101
|
RT-qPCR work-flow for single-cell data analysis. Methods 2012; 59:80-8. [PMID: 23021995 DOI: 10.1016/j.ymeth.2012.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/21/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Individual cells represent the basic unit in tissues and organisms and are in many aspects unique in their properties. The introduction of new and sensitive techniques to study single-cells opens up new avenues to understand fundamental biological processes. Well established statistical tools and recommendations exist for gene expression data based on traditional cell population measurements. However, these workflows are not suitable, and some steps are even inappropriate, to apply on single-cell data. Here, we present a simple and practical workflow for preprocessing of single-cell data generated by reverse transcription quantitative real-time PCR. The approach is demonstrated on a data set based on profiling of 41 genes in 303 single-cells. For some pre-processing steps we present options and also recommendations. In particular, we demonstrate and discuss different strategies for handling missing data and scaling data for downstream multivariate analysis. The aim of this workflow is provide guide to the rapidly growing community studying single-cells by means of reverse transcription quantitative real-time PCR profiling.
Collapse
|
102
|
Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 2012; 15:1272-80. [PMID: 22902720 DOI: 10.1038/nn.3185] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/16/2012] [Indexed: 12/11/2022]
Abstract
Phasic activation of the dopamine (DA) midbrain system in response to unexpected reward or novelty is critical for adaptive behavioral strategies. This activation of DA midbrain neurons occurs via a synaptically triggered switch from low-frequency background spiking to transient high-frequency burst firing. We found that, in medial DA neurons of the substantia nigra (SN), activity of ATP-sensitive potassium (K-ATP) channels enabled NMDA-mediated bursting in vitro as well as spontaneous in vivo burst firing in anesthetized mice. Cell-selective silencing of K-ATP channel activity in medial SN DA neurons revealed that their K-ATP channel-gated burst firing was crucial for novelty-dependent exploratory behavior. We also detected a transcriptional upregulation of K-ATP channel and NMDA receptor subunits, as well as high in vivo burst firing, in surviving SN DA neurons from Parkinson's disease patients, suggesting that burst-gating K-ATP channel function in DA neurons affects phenotypes in both disease and health.
Collapse
Affiliation(s)
- Julia Schiemann
- Institute of Neurophysiology, Neuroscience Center, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Neurotoxin-based models of Parkinson's disease. Neuroscience 2012; 211:51-76. [DOI: 10.1016/j.neuroscience.2011.10.057] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
|
104
|
Schmitt I, Wüllner U, van Rooyen JP, Khazneh H, Becker J, Volk A, Kubisch C, Becker T, Kostic VS, Klein C, Ramirez A. Variants in the 3'UTR of SNCA do not affect miRNA-433 binding and alpha-synuclein expression. Eur J Hum Genet 2012; 20:1265-9. [PMID: 22617348 DOI: 10.1038/ejhg.2012.84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alpha-synuclein (SNCA) is a major risk gene for Parkinson's disease (PD) and increased SNCA gene dosage results in a parkinsonian syndrome in affected families. Regulatory regions relevant for SNCA expression include the 3' untranslated region (UTR), which among other regulatory elements contains several micro-RNA-binding sites. Interestingly, variants located in the 3' region of SNCA have been associated with PD in two genome-wide association studies. To test whether private mutations in this region contribute to PD, we sequenced the 3'UTR of SNCA in 1285 PD patients and 1120 age/sex-matched healthy controls. We found two rare variants, the one corresponding to the single nucleotide polymorphism rs145304567 and the novel variant c.*1004_1008delTTTTT. Although rs145304567 affects the putative-binding site of microRNA (miRNA) -433, the allele distribution was similar in PD patients and controls, and the expression of SNCA mRNA was not related to the genotype. Furthermore, a regulatory effect of miRNA-433 on SNCA expression levels was not detected.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Coppedè F. Genetics and epigenetics of Parkinson's disease. ScientificWorldJournal 2012; 2012:489830. [PMID: 22623900 PMCID: PMC3353471 DOI: 10.1100/2012/489830] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/21/2011] [Indexed: 12/15/2022] Open
Abstract
In 1997 a mutation in the a-synuclein (SNCA) gene was associated with familial autosomal dominant Parkinson's disease (PD). Since then, several loci (PARK1-15) and genes have been linked to familial forms of the disease. There is now sufficient evidence that six of the so far identified genes at PARK loci (a-synuclein, leucine-rich repeat kinase 2, parkin, PTEN-induced putative kinase 1, DJ-1, and ATP13A2) cause inherited forms of typical PD or parkinsonian syndromes. Other genes at non-PARK loci (MAPT, SCA1, SCA2, spatacsin, POLG1) cause syndromes with parkinsonism as one of the symptoms. The majority of PD cases are however sporadic "idiopathic" forms, and the recent application of genome-wide screening revealed almost 20 genes that might contribute to disease risk. In addition, increasing evidence suggests that epigenetic mechanisms, such as DNA methylation, histone modifications, and small RNA-mediated mechanisms, could regulate the expression of PD-related genes.
