101
|
Felts AK, Labarge K, Bauman JD, Patel DV, Himmel DM, Arnold E, Parniak MA, Levy RM. Identification of alternative binding sites for inhibitors of HIV-1 ribonuclease H through comparative analysis of virtual enrichment studies. J Chem Inf Model 2011; 51:1986-98. [PMID: 21714567 DOI: 10.1021/ci200194w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribonuclease H (RNase H) domain on the p66 monomer of HIV-1 reverse transcriptase enzyme has become a target for inhibition. The active site is one potential binding site, but other RNase H sites can accommodate inhibitors. Using a combination of experimental and computational studies, potential new binding sites and binding modes have been identified. Libraries of compounds were screened with an experimental assay to identify actives without knowledge of the binding site. The compounds were computationally docked at putative binding sites. Based on positive enrichment of natural-product actives relative to the database of compounds, we propose that many inhibitors bind to an alternative, potentially allosteric, site centered on Q507 of p66. For a series of hydrazone compounds, a small amount of positive enrichment was obtained when active compounds were bound by induced-fit docking at the interface between the DNA:RNA substrate and the RNase H domain near residue Q500.
Collapse
Affiliation(s)
- Anthony K Felts
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening. Antimicrob Agents Chemother 2011; 55:4735-41. [PMID: 21768506 DOI: 10.1128/aac.00658-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg(2+)-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), lacking endogenous RNase HI and HII. The p51-G-TCR RNase H construct displayed Mg(2+)-dependent activity using a fluorescent nonspecific assay and showed the same cleavage pattern as HIV-1 reverse transcriptase (RT) on substrates that mimic the tRNA removal required for second-strand transfer reactions. The mutant E706Q (E478Q in RT) was purified under similar conditions and was not active. The RNase H of the p51-G-TCR RNase H construct and wild type HIV-1 RT had similar K(m)s for an RNA-DNA hybrid substrate and showed similar inhibition kinetics to two known inhibitors of the HIV-1 RT RNase H.
Collapse
|
103
|
Chung S, Himmel DM, Jiang JK, Wojtak K, Bauman JD, Rausch JW, Wilson JA, Beutler JA, Thomas CJ, Arnold E, Le Grice SF. Synthesis, activity, and structural analysis of novel α-hydroxytropolone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J Med Chem 2011; 54:4462-73. [PMID: 21568335 PMCID: PMC3133734 DOI: 10.1021/jm2000757] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The α-hydroxytroplone, manicol (5,7-dihydroxy-2-isopropenyl-9-methyl-1,2,3,4-tetrahydro-benzocyclohepten-6-one), potently and specifically inhibits ribonuclease H (RNase H) activity of human immunodeficiency virus reverse transcriptase (HIV RT) in vitro. However, manicol was ineffective in reducing virus replication in culture. Ongoing efforts to improve the potency and specificity over the lead compound led us to synthesize 14 manicol derivatives that retain the divalent metal-chelating α-hydroxytropolone pharmacophore. These efforts were augmented by a high resolution structure of p66/p51 HIV-1 RT containing the nonnucleoside reverse transcriptase inhibitor (NNRTI), TMC278 and manicol in the DNA polymerase and RNase H active sites, respectively. We demonstrate here that several modified α-hydroxytropolones exhibit antiviral activity at noncytotoxic concentrations. Inclusion of RNase H active site mutants indicated that manicol analogues can occupy an additional site in or around the DNA polymerase catalytic center. Collectively, our studies will promote future structure-based design of improved α-hydroxytropolones to complement the NRTI and NNRTI currently in clinical use.
Collapse
Affiliation(s)
- Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Daniel M. Himmel
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | - Krzysztof Wojtak
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Jennifer A. Wilson
- Molecular Discovery Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - John A. Beutler
- Molecular Discovery Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA,To whom correspondence should be addressed. Tel. 301-846-5256, Fax. 301-846-6013,
| |
Collapse
|
104
|
Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors. Antimicrob Agents Chemother 2011; 55:2905-15. [PMID: 21464257 PMCID: PMC3101433 DOI: 10.1128/aac.01594-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
HIV-1 RNase H breaks down the intermediate RNA-DNA hybrids during reverse transcription, requiring two divalent metal ions for activity. Pyrimidinol carboxylic acid and N-hydroxy quinazolinedione inhibitors were designed to coordinate the two metal ions in the active site of RNase H. High-resolution (1.4 Å to 2.1 Å) crystal structures were determined with the isolated RNase H domain and reverse transcriptase (RT), which permit accurate assessment of the metal and water environment at the active site. The geometry of the metal coordination suggests that the inhibitors mimic a substrate state prior to phosphodiester catalysis. Surface plasmon resonance studies confirm metal-dependent binding to RNase H and demonstrate that the inhibitors do not bind at the polymerase active site of RT. Additional evaluation of the RNase H site reveals an open protein surface with few additional interactions to optimize active-site inhibitors.
Collapse
|
105
|
Scarth BJ, Ehteshami M, Beilhartz GL, Götte M. HIV-1 reverse transcriptase inhibitors: beyond classic nucleosides and non-nucleosides. Future Virol 2011. [DOI: 10.2217/fvl.11.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reverse transcriptase (RT) of HIV-1 remains an important target in current treatments of HIV-1 infection. Clinically available inhibitors of HIV-1 RT include nucleoside analog RT inhibitors and non-nucleoside RT inhibitors. Nucleoside analog RT inhibitors compete with the natural dNTP substrate and act as chain terminators, while non-nucleoside RT inhibitors bind to an allosteric pocket, inhibiting polymerization noncompetitively. In addition to these two classes of approved drugs, there are a number of RT inhibitors that target the enzyme in different ways. These include nonobligate chain terminators, nucleotide-competing RT inhibitors, pyrophosphate analogs and compounds that inhibit the RT-associated RNase H activity. Here, we review the mechanisms of action associated with these compounds and discuss opportunities and challenges in drug discovery and development efforts.
