using intracellular bacteria face difficulties in obtaining sufficient bacterial DNA free of host contamination. We have developed a simple and rapid protocol to isolate endosymbiont DNA virtually free from fly and mosquito host DNA. We purified DNA from six Wolbachia strains in preparation for genome sequencing using this method, and achieved up to 97% pure Wolbachia sequence, even after using frozen insects. This is a significant improvement for future Wolbachia and other endosymbiont genome projects.
Collapse
Affiliation(s)
- Iñaki Iturbe-Ormaetxe
- School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | |
Collapse
|