Collapse
Affiliation(s)
- Fabio Coppedè
- Faculty of Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
106
|
Martins-de-Souza D, Guest PC, Mann DM, Roeber S, Rahmoune H, Bauder C, Kretzschmar H, Volk B, Baborie A, Bahn S. Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration. J Proteome Res 2012; 11:2533-43. [PMID: 22360420 DOI: 10.1021/pr2012279] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is an umbrella term for a heterogeneous group of young-onset dementias of uncertain prevalence and incidence worldwide. Atypical cases of FTLD with fused in sarcoma inclusions (aFTLD-U) have been described recently, but their molecular characterization is still due. Using shotgun mass spectrometry, we identified a total of 107 differentially expressed proteins in the prefrontal cortex, cerebellum and occipital lobe from aFTLD-U patients compared to controls. These proteins are involved in a range of biological pathways such as cellular transport in the prefrontal cortex, energy metabolism in the cerebellum, and protein metabolism in the occipital lobe. In addition, they were validated by selective reaction monitoring (SRM). Comparison of the aFTLD-U proteomic findings with similar studies of Alzheimer's disease and schizophrenia led to identification of proteins that may be related to dementias and psychoses, respectively. Further studies of aFTLD-U and other FTLD subtypes are warranted, although this will require intensive biobanking efforts.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Ståhlberg A, Kubista M, Aman P. Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev Mol Diagn 2012; 11:735-40. [PMID: 21902535 DOI: 10.1586/erm.11.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gene-expression profiling has been successfully applied in various diagnostic applications, but its full capacity is yet to be realized. Samples are generally prepared from a mixture of different cells that are present in unknown proportions. Cells are, in many aspects, unique in their characteristics and this heterogeneity confounds the expression profile. The development of new and robust techniques to measure gene expression in single cells opens new avenues in molecular medicine. Today, gene-expression profiles of individual cells can be measured with high precision and accuracy, identifying different cell types as well as revealing heterogeneity among cells of the same kind. Here, we review practical aspects of single-cell gene-expression profiling using reverse transcription quantitative real-time PCR and its potential use in diagnostics.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Box 425, 40530 Gothenburg, Sweden.
| | | | | |
Collapse
|
108
|
MicroRNAs in Parkinson's disease. Neurobiol Dis 2012; 46:279-84. [PMID: 22245218 DOI: 10.1016/j.nbd.2011.12.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/15/2011] [Accepted: 12/26/2011] [Indexed: 02/03/2023] Open
Abstract
Besides the classic mutations in coding regions of genes, the critical role of gene expression regulators in disease states is increasingly recognized. The network of small non-coding microRNAs is crucial for the normal development and survival of distinct neuronal populations that are vulnerable in various neurodegenerative disorders. In midbrain dopaminergic neurons, which degenerate in Parkinson's disease (PD) causing motor signs and symptoms, disruption of this network results in their progressive loss associated with impaired motor activity in Drosophila and mouse models. Studies of families with dominantly inherited PD linked to multiplication of the α-synuclein gene locus indicate that the amount of this key pathogenic protein in neurons is an important determinant of its tendency to aggregate pathologically and increase neuronal susceptibility. Recent reports demonstrate that the α-synuclein mRNA is under negative control by at least two microRNAs, miR-7 and miR-153. In addition to studying the regulation of candidate genes by specific microRNA species, different profiling approaches are uncovering variations in the abundance of certain microRNAs that may prove to be relevant to the disease. For example, miR-133b is deficient in the PD midbrain as well as in mouse models, and miR-34b/34c are decreased in several affected brain regions in PD and incidental Lewy body disease. Polymorphisms in the 3'-untranslated region of microRNA target mRNAs, including in the gene encoding α-synuclein found in Genome Wide Association studies, are another potential reason for variations in the rate of protein production and thus disease risk. And finally, the impact of a disease associated gene product, and in particular LRRK2, on the microRNA network compounds the complexity of the interplay between the microRNA system and pathogenic proteins. The wealth of knowledge accumulating from these studies in a few short years holds considerable promise to harness its potential and translate it into therapeutic strategies for PD.