Collapse
Affiliation(s)
- Brian J Scarth
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Maryam Ehteshami
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Greg L Beilhartz
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | |
Collapse
|
106
|
Billamboz M, Bailly F, Lion C, Touati N, Vezin H, Calmels C, Andréola ML, Christ F, Debyser Z, Cotelle P. Magnesium chelating 2-hydroxyisoquinoline-1,3(2H,4H)-diones, as inhibitors of HIV-1 integrase and/or the HIV-1 reverse transcriptase ribonuclease H domain: discovery of a novel selective inhibitor of the ribonuclease H function. J Med Chem 2011; 54:1812-24. [PMID: 21366258 DOI: 10.1021/jm1014692] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Hydroxyisoquinoline-1,3(2H,4H)-dione was recently discovered as a scaffold for the inhibition of HIV-1 integrase and the ribonuclease H function of HIV-1 reverse transcriptase. First, we investigate its interaction with Mg(2+) and Mn(2+) using different spectroscopic techniques and report that 2-hydroxyisoquinoline-1,3(2H,4H)-dione forms a 1:1 complex with Mg(2+) but a 1:2 complex with Mn(2+). The complex formation requires enolization of the ligand. ESR spectroscopy shows a redox reaction between the ligand and Mn(2+) producing superoxide anions. Second, 2-hydroxyisoquinoline-1,3(2H,4H)-dione, its magnesium complex, and its 4-methyl and 2-hydroxy-4-methoxycarbonylisoquinoline-1,3(2H,4H)-diones were tested as inhibitors of HIV-1 integrase, reverse transcriptase ribonuclease H, and DNA polymerase functions. Their antiviral activities were evaluated and 2-hydroxy-4-methoxycarbonyl-isoquinoline-1,3(2H,4H)-dione was found to inhibit the viral replication of HIV-1 in MT-4 cells. Cross-resistance was measured for this compound on three different viral strains. Experimental data suggest that the antiviral activity of 2-hydroxy-4-methoxycarbonylisoquinoline-1,3(2H,4H)-dione is probably due to the RNase H inhibition.
Collapse
|
107
|
Simple and rapid determination of the enzyme kinetics of HIV-1 reverse transcriptase and anti-HIV-1 agents by a fluorescence based method. J Virol Methods 2011; 171:381-7. [DOI: 10.1016/j.jviromet.2010.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 11/29/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022]
|
108
|
Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select. Antimicrob Agents Chemother 2011; 55:1332-7. [PMID: 21263047 DOI: 10.1128/aac.01222-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.
Collapse
|
109
|
Yanagita H, Urano E, Matsumoto K, Ichikawa R, Takaesu Y, Ogata M, Murakami T, Wu H, Chiba J, Komano J, Hoshino T. Structural and biochemical study on the inhibitory activity of derivatives of 5-nitro-furan-2-carboxylic acid for RNase H function of HIV-1 reverse transcriptase. Bioorg Med Chem 2011; 19:816-25. [DOI: 10.1016/j.bmc.2010.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022]
|
110
|
Yan J, Wu H, Tom T, Brodsky O, Maegley K. Targeting Divalent Metal Ions at the Active Site of the HIV-1 RNase H Domain: NMR Studies on the Interactions of Divalent Metal Ions with RNase H and Its Inhibitors. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajac.2011.26073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
111
|
Gong Q, Menon L, Ilina T, Miller LG, Ahn J, Parniak MA, Ishima R. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor. Chem Biol Drug Des 2010; 77:39-47. [PMID: 21114787 DOI: 10.1111/j.1747-0285.2010.01052.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors.
Collapse
Affiliation(s)
- Qingguo Gong
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Parajón-Costa BS, Baran EJ, Romero J, Sáez-Puche R, Arrambide G, Gambino D. Synthesis and characterization of bistropolonato oxovanadium(IV and V) complexes. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.531131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Beatriz S. Parajón-Costa
- a Centro de Química Inorgánica (CEQUINOR/CONICET,UNLP), Facultad de Ciencias Exactas , Universidad Nacional de La Plata , C. Correo 962, 1900-La Plata , Argentina
| | - Enrique J. Baran
- a Centro de Química Inorgánica (CEQUINOR/CONICET,UNLP), Facultad de Ciencias Exactas , Universidad Nacional de La Plata , C. Correo 962, 1900-La Plata , Argentina
| | - Julio Romero
- b Departamento de Química Inorgánica, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Regino Sáez-Puche
- b Departamento de Química Inorgánica, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Gabriel Arrambide
- c Departamento “Estrella Campos”, Cátedra de Química Inorgánica, Facultad de Química , Universidad de la República , Montevideo , Uruguay
| | - Dinorah Gambino
- c Departamento “Estrella Campos”, Cátedra de Química Inorgánica, Facultad de Química , Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
113
|
In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A-C, produced by Penicillium sp. FKI-4410. J Antibiot (Tokyo) 2010; 64:183-8. [PMID: 21063422 DOI: 10.1038/ja.2010.124] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the course of screening for antimalarial agents, five tropolone compounds were isolated from the culture broth of Penicillium sp. FKI-4410. Two were known compounds, puberulic acid and stipitatic acid. Three were new analogs of puberulic acid, designated viticolins A-C. Among them, puberulic acid exhibited potent antimalarial inhibition, with IC(50) values of 0.01 μg ml(-1) against chloroquine-sensitive and -resistant Plasmodium falciparum strains in vitro. Furthermore, puberulic acid showed weak cytotoxicity against human MRC-5 cells, with an IC(50) value of 57.2 μg ml(-1). The compound also demonstrated a therapeutic effect in vivo, which compared well against the currently used antimalarial drugs, and thus shows promise as a leading candidate for development into a new antimalarial compound.
Collapse
|
114
|
Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H. Antimicrob Agents Chemother 2010; 54:3913-21. [PMID: 20547794 DOI: 10.1128/aac.00434-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vinylogous ureas 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide and N-[3-(aminocarbonyl)-4,5-dimethyl-2-thienyl]-2-furancarboxamide (compounds 1 and 2, respectively) were recently identified to be modestly potent inhibitors of the RNase H activity of HIV-1 and HIV-2 reverse transcriptase (RT). Both compounds shared a 3-CONH(2)-substituted thiophene ring but were otherwise structurally unrelated, which prevented a precise definition of the pharmacophore. We have therefore examined a larger series of vinylogous ureas carrying amide, amine, and cycloalkane modifications of the thiophene ring of compound 1. While cycloheptane- and cyclohexane-substituted derivatives retained potency, cyclopentane and cyclooctane substitutions eliminated activity. In the presence of a cycloheptane ring, modifying the 2-NH(2) or 3-CONH(2) functions decreased the potency. With respect to compound 2, vinylogous ureas whose dimethylthiophene ring contained modifications of the 2-NH(2) and 3-CONH(2) functions were investigated. 2-NH(2)-modified analogs displayed potency equivalent to or enhanced over that of compound 2, the most active of which, compound 16, reflected intramolecular cyclization of the 2-NH(2) and 3-CONH(2) groups. Molecular modeling was used to define an inhibitor binding site in the p51 thumb subdomain, suggesting that an interaction with the catalytically conserved His539 of the p66 RNase H domain could underlie inhibition of RNase H activity. Collectively, our data indicate that multiple functional groups of vinylogous ureas contribute to their potencies as RNase H inhibitors. Finally, single-molecule spectroscopy indicates that vinylogous ureas have the property of altering the reverse transcriptase orientation on a model RNA-DNA hybrid mimicking initiation plus-strand DNA synthesis.
Collapse
|
115
|
Najda-Bernatowicz A, Krawczyk M, Stankiewicz-Drogoń A, Bretner M, Boguszewska-Chachulska AM. Studies on the anti-hepatitis C virus activity of newly synthesized tropolone derivatives: identification of NS3 helicase inhibitors that specifically inhibit subgenomic HCV replication. Bioorg Med Chem 2010; 18:5129-36. [PMID: 20579888 DOI: 10.1016/j.bmc.2010.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
We synthesized new tropolone derivatives substituted with cyclic amines: piperidine, piperazine or pyrrolidine. The most active anti-helicase compound (IC50=3.4 microM), 3,5,7-tri[(4'-methylpiperazin-1'-yl)methyl]tropolone (2), inhibited RNA replication by 50% at 46.9 microM (EC50) and exhibited the lowest cytotoxicity (CC50)>1 mM resulting in a selectivity index (SI=CC50/EC50)>21. The most efficient replication inhibitor, 3,5,7-tri[(4'-methylpiperidin-1'-yl)methyl]tropolone (6), inhibited RNA replication with an EC50 of 32.0 microM and a SI value of 17.4, whereas 3,5,7-tri[(3'-methylpiperidin-1'-yl)methyl]tropolone (7) exhibited a slightly lower activity with an EC50 of 35.6 microM and a SI of 9.8.
Collapse
|
116
|
HIV-1 RT Inhibitors with a Novel Mechanism of Action: NNRTIs that Compete with the Nucleotide Substrate. Viruses 2010; 2:880-899. [PMID: 21994659 PMCID: PMC3185657 DOI: 10.3390/v2040880] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/20/2010] [Accepted: 03/05/2010] [Indexed: 11/16/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) inhibitors currently used in antiretroviral therapy can be divided into two classes: (i) nucleoside analog RT inhibitors (NRTIs), which compete with natural nucleoside substrates and act as terminators of proviral DNA synthesis, and (ii) non-nucleoside RT inhibitors (NNRTIs), which bind to a hydrophobic pocket close to the RT active site. In spite of the efficiency of NRTIs and NNRTIs, the rapid emergence of multidrug-resistant mutations requires the development of new RT inhibitors with an alternative mechanism of action. Recently, several studies reported the discovery of novel non-nucleoside inhibitors with a distinct mechanism of action. Unlike classical NNRTIs, they compete with the nucleotide substrate, thus forming a new class of RT inhibitors: nucleotide-competing RT inhibitors (NcRTIs). In this review, we discuss current progress in the understanding of the peculiar behavior of these compounds.
Collapse
|
117
|
HIV-1 Ribonuclease H: Structure, Catalytic Mechanism and Inhibitors. Viruses 2010; 2:900-926. [PMID: 21994660 PMCID: PMC3185654 DOI: 10.3390/v2040900] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 11/16/2022] Open
Abstract
Since the human immunodeficiency virus (HIV) was discovered as the etiological agent of acquired immunodeficiency syndrome (AIDS), it has encouraged much research into antiviral compounds. The reverse transcriptase (RT) of HIV has been a main target for antiviral drugs. However, all drugs developed so far inhibit the polymerase function of the enzyme, while none of the approved antiviral agents inhibit specifically the necessary ribonuclease H (RNase H) function of RT. This review provides a background on structure-function relationships of HIV-1 RNase H, as well as an outline of current attempts to develop novel, potent chemotherapeutics against a difficult drug target.