Collapse
|
109
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
110
|
Beyer K, Munoz-Marmol AM, Sanz C, Marginet-Flinch R, Ferrer I, Ariza A. New brain-specific beta-synuclein isoforms show expression ratio changes in Lewy body diseases. Neurogenetics 2011; 13:61-72. [PMID: 22205345 DOI: 10.1007/s10048-011-0311-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022]
Abstract
Lewy body diseases (LBDs) include dementia with Lewy bodies (DLB) and Parkinson disease (PD). Alpha-synuclein (AS) aggregation is a key event in the pathogenesis of LBDs and beta-synuclein (BS) inhibits AS aggregation in vitro and in vivo. Recently, BS has been shown to interact directly with AS regulating its functionality and preventing its oligomerization, and a molecular subgroup of pure DLB lacks BS in cortical regions. In this study, we characterized four new BS transcript variants and analyzed their expression in neuronal and non-neuronal tissue, and their differential expression in frozen samples of three areas from brains of patients with pure Lewy body pathology (LBP), common LBP, Alzheimer pathology, and of controls. Relative mRNA expression was determined by real-time PCR with neuron-specific enolase 2 and synaptophysin as housekeeping genes, and expression changes were evaluated by the ΔΔCt method. Two main findings are in concordance with earlier studies. First, all BS isoforms are drastically diminished in the cortex of patients with pure LBP that had presented clinically as DLB but not PD with dementia. Second, an important shift of the isoform expression ratio was observed in the temporal cortex of all LBD cases, and the minor isoforms, normally absent in the midbrain, were detected in the caudate nucleus of all DLB samples. Our results provide further evidence for the role of minor transcript variants in the development of complex diseases and provide new insights into the pathogenesis of LBDs that may be important for the understanding of molecular mechanisms involved in these complex diseases.
Collapse
Affiliation(s)
- Katrin Beyer
- Servicio de Anatomía Patológica, Hospital Universitario Germans Trias i Pujol, Ctra Canyet s/n, 08916, Badalona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
111
|
Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson's disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression. Mol Cell Neurosci 2011; 49:230-9. [PMID: 22155155 DOI: 10.1016/j.mcn.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/28/2011] [Accepted: 11/26/2011] [Indexed: 01/22/2023] Open
Abstract
Alternative splicing is a complex post-transcriptional process that can be regulated by cis-acting elements located within genomic non-coding regions. Recent studies have identified that polymorphic variations in non-coding regions of the α-synuclein gene (SNCA) locus are associated with an increased risk for developing Parkinson's disease (PD). The underlying mechanism(s) for this susceptibility may involve changes in α-synuclein mRNA expression and alternative splicing. As a first step towards understanding the biology of α-synuclein splice variants in PD, we characterized the levels of the full-length SNCA-140 mRNA transcript and SNCA-126, -112, and -98 alternatively spliced variants in different neuronal regions from PD patients or transgenic mice overexpressing human α-synuclein (ASO). In human post-mortem tissue, α-synuclein spliced transcripts were expressed in a region-specific manner in the cortex, substantia nigra, and cerebellum. We observed increased nigral SNCA-140 and SNCA-126 transcript levels in PD patients when compared to neurologically unaffected cases. Human α-synuclein splicing changes were also found to occur in a region-specific manner in ASO mice. Here, SNCA-126, -112, and -98 transcript levels did not increase proportionally with SNCA-140 levels, or parallel the region-specific mouse transcript ratios seen in wild-type (WT) littermates. While most transcripts were elevated in ASO mice when compared to WT mice, the most prominent increase was found in the ventral midbrain of 15-month-old ASO mice. These results demonstrate region-specific human α-synuclein transcript level abnormalities in PD patients and in a transgenic mouse model of α-synucleinopathy. This study is relevant to understanding the normal, adaptive, or pathological role(s) of α-synuclein splice variants.
Collapse
|
112
|
Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson's disease. Acta Neuropathol 2011; 121:695-704. [PMID: 21400129 DOI: 10.1007/s00401-011-0815-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Lewy bodies are made from insoluble, phosphorylated α-synuclein, but the earliest changes that precipitate such pathology still remain conjecture. In this study, we quantify and identify relationships between the levels of the main pathologic form of phosphorylated α-synuclein over the course of Parkinson's disease in regions affected early through to end-stage disease. Brain tissue samples from 33 cases at different disease stages and 13 controls were collected through the Australian Network of Brain Banks. 500 mg of frozen putamen (affected preclinically) and frontal cortex (affected late) was homogenized, fractionated and α-synuclein levels evaluated using specific antibodies (syn-1, BD Transduction Laboratories; S129P phospho-α-synuclein, Elan Pharmaceuticals) and quantitative western blotting. Statistical analyses assessed the relationship between the different forms of α-synuclein, compared levels between groups, and determined any changes over the disease course. Soluble S129P was detected in controls with higher levels in putamen compared with frontal cortex. In contrast, insoluble α-synuclein occurred in Parkinson's disease with a significant increase in soluble and lipid-associated S129P, and a decrease in soluble frontal α-synuclein over the disease course. Increasing soluble S129P in the putamen correlated with increasing S129P in other fractions and regions. These data show that soluble non-phosphorylated α-synuclein decreases over the course of Parkinson's disease, becoming increasingly phosphorylated and insoluble. The finding that S129P α-synuclein normally occurs in vulnerable brain regions, and in Parkinson's disease has the strongest relationships to the pathogenic forms of α-synuclein in other brain regions, suggests a propagating role for putamenal phospho-α-synuclein in disease pathogenesis.