Collapse
|
118
|
Koufaki M, Theodorou E, Alexi X, Nikoloudaki F, Alexis MN. Synthesis of tropolone derivatives and evaluation of their in vitro neuroprotective activity. Eur J Med Chem 2010; 45:1107-12. [DOI: 10.1016/j.ejmech.2009.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/30/2009] [Accepted: 12/03/2009] [Indexed: 11/28/2022]
|
119
|
Hu D, Pu F, Huang Z, Ren J, Qu X. A Quadruplex-Based, Label-Free, and Real-Time Fluorescence Assay for RNase H Activity and Inhibition. Chemistry 2010; 16:2605-10. [DOI: 10.1002/chem.200902166] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
120
|
Koc F, Cadirci E, Albayrak A, Halici Z, Hacimuftuoglu A, Suleyman H. Anti-inflammatory activity of 2,5-dihydroxycyclohepta-2,4,6-trienone in rats. Med Chem Res 2010. [DOI: 10.1007/s00044-009-9174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
121
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
122
|
Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010; 85:119-41. [PMID: 19782103 PMCID: PMC2815006 DOI: 10.1016/j.antiviral.2009.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/17/2023]
Abstract
Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Catherine S. Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| |
Collapse
|
123
|
Himmel DM, Maegley KA, Pauly TA, Bauman JD, Das K, Dharia C, Clark AD, Ryan K, Hickey MJ, Love RA, Hughes SH, Bergqvist S, Arnold E. Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site. Structure 2009; 17:1625-1635. [PMID: 20004166 PMCID: PMC3365588 DOI: 10.1016/j.str.2009.09.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/03/2009] [Accepted: 09/19/2009] [Indexed: 01/07/2023]
Abstract
Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, such as RNH, should be effective against all of the current drug-resistant variants. Here, we present 2.80 A and 2.04 A resolution crystal structures of an RNH inhibitor, beta-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. beta-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that beta-thujaplicinol is a slow-binding RNH inhibitor with noncompetitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Karen A. Maegley
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Tom A. Pauly
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Chhaya Dharia
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Arthur D. Clark
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Kevin Ryan
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Michael J. Hickey
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Robert A. Love
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Stephen H. Hughes
- HIV Drug Resistance Program, NCI-Frederick, Building 539, Frederick, MD 21702-1201, USA
| | - Simon Bergqvist
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA,Corresponding author: , Tel.: 732-235-5323, FAX.: 732-235-5788
| |
Collapse
|
124
|
Kirschberg TA, Balakrishnan M, Squires NH, Barnes T, Brendza KM, Chen X, Eisenberg EJ, Jin W, Kutty N, Leavitt S, Liclican A, Liu Q, Liu X, Mak J, Perry JK, Wang M, Watkins WJ, Lansdon EB. RNase H active site inhibitors of human immunodeficiency virus type 1 reverse transcriptase: design, biochemical activity, and structural information. J Med Chem 2009; 52:5781-4. [PMID: 19791799 DOI: 10.1021/jm900597q] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrimidinol carboxylic acids were designed as inhibitors of HIV-1 RNase H function. These molecules can coordinate to two divalent metal ions in the RNase H active site. Inhibition of enzymatic activity was measured in a biochemical assay, but no antiviral effect was observed. Binding was demonstrated via a solid state structure of the isolated p15-Ec domain of HIV-1 RT showing inhibitor and two Mn(II) ions bound to the RNase H active site.
Collapse
Affiliation(s)
- Thorsten A Kirschberg
- Department of Medicinal Chemistry, Gilead Sciences, Foster City, California 94404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Mehellou Y, De Clercq E. Twenty-Six Years of Anti-HIV Drug Discovery: Where Do We Stand and Where Do We Go? J Med Chem 2009; 53:521-38. [DOI: 10.1021/jm900492g] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Youcef Mehellou
- Center for BioEnergetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
126
|
Schultz SJ, Zhang M, Champoux JJ. Preferred sequences within a defined cleavage window specify DNA 3' end-directed cleavages by retroviral RNases H. J Biol Chem 2009; 284:32225-38. [PMID: 19778906 DOI: 10.1074/jbc.m109.043158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RNase H activity of reverse transcriptase carries out three types of cleavage termed internal, RNA 5' end-directed, and DNA 3' end-directed. Given the strong association between the polymerase domain of reverse transcriptase and a DNA 3' primer terminus, we asked whether the distance from the primer terminus is paramount for positioning DNA 3' end-directed cleavages or whether preferred sequences and/or a cleavage window are important as they are for RNA 5' end-directed cleavages. Using the reverse transcriptases of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV), we determined the effects of sequence, distance, and substrate end structure on DNA 3' end-directed cleavages. Utilizing sequence-matched substrates, our analyses showed that DNA 3' end-directed cleavages share the same sequence preferences as RNA 5' end-directed cleavages, but the sites must fall in a narrow window between the 15th and 20th nucleotides from the recessed end for HIV-1 reverse transcriptase and between the 17th and 20th nucleotides for M-MuLV. Substrates with an RNA 5' end recessed by 1 (HIV-1) or 2-3 (M-MuLV) bases on a longer DNA could accommodate both types of end-directed cleavage, but further recession of the RNA 5' end excluded DNA 3' end-directed cleavages. For HIV-1 RNase H, the inclusion of the cognate dNTP enhanced DNA 3' end-directed cleavages at the 17th and 18th nucleotides. These data demonstrate that all three modes of retroviral RNase H cleavage share sequence determinants that may be useful in designing assays to identify inhibitors of retroviral RNases H.