Collapse
|
113
|
Iraola-Guzmán S, Estivill X, Rabionet R. DNA methylation in neurodegenerative disorders: a missing link between genome and environment? Clin Genet 2011; 80:1-14. [PMID: 21542837 DOI: 10.1111/j.1399-0004.2011.01673.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The risk of developing neurodegenerative disorders such as Alzheimer's disease or Parkinson's disease is influenced by genetic and environmental factors. Environmental events occurring during development or later in life can be related to disease susceptibility. One way by which the environment may exert its effect is through epigenetic modifications, which might affect the functioning of genes. These include nucleosome positioning, post-translational histone modifications, and DNA methylation. In this review we will focus in the potential role of DNA methylation in neurodegenerative disorders and in the approaches to explore such epigenetic changes. Advances in deciphering the role of epigenetic modifications in phenotype are being uncovered for a variety of diseases, including cancer, autoimmune, neurodevelopmental and cognitive disorders. Epigenetic modifications are now being also associated with cardiovascular and metabolic traits, and they are expected to be especially involved in learning and memory processes, as well as in neurodegenerative disease. The study of the role of methylation and other epigenetic modifications in disease development will provide new insights in the etiopathogenesis of neurodegenerative disorders, and should hopefully shape new avenues in the development of therapeutic strategies.
Collapse
Affiliation(s)
- S Iraola-Guzmán
- Center for Genomic Regulation and UPF, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | |
Collapse
|
114
|
Clough RL, Dermentzaki G, Haritou M, Petsakou A, Stefanis L. Regulation of α-synuclein expression in cultured cortical neurons. J Neurochem 2011; 117:275-85. [DOI: 10.1111/j.1471-4159.2011.07199.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
115
|
Gründemann J, Schlaudraff F, Liss B. UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains. Methods Mol Biol 2011; 755:363-374. [PMID: 21761319 DOI: 10.1007/978-1-61779-163-5_30] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.
Collapse
Affiliation(s)
- Jan Gründemann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | |
Collapse
|
116
|
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 2011; 39:D70-4. [PMID: 21036865 PMCID: PMC3013669 DOI: 10.1093/nar/gkq1061] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.
Collapse
Affiliation(s)
- Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ståhlberg A, Andersson D, Aurelius J, Faiz M, Pekna M, Kubista M, Pekny M. Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res 2010; 39:e24. [PMID: 21112872 PMCID: PMC3045576 DOI: 10.1093/nar/gkq1182] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-cell gene expression levels show substantial variations among cells in seemingly homogenous populations. Astrocytes perform many control and regulatory functions in the central nervous system. In contrast to neurons, we have limited knowledge about functional diversity of astrocytes and its molecular basis. To study astrocyte heterogeneity and stem/progenitor cell properties of astrocytes, we used single-cell gene expression profiling in primary mouse astrocytes and dissociated mouse neurosphere cells. The transcript number variability for astrocytes showed lognormal features and revealed that cells in primary cultures to a large extent co-express markers of astrocytes and neural stem/progenitor cells. We show how subpopulations of cells can be identified at single-cell level using unsupervised algorithms and that gene correlations can be used to identify differences in activity of important transcriptional pathways. We identified two subpopulations of astrocytes with distinct gene expression profiles. One had an expression profile very similar to that of neurosphere cells, whereas the other showed characteristics of activated astrocytes in vivo.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 9A, 413 90 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
118
|
McCarthy JJ, Linnertz C, Saucier L, Burke JR, Hulette CM, Welsh-Bohmer KA, Chiba-Falek O. The effect of SNCA 3' region on the levels of SNCA-112 splicing variant. Neurogenetics 2010; 12:59-64. [PMID: 21046180 DOI: 10.1007/s10048-010-0263-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Genetic variability at the 3' region of SNCA locus has been repeatedly associated with susceptibility to sporadic Parkinson's disease (PD). Accumulated evidence emphasizes the importance of SNCA dosage and expression levels in PD pathogenesis. However, the mechanism through which the 3' region of SNCA gene modulates the risk to develop sporadic PD remained elusive. We studied the effect of PD risk-associated variants at SNCA 3' regions on SNCA112-mRNA (exon 5 in-frame skipping) levels in vivo in 117 neuropathologically normal, human brain frontal cortex samples. SNPs tagging the SNCA 3' showed significant effects on the relative levels of SNCA112-mRNA from total SNCA transcripts levels. The "risk" alleles were correlated with increased expression ratio of SNCA112-mRNA from total. We provide evidence for functional consequences of PD-associated SNCA gene variants at the 3' region, suggesting that genetic regulation of SNCA splicing plays an important role in the development of the disease. Further studies to determine the definite functional variant/s within SNCA 3'and to establish their association with PD pathology are necessary.
Collapse
Affiliation(s)
- Jeanette J McCarthy
- Institute for Genome Sciences & Policy, Duke University, DUMC, Box 3445, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 2010; 29:3571-89. [PMID: 20842103 DOI: 10.1038/emboj.2010.223] [Citation(s) in RCA: 377] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 08/12/2010] [Indexed: 11/09/2022] Open
Abstract
Aggregation of α-synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA-mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin Δ1-79 or by DJ-1 C106A.
Collapse
|
120
|
Horowitz MP, Greenamyre JT. Gene-environment interactions in Parkinson's disease: the importance of animal modeling. Clin Pharmacol Ther 2010; 88:467-74. [PMID: 20811350 DOI: 10.1038/clpt.2010.138] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a late-onset neurodegenerative disorder, occurs most commonly in a "sporadic" (idiopathic) form, without a clearly defined genetic basis and only a vaguely delineated pathogenesis. Together, the various monogenic forms of PD (i.e., those arising from mutations in single genes) account for a minority of PD cases but have provided crucial insights into disease mechanisms. Although it is commonly believed that sporadic PD is caused by a lifetime of environmental exposures that are superimposed on an individual's composite genetic susceptibility, this hypothesis has not been tested adequately. This article reviews genetic and environmental factors that have been associated with PD and attempts to put these into a pathogenic framework. We argue that animal modeling will become increasingly important in attempting to elucidate gene-environment interactions, to define pathogenic mechanisms, and to provide a platform for testing of targeted therapeutic interventions.
Collapse
Affiliation(s)
- M P Horowitz
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
121
|
Kurz A, Double KL, Lastres-Becker I, Tozzi A, Tantucci M, Bockhart V, Bonin M, García-Arencibia M, Nuber S, Schlaudraff F, Liss B, Fernández-Ruiz J, Gerlach M, Wüllner U, Lüddens H, Calabresi P, Auburger G, Gispert S. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS One 2010; 5:e11464. [PMID: 20628651 PMCID: PMC2898885 DOI: 10.1371/journal.pone.0011464] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/14/2010] [Indexed: 11/22/2022] Open
Abstract
Background Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Methodology/Principal Findings Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. Conclusions/Significance Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.
Collapse
Affiliation(s)
- Alexander Kurz
- Department of Neurology, Goethe University Medical School, Frankfurt, Germany
| | - Kay L. Double
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | | | - Alessandro Tozzi
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S.-C.E.R.C., European Brain Research Institute, Roma, Italy
| | - Michela Tantucci
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | - Vanessa Bockhart
- Molecular Psychopharmacology, Department of Psychiatry, Johannes Gutenberg University, Mainz, Germany
| | - Michael Bonin
- Department Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Moisés García-Arencibia
- Department of Biochemistry and Molecular Biology and “Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)”, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Silke Nuber
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Falk Schlaudraff
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Birgit Liss
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology and “Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)”, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Manfred Gerlach
- Laboratory for Clinical Neurochemistry, Department Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Bayerische Julius-Maximilian-Universität, Würzburg, Germany
| | - Ullrich Wüllner
- Department of Neurology, Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Hartmut Lüddens
- Molecular Psychopharmacology, Department of Psychiatry, Johannes Gutenberg University, Mainz, Germany
| | - Paolo Calabresi
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S.-C.E.R.C., European Brain Research Institute, Roma, Italy
| | - Georg Auburger
- Department of Neurology, Goethe University Medical School, Frankfurt, Germany
| | - Suzana Gispert
- Department of Neurology, Goethe University Medical School, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
122
|
George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI. Targeting the progression of Parkinson's disease. Curr Neuropharmacol 2010; 7:9-36. [PMID: 19721815 PMCID: PMC2724666 DOI: 10.2174/157015909787602814] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/15/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023] Open
Abstract
By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
Collapse
Affiliation(s)
- J L George
- The Mental Health Research Institute of Victoria , 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
123
|
Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J Neurosci 2010; 30:6355-9. [PMID: 20445061 DOI: 10.1523/jneurosci.6119-09.2010] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-synuclein (SNCA) is a major risk gene for Parkinson's disease (PD), and increased SNCA gene dosage results in a parkinsonian syndrome in affected families. We found that methylation of human SNCA intron 1 decreased gene expression, while inhibition of DNA methylation activated SNCA expression. Methylation of SNCA intron 1 was reduced in DNA from sporadic PD patients' substantia nigra, putamen, and cortex, pointing toward a yet unappreciated epigenetic regulation of SNCA expression in PD.