Collapse
Affiliation(s)
- Sharon J Schultz
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
127
|
Beilhartz GL, Wendeler M, Baichoo N, Rausch J, Le Grice S, Götte M. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. J Mol Biol 2009; 388:462-74. [PMID: 19289131 DOI: 10.1016/j.jmb.2009.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/19/2009] [Accepted: 03/09/2009] [Indexed: 02/07/2023]
Abstract
Reverse transcriptase of the human immunodeficiency virus possesses DNA polymerase and ribonuclease (RNase) H activities. Although the nucleic acid binding cleft separating these domains can accommodate structurally diverse duplexes, it is currently unknown whether regular DNA/RNA hybrids can simultaneously contact both active sites. In this study, we demonstrate that ligands capable of trapping the 3'-end of the primer at the polymerase active site affect the specificity of RNase H cleavage without altering the efficiency of the reaction. Experiments under single-turnover conditions reveal that complexes with a bound nucleotide substrate show specific RNase H cleavage at template position -18, while complexes with the pyrophosphate analogue foscarnet show a specific cut at position -19. This pattern is indicative of post-translocated and pre-translocated conformations. The data are inconsistent with models postulating that the substrate toggles between both active sites, such that the primer 3'-terminus is disengaged from the polymerase active site when the template is in contact with the RNase H active site. In contrast, our findings provide strong evidence to suggest that the nucleic acid substrate can engage both active sites at the same time. As a consequence, the bound and intact DNA/RNA hybrid can restrict access of RNase H active site inhibitors. We have mapped the binding site of the recently discovered inhibitor beta-thujaplicinol between the RNase H active site and Y501 of the RNase H primer grip, and have shown that the inhibitor is unable to bind to a preformed reverse transcriptase-DNA/RNA complex. In conclusion, the bound nucleic acid substrate and in turn, active DNA synthesis can represent an obstacle to RNase H inhibition with compounds that bind to the RNase H active site.
Collapse
Affiliation(s)
- Greg L Beilhartz
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
128
|
Billamboz M, Bailly F, Barreca ML, De Luca L, Mouscadet JF, Calmels C, Andréola ML, Witvrouw M, Christ F, Debyser Z, Cotelle P. Design, synthesis, and biological evaluation of a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. J Med Chem 2009; 51:7717-30. [PMID: 19053754 DOI: 10.1021/jm8007085] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report herein the synthesis of a series of 19 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives variously substituted at position 7 aimed at inhibiting selectively two-metal ion catalytic active sites. The compounds were tested against HIV-1 reverse transcriptase (RT) polymerase, HIV-1 RT ribonuclease H (RNase H), and HIV-1 integrase (IN). Most compounds displayed poor inhibition of RT polymerase even at 50 microM. The majority of the synthesized compounds inhibited RNase H and IN at micromolar concentrations, and some of them were weakly selective for IN. Surprisingly, two new hits were discovered, which displayed a high selectivity for IN with submicromolar IC50 values. These enzymatic inhibitory properties may be related to the metal binding abilities of the compounds. Physicochemical studies were consistent with a 1/1 stoichiometry of the magnesium complexes in solution, and the metal complexation was strictly dependent on the enolization abilities of the compounds. Unfortunately, all tested compounds exhibited high cellular cytotoxicity in cell culture which limits their applications as antiviral agents.
Collapse
Affiliation(s)
- Muriel Billamboz
- Laboratoire de Chimie Organique et Macromoléculaire, UMR CNRS 8009, Université de Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Wendeler M, Beilhartz GL, Beutler JA, Götte M, Le Grice SFJ. HIV ribonuclease H: continuing the search for small molecule antagonists. HIV THERAPY 2008; 3:39-53. [PMID: 38961883 PMCID: PMC11221599 DOI: 10.2217/17584310.3.1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Members of the ribonuclease H (RNase H) family of enzymes (EC 3.1.26.4), which are found in nearly all organisms, are endoribonucleases that specifically hydrolyze the phosphodiester bond of RNA in a RNA-DNA hybrid. In retroviruses such as HIV-1, the RNase H activity is part of reverse transcriptase, the enzyme that converts the viral ssRNA into dsDNA suitable for integration into the host cell genome. In HIV-1, RNase H plays an essential role in various stages of reverse transcription, and it has been known for 20 years that inhibiting RNase H activity renders HIV noninfectious. However, the development of potent and selective antagonists of HIV RNase H has made surprisingly slow progress, and so far no RNase H inhibitor is in clinical trial, rendering this enzyme an important, but as yet underexplored, drug target. The recently described crystal structure of human RNase H in complex with a RNA-DNA hybrid provides new insight into the mechanism of HIV RNase H activity, with the potential to unveil new niches for therapeutic intervention. The current status of RNase H screening efforts is reviewed here.