Collapse
|
124
|
Sonntag KC. MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 2010; 1338:48-57. [PMID: 20380815 DOI: 10.1016/j.brainres.2010.03.106] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/03/2010] [Accepted: 03/31/2010] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.
Collapse
Affiliation(s)
- Kai-Christian Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
125
|
Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 2010; 50:282-8. [DOI: 10.1016/j.ymeth.2010.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/17/2009] [Accepted: 01/07/2010] [Indexed: 02/06/2023] Open
|
126
|
Brown AL, Smith DW. Improved RNA preservation for immunolabeling and laser microdissection. RNA (NEW YORK, N.Y.) 2009; 15:2364-2374. [PMID: 19850907 PMCID: PMC2779672 DOI: 10.1261/rna.1733509] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/19/2009] [Indexed: 05/28/2023]
Abstract
Microdissection techniques have the potential to allow for transcriptome analyses in specific populations of cells that are isolated from heterogeneous tissues such as the nervous system and certain cancers. Problematically, RNA is not stable under the labeling conditions usually needed to identify the cells of interest for microdissection. We have developed an immunolabeling method that utilizes a high salt buffer to stabilize RNA during prolonged antibody incubations. We first assessed RNA integrity by three methods and found that tissue incubated in high salt buffer for at least 20 h yielded RNA of similar quality to that for RNA extracted from fresh-frozen tissue, which is considered highest quality. Notably, the integrity was superior to that for RNA extracted from tissue processed using rapid immunolabeling procedures (5 min total duration). We next established that high salt buffer was compatible with immunolabeling, as demonstrated by immunofluorescent detection of dopamine neurons in the brain. Finally, we laser microdissected dopamine neurons that were immunolabeled using high salt buffer and demonstrated that RNA integrity was preserved. Our described method yields high quality RNA from immunolabeled microdissected cells, an essential requirement for meaningful genomics investigations of normal and pathological cells isolated from complex tissues.
Collapse
Affiliation(s)
- Amanda L Brown
- Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle , Newcastle NSW 2308, Australia
| | | |
Collapse
|
127
|
Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD, Kish SJ, Hornykiewicz O, Furukawa Y. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson's disease and progressive supranuclear palsy: a comparative investigation. ACTA ACUST UNITED AC 2009; 133:172-88. [PMID: 19903734 DOI: 10.1093/brain/awp282] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alpha-synuclein is a major component of Lewy bodies and glial cytoplasmic inclusions, pathological hallmarks of idiopathic Parkinson's disease and multiple system atrophy, and it is assumed to be aetiologically involved in these conditions. However, the quantitative status of brain alpha-synuclein in different Parkinsonian disorders is still unresolved and it is uncertain whether alpha-synuclein accumulation is restricted to regions of pathology. We compared membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein, both the full-length 17 kDa and high molecular weight species, by western blotting in autopsied brain of patients with Parkinson's disease (brainstem-predominant Lewy body disease: n = 9), multiple system atrophy (n = 11), progressive supranuclear palsy (n = 16), and of normal controls (n = 13). Brain of a patient with familial Parkinsonism-dementia due to alpha-synuclein locus triplication (as positive control) showed increased membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein levels with abundant high molecular weight immunoreactivity. In multiple system atrophy, a massive increase in 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein was observed in highly pathologically affected regions, including putamen (+1760%, range +625-2900%), substantia nigra [+1000% (+356-1850%)], and white matter of internal capsule [+2210% (+430-6830%)] together with numerous high molecular weight species. Levels of 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein were only modestly increased in less affected areas (cerebellar cortex, +95%; caudate, +30%; with both also showing numerous high molecular weight species) and were generally normal in cerebral cortices. In both Parkinson's disease and progressive supranuclear palsy, membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein levels were normal in putamen and frontal cortex whereas a trend was observed for variably increased 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein concentrations [+184% (-60% to +618%)] with additional high molecular weight species in Parkinson's disease substantia nigra. No obvious correlation was observed between nigral membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation and Lewy body density in Parkinson's disease. Two progressive supranuclear palsy cases had membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation in substantia nigra similar to multiple system atrophy. Several Parkinson's disease patients had very modest high molecular weight membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation in putamen. Levels of 17-kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein were generally positively correlated with those of high molecular weight membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein and there was a trend for a positive correlation between striatal dopamine loss and 17-kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein concentrations in multiple system atrophy. Brain membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulations in Parkinson's disease and multiple system atrophy are regionally specific, suggesting that these sporadic alpha-synucleinopathies, unlike familial Parkinsonism-dementia, are not associated with a simple global over-expression of the protein. Despite a similar extent of dopamine depletion, the magnitude of brain membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein changes is disease specific, with multiple system atrophy clearly having the most severe accumulation. Literature discrepancies on alpha-synuclein status in 'Parkinson's disease' might be explained by inclusion of cases not having classic brainstem-predominant Lewy body disease and by variable alpha-synuclein accumulation within this diagnostic classification.