Collapse
Affiliation(s)
- Michaela Wendeler
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Greg L Beilhartz
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - John A Beutler
- Molecular Targets Discovery Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Matthias Götte
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Stuart FJ Le Grice
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| |
Collapse
|
130
|
Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 2008; 385:693-713. [PMID: 19022262 DOI: 10.1016/j.jmb.2008.10.071] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
Abstract
The rapid replication of HIV-1 and the errors made during viral replication cause the virus to evolve rapidly in patients, making the problems of vaccine development and drug therapy particularly challenging. In the absence of an effective vaccine, drugs are the only useful treatment. Anti-HIV drugs work; so far drug therapy has saved more than three million years of life. Unfortunately, HIV-1 develops resistance to all of the available drugs. Although a number of useful anti-HIV drugs have been approved for use in patients, the problems associated with drug toxicity and the development of resistance means that the search for new drugs is an ongoing process. The three viral enzymes, reverse transcriptase (RT), integrase (IN), and protease (PR) are all good drug targets. Two distinct types of RT inhibitors, both of which block the polymerase activity of RT, have been approved to treat HIV-1 infections, nucleoside analogs (NRTIs) and nonnucleosides (NNRTIs), and there are promising leads for compounds that either block the RNase H activity or block the polymerase in other ways. A better understanding of the structure and function(s) of RT and of the mechanism(s) of inhibition can be used to generate better drugs; in particular, drugs that are effective against the current drug-resistant strains of HIV-1.
Collapse
Affiliation(s)
- Stefan G Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Wendeler M, Lee HF, Bermingham A, Miller JT, Chertov O, Bona MK, Baichoo NS, Ehteshami M, Beutler J, O’Keefe BR, Götte M, Kvaratskhelia M, Le Grice S. Vinylogous ureas as a novel class of inhibitors of reverse transcriptase-associated ribonuclease H activity. ACS Chem Biol 2008; 3:635-44. [PMID: 18831589 DOI: 10.1021/cb8001039] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-throughput screening of National Cancer Institute libraries of synthetic and natural compounds identified the vinylogous ureas 2-amino-5,6,7,8-tetrahydro-4 H-cyclohepta[ b]thiophene-3-carboxamide (NSC727447) and N-[3-(aminocarbonyl)-4,5-dimethyl-2-thienyl]-2-furancarboxamide (NSC727448) as inhibitors of the ribonuclease H (RNase H) activity of HIV-1 and HIV-2 reverse transcriptase (RT). A Yonetani-Theorell analysis demonstrated that NSC727447, and the active-site hydroxytropolone RNase H inhibitor beta-thujaplicinol were mutually exclusive in their interaction with the RNase H domain. Mass spectrometric protein footprinting of the NSC727447 binding site indicated that residues Cys280 and Lys281 in helix I of the thumb subdomain of p51 were affected by ligand binding. Although DNA polymerase and pyrophosphorolysis activities of HIV-1 RT were less sensitive to inhibition by NSC727447, protein footprinting indicated that NSC727447 occupied the equivalent region of the p66 thumb. Site-directed mutagenesis using reconstituted p66/p51 heterodimers substituted with natural or non-natural amino acids indicates that altering the p66 RNase H primer grip significantly affects inhibitor sensitivity. NSC727447 thus represents a novel class of RNase H antagonists with a mechanism of action differing from active site, divalent metal-chelating inhibitors that have been reported.
Collapse
Affiliation(s)
- Michaela Wendeler
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Hsiu-Fang Lee
- College of Pharmacy, Center for Retrovirus Research and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alun Bermingham
- Molecular Targets Development Program, National Cancer Institute, Frederick, Maryland
| | - Jennifer T. Miller
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Oleg Chertov
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Frederick, Maryland
| | - Marion K. Bona
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Frederick, Maryland
- Basic Research Program, SAIC-Frederick, Frederick, Maryland
| | - Noel S. Baichoo
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Maryam Ehteshami
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - John Beutler
- Molecular Targets Development Program, National Cancer Institute, Frederick, Maryland
| | - Barry R. O’Keefe
- Molecular Targets Development Program, National Cancer Institute, Frederick, Maryland
| | - Matthias Götte
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mamuka Kvaratskhelia
- College of Pharmacy, Center for Retrovirus Research and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Stuart Le Grice
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
132
|
Bauman JD, Das K, Ho WC, Baweja M, Himmel DM, Clark AD, Oren DA, Boyer PL, Hughes SH, Shatkin AJ, Arnold E. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res 2008; 36:5083-92. [PMID: 18676450 PMCID: PMC2528191 DOI: 10.1093/nar/gkn464] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at ∼2.5–3.0 Å resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 Å resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 Å resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.
Collapse
Affiliation(s)
- Joseph D Bauman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
A novel strategy for analyzing RNA-protein interactions by surface plasmon resonance biosensor. Mol Biotechnol 2008; 40:87-93. [PMID: 18465270 PMCID: PMC7090661 DOI: 10.1007/s12033-008-9066-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/18/2008] [Indexed: 01/20/2023]
Abstract
Surface plasmon resonance (SPR) biosensor is a promising technology for its various advantages including the real-time measurement of biomolecular interactions without labeling. A method of hybridizing RNAs on the surface of the streptavidin-coated (SA) sensor chip to study RNA-protein interactions was described in this paper. In our study, it has been shown that the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has a high binding affinity for the leader sequence of SARS-CoV genome. Effect of temperature on the RNA-DNA hybridization was also examined. This method can provide the affinity of interactions with high sensitivity. Therefore, it will be useful in screening binding candidates for a given RNA target motif with one chip.