Collapse
Affiliation(s)
- Junchao Tong
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto, Tokyo 136-0075, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
The importance of molecular histology to study glial influence on neurodegenerative disorders. Focus on recent developed single cell laser microdissection. J Mol Histol 2009; 40:241-50. [PMID: 19882358 DOI: 10.1007/s10735-009-9235-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/13/2009] [Indexed: 12/15/2022]
Abstract
Neuron-glia interaction is involved in physiological function of neurons, however recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Histological techniques employing immunolabeling, historadiography and in situ hybridization have been useful to localize at cell levels molecules in normal and pathological situations. The intercellular accomplishment leading to neuronal injury in central nervous system disorders implies the performance of quantitative assays to better interpret the role of related molecules or signal pathways, however one limitation employing the whole tissue is the loss of cellular resolution. The laser capture microdissection was developed recently and allows the selection of specific cell types from their original environment after freezing and sectioning the tissue sampling, leading to the quantification of gene expression in individual cells, thus providing a unique opportunity to get new informations on cell signaling related to neurodegeneration. Here we reviewed the role of glial cell signaling on neurodegenerative disorders like ischemia, Parkinson and Alzheimer diseases, and also amyotrophic lateral sclerosis and what has been published with regards to single cell laser capture microdissection technique in the molecular biology investigation on these issues.
Collapse
|
129
|
Linnertz C, Saucier L, Ge D, Cronin KD, Burke JR, Browndyke JN, Hulette CM, Welsh-Bohmer KA, Chiba-Falek O. Genetic regulation of alpha-synuclein mRNA expression in various human brain tissues. PLoS One 2009; 4:e7480. [PMID: 19834617 PMCID: PMC2759540 DOI: 10.1371/journal.pone.0007480] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022] Open
Abstract
Genetic variability across the SNCA locus has been repeatedly associated with susceptibility to sporadic Parkinson's disease (PD). Accumulated evidence emphasizes the importance of SNCA dosage and expression levels in PD pathogenesis. However whether genetic variability in the SNCA gene modulates the risk to develop sporadic PD via regulation of SNCA expression remained elusive. We studied the effect of PD risk-associated variants at SNCA 5' and 3'regions on SNCA-mRNA levels in vivo in 228 human brain samples from three structures differentially vulnerable to PD pathology (substantia-nigra, temporal- and frontal-cortex) obtained from 144 neurologically normal cadavers. The extensively characterized PD-associated promoter polymorphism, Rep1, had an effect on SNCA-mRNA levels. Homozygous genotype of the 'protective', Rep1-259 bp allele, was associated with lower levels of SNCA-mRNA relative to individuals that carried at least one copy of the PD-risk associated alleles, amounting to an average decrease of approximately 40% and >50% in temporal-cortex and substantia-nigra, respectively. Furthermore, SNPs tagging the SNCA 3'-untranslated-region also showed effects on SNCA-mRNA levels in both the temporal-cortex and the substantia-nigra, although, in contrast to Rep1, the 'decreased-risk' alleles were correlated with increased SNCA-mRNA levels. Similar to Rep1 findings, no difference in SNCA-mRNA level was seen with different SNCA 3'SNP alleles in the frontal-cortex, indicating there is brain-region specificity of the genetic regulation of SNCA expression. We provide evidence for functional consequences of PD-associated SNCA gene variants in disease relevant brain tissues, suggesting that genetic regulation of SNCA expression plays an important role in the development of the disease.