Collapse
|
134
|
Jochmans D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res 2008; 134:171-85. [PMID: 18308412 DOI: 10.1016/j.virusres.2008.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
HIV-1 reverse transcriptase (RT) was the first viral enzyme to be targeted by anti-HIV drugs. Despite 20 years of experience with RT inhibitors, new ways to inhibit this target and address viral resistance continue to emerge. In both licensed RT inhibitor classes, nucleosides (NRTIs) and non-nucleosides (NNRTIs), compounds with better resistance, pharmacokinetic and toxicity profiles are being developed. Second-generation NNRTIs active against HIV-1 strains resistant to current NNRTIs are being clinically evaluated. Beyond the classical NRTIs, nucleoside analogs that are no longer obligate chain terminators but nevertheless impede reverse transcription or even lead to viral ablation after several replication cycles, are being studied. RT inhibitor research has also yielded additional mechanisms to block RT. Driven by new insights the RNase H field remains in evolution. In addition, the binding of both substrates (deoxynucleotide and primer/template) to RT is now subject to competition by novel inhibitors. Further development of aptamers bears promise for gene therapy but perhaps more importantly, reveals additional new platforms for the development of small-molecule RT inhibitors. This promising research provides much optimism that RT inhibitors will continue to evolve with subsequent clinical benefit.
Collapse
Affiliation(s)
- Dirk Jochmans
- Tibotec BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium.
| |
Collapse
|
135
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
136
|
Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl Environ Microbiol 2008; 74:1535-45. [PMID: 18192410 DOI: 10.1128/aem.02339-07] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda(-)) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3) that exhibited a low frequency of spontaneous loss. Homologs of tdaA and tdaB from Silicibacter sp. strain TM1040 were identified by mutagenesis in another TDA-producing roseobacter, Phaeobacter sp. strain 27-4, which also possesses two large plasmids (ca. 60 and ca. 70 kb, respectively), and tda genes were found by DNA-DNA hybridization in 88% of a diverse collection of nine roseobacters with known antibiotic activity. These data suggest that roseobacters may use a common pathway for TDA biosynthesis that involves plasmid-encoded proteins. Using metagenomic library databases and a bioinformatics approach, differences in the biogeographical distribution between the critical TDA synthesis genes were observed. The implications of these results to roseobacter survival and the interaction between TM1040 and its dinoflagellate host are discussed.
Collapse
|
137
|
Ilina T, Parniak MA. Inhibitors of HIV-1 reverse transcriptase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:121-67. [PMID: 18086411 DOI: 10.1016/s1054-3589(07)56005-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tatiana Ilina
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
138
|
|
139
|
HIV‐1 Integrase Inhibitors: Update and Perspectives. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:199-228. [DOI: 10.1016/s1054-3589(07)56007-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
140
|
Madurahydroxylactone derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and RNase H. Antimicrob Agents Chemother 2007; 52:361-4. [PMID: 17967911 DOI: 10.1128/aac.00883-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of 29 madurahydroxylactone derivatives was evaluated for dual inhibition of human immunodeficiency virus type 1 (HIV-1) integrase and RNase H. While most of the compounds exhibited similar potencies for both enzymes, two of the derivatives showed 10- to 100-fold-higher selectivity for each enzyme, suggesting that distinct pharmacophore models could be generated. This study exemplifies the common and divergent structural requirements for the inhibition of two structurally related HIV-1 enzymes and demonstrates the importance of systematically screening for both integrase and RNase H when developing novel inhibitors.
Collapse
|
141
|
Boucher C, Larder B, Mellors J, Richman D. The Xivth International HIV Drug Resistance Workshop, Quebec City, Canada, June 2005. Antivir Ther 2006. [DOI: 10.1177/135965350601100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This report summarizes research advances that further our understanding of the evolution, mechanisms and clinical impact of HIV drug resistance presented at the XIVth International HIV Drug Resistance Workshop held in Quebec City, Canada from June 7–11, 2005. The topics that were discussed included the clinical implications of resistance in mother-to-child transmission, breakthroughs in technologies for studying resistance, resistance to new antiretroviral agents, mechanisms of HIV drug resistance, epidemiological trends, and HIV fitness and pathogenesis.
Collapse
|
142
|
Fortin C, Joly V, Yeni P. Emerging reverse transcriptase inhibitors for the treatment of HIV infection in adults. Expert Opin Emerg Drugs 2006; 11:217-30. [PMID: 16634698 DOI: 10.1517/14728214.11.2.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A combination of three or more antiretroviral drugs, commonly called 'highly active antiretroviral therapy' (HAART), has become the standard-of-care treatment for HIV-infected patients in the developed world. There are now 21 licensed anti-HIV drugs to choose from when starting a HAART regimen. The currently approved antiretroviral drugs fall into four categories: nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and fusion inhibitors. Novel compounds currently in preclinical or clinical development are either focusing on new viral proteins or the same specific viral elements targeted by the available drugs. When developing new anti-HIV drugs of an already existing class, focus should be held on maximising potency, minimising toxicity, diminishing the risk for resistance development and producing effective drugs for patients who already have resistance to currently available drugs. In addition, pill burden should be ideally reduced to once-daily dosing, thereby enhancing a patient's adherence and reducing treatment costs. The present review focuses on emerging drugs to inhibit the reverse transcriptase of HIV.
Collapse
Affiliation(s)
- Claude Fortin
- Centre Hospitalier de l'Université de Montréal, UHRESS-Département de Microbiologie médicale et Infectiologie, Hôpital Notre-Dame, 1560, rue Sherbrooke Est, Montréal (Québec), H2L 4M1, Canada.
| | | | | |
Collapse
|
143
|
Didierjean J, Isel C, Querré F, Mouscadet JF, Aubertin AM, Valnot JY, Piettre SR, Marquet R. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones. Antimicrob Agents Chemother 2006; 49:4884-94. [PMID: 16304149 PMCID: PMC1315922 DOI: 10.1128/aac.49.12.4884-4894.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type I reverse transcriptase (RT) possesses distinct DNA polymerase and RNase H sites, whereas integrase (IN) uses the same active site to perform 3'-end processing and strand transfer of the proviral DNA. These four enzymatic activities are essential for viral replication and require metal ions. Two Mg2+ ions are present in the RT polymerase site, and one or two Mg2+ ions are required for the catalytic activities of RNase H and IN. We tested the possibility of inhibition of the RT polymerase and RNase H as well as the IN 3'-end processing and transfer activities of purified enzymes by a series of 3,7-dihydroxytropolones designed to target two Mg2+ ions separated by approximately 3.7 angstroms. The RT polymerase and IN 3' processing and strand transfer activities were inhibited at submicromolar concentrations, while the RNase H activity was inhibited in the low micromolar range. In all cases, the lack of inhibition by tropolones and O-methylated 3,7-dihydroxytropolones was consistent with the active molecules binding the metal ions in the active site. In addition, inhibition of the DNA polymerase activity was shown to depend on the Mg2+ concentration. Furthermore, selective inhibitors were identified for several of the activities tested, leaving some potential for design of improved inhibitors. However, all tested compounds exhibited cellular toxicity that presently limits their applications.
Collapse
Affiliation(s)
- Joël Didierjean
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Boguszewska-Chachulska AM, Krawczyk M, Najda A, Kopańska K, Stankiewicz-Drogoń A, Zagórski-Ostoja W, Bretner M. Searching for a new anti-HCV therapy: synthesis and properties of tropolone derivatives. Biochem Biophys Res Commun 2006; 341:641-7. [PMID: 16438939 DOI: 10.1016/j.bbrc.2006.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/06/2006] [Indexed: 10/25/2022]
Abstract
Hepatitis C virus (HCV) is considered one of the most dangerous pathogens since about 3% of the world population is HCV-infected and the virus is a major cause of hepatitis, cirrhosis, and liver carcinoma. A need for a more efficient therapy prompted us to investigate new class of compounds, such as tropolone derivatives that possess antiviral, antibacterial, and antifungal activities. To synthesize bromo- and morpholinomethyl-analogues of tropolone, the previously reported methods were modified. The influence of new derivatives on the activity of the helicase and NTP-ase of HCV was investigated. The most potent inhibitory effect in the fluorometric helicase assay was exerted by 3,7-dibromo-5-morpholinomethyltropolone, for which the IC50 value was at low micromolar range. All the morpholino-derivatives had inhibitory activities higher than those of the non-modified analogues. Low toxicity in a yeast-based toxicity assay indicates that these compounds could be further modified to develop potent inhibitors of the HCV helicase and of viral replication.
Collapse
|
145
|
Semenova EA, Johnson AA, Marchand C, Davis DA, Yarchoan R, Pommier Y. Preferential inhibition of the magnesium-dependent strand transfer reaction of HIV-1 integrase by alpha-hydroxytropolones. Mol Pharmacol 2006; 69:1454-60. [PMID: 16418335 DOI: 10.1124/mol.105.020321] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integration is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1); therefore, inhibitors of HIV-1 integrase are candidates for antiretroviral therapy. Two 7-hydroxytropolone derivatives (alpha-hydroxytropolones) were found to inhibit HIV-1 integrase. A structure-activity relationship investigation with several tropolone derivatives from The National Cancer Institute compound repository demonstrated that the 7-hydroxy group is essential for integrase inhibition. alpha-Hydroxytropolones preferentially inhibit strand transfer and are inhibitory both in the presence of magnesium or manganese. Lack of inhibition of disintegration in the presence of magnesium coupled with results from different cross-linking assays suggests alpha-hydroxytropolones as interfacial inhibitors. We propose that alpha-hydroxytropolones chelate the divalent metal (Mg2+ or Mn2+) in the enzyme active site. The most active compound against HIV-1 integrase in biochemical assays [2,4,6-cycloheptatrien-1-one, 2,7-dihydroxy-4-isopropyl (NSC 18806) IC50 = 4.8 +/- 2.5 microM] exhibits weak cytoprotective activity against HIV-1(IIIB) in a cell-based assay. alpha-Hydroxytropolones represent a new family of inhibitors for the development of novel drugs against HIV infection.
Collapse
Affiliation(s)
- Elena A Semenova
- Laboratory of Molecular Pharmacology, Bldg. 37, Room 5068, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
147
|
Nissley DV, Halvas EK, Hoppman NL, Garfinkel DJ, Mellors JW, Strathern JN. Sensitive phenotypic detection of minor drug-resistant human immunodeficiency virus type 1 reverse transcriptase variants. J Clin Microbiol 2005; 43:5696-704. [PMID: 16272507 PMCID: PMC1287775 DOI: 10.1128/jcm.43.11.5696-5704.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of drug-resistant variants is important for the clinical management of human immunodeficiency virus type 1 (HIV-1) infection and for studies on the evolution of drug resistance. Here we show that hybrid elements composed of the Saccharomyces cerevisiae retrotransposon Ty1 and the reverse transcriptase (RT) of HIV-1 are useful tools for detecting, monitoring, and isolating drug-resistant reverse transcriptases. This sensitive phenotypic assay is able to detect nonnucleoside reverse transcriptase inhibitor-resistant RT domains derived from mixtures of infectious molecular clones of HIV-1 in plasma and from clinical samples when the variants comprise as little as 0.3 to 1% of the virus population. Our assay can characterize the activities and drug susceptibilities of both known and novel reverse transcriptase variants and should prove useful in studies of the evolution and clinical significance of minor drug-resistant viral variants.
Collapse
Affiliation(s)
- Dwight V Nissley
- Basic Research Program, SAIC-Frederick, NCI Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|