Collapse
Affiliation(s)
- Colton Linnertz
- Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Saucier
- Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dongliang Ge
- Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kenneth D. Cronin
- Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James R. Burke
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey N. Browndyke
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christine M. Hulette
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kathleen A. Welsh-Bohmer
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ornit Chiba-Falek
- Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
130
|
Ringhoff DN, Cassimeris L. Gene expression profiles in mouse embryo fibroblasts lacking stathmin, a microtubule regulatory protein, reveal changes in the expression of genes contributing to cell motility. BMC Genomics 2009; 10:343. [PMID: 19643027 PMCID: PMC2725145 DOI: 10.1186/1471-2164-10-343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/30/2009] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Stathmin (STMN1) protein functions to regulate assembly of the microtubule cytoskeleton by destabilizing microtubule polymers. Stathmin over-expression has been correlated with cancer stage progression, while stathmin depletion leads to death of some cancer cell lines in culture. In contrast, stathmin-null mice are viable with minor axonopathies and loss of innate fear response. Several stathmin binding partners, in addition to tubulin, have been shown to affect cell motility in culture. To expand our understanding of stathmin function in normal cells, we compared gene expression profiles, measured by microarray and qRT-PCR, of mouse embryo fibroblasts isolated from STMN1+/+ and STMN1-/- mice to determine the transcriptome level changes present in the genetic knock-out of stathmin. RESULTS Microarray analysis of STMN1 loss at a fold change threshold of > or = 2.0 revealed expression changes for 437 genes, of which 269 were up-regulated and 168 were down-regulated. Microarray data and qRT-PCR analysis of mRNA expression demonstrated changes in the message levels for STMN4, encoding RB3, a protein related to stathmin, and in alterations to many tubulin isotype mRNAs. KEGG Pathway analysis of the microarray data indicated changes to cell motility-related genes, and qRT-PCR plates specific for focal adhesion and ECM proteins generally confirmed the microarray data. Several microtubule assembly regulators and motors were also differentially regulated in STMN1-/- cells, but these changes should not compensate for loss of stathmin. CONCLUSION Approximately 50% of genes up or down regulated (at a fold change of > or = 2) in STMN1-/- mouse embryo fibroblasts function broadly in cell adhesion and motility. These results support models indicating a role for stathmin in regulating cell locomotion, but also suggest that this functional activity may involve changes to the cohort of proteins expressed in the cell, rather than as a direct consequence of stathmin-dependent regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Danielle N Ringhoff
- Chemistry Department, Lehigh University, Mudd Building, 6 E. Packer Avenue, Bethlehem, PA, USA
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
131
|
Clough RL, Dermentzaki G, Stefanis L. Functional dissection of the alpha-synuclein promoter: transcriptional regulation by ZSCAN21 and ZNF219. J Neurochem 2009; 110:1479-90. [PMID: 19549071 DOI: 10.1111/j.1471-4159.2009.06250.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha-synuclein (SNCA) is an abundant neuronal protein involved in synaptic neurotransmission. SNCA expression levels have been strongly implicated in Parkinson's disease pathogenesis. We have previously demonstrated that in the PC12 cell line elements in intron 1 may mediate SNCA transcriptional regulation in response to neurotrophins. We have now identified transcription factor (TF) binding sites in intron 1 and the 5'-promoter of SNCA. A binding site for the TF zinc finger and SCAN domain containing (ZSCAN)21 in the 5'-region of intron 1 is required for intron 1 transcriptional activity. Small interfering RNA against ZSCAN21 inhibits activation in the luciferase assay and diminishes SNCA protein levels in naïve and neurotrophin-treated PC12 cells and in primary cultured cortical neurons, demonstrating that ZSCAN21 is a novel transcriptional regulator of SNCA in neuronal cells. The 5'-promoter of SNCA has a complex architecture, including multiple binding sites for the TF zinc finger protein (ZNF)219, which functions as both an activator and a repressor. Targeting ZSCAN21 or other TFs controlling SNCA transcriptional activity may provide novel therapeutic avenues not only for Parkinson's disease but also for other synucleopathies.
Collapse
Affiliation(s)
- Richard Lee Clough
- Division of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.
| | | | | |
Collapse
|
132
|
A single nucleotide polymorphism in the 3'UTR of the SNCA gene encoding alpha-synuclein is a new potential susceptibility locus for Parkinson disease. Neurosci Lett 2009; 461:196-201. [PMID: 19540308 DOI: 10.1016/j.neulet.2009.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
Abstract
In Parkinson disease, the second most common neurodegenerative disorder in humans, increased alpha-synuclein (SNCA) levels are pathogenic, as evidenced by gene copy number mutations and increased alpha-synuclein levels detected in some familial and sporadic PD cases, respectively. Gene expression can be regulated at the post-transcriptional level by elements in the 3' untranslated region (3'UTR) of mRNAs. The goal of this study was to determine whether the 3'UTR of human SNCA can affect gene expression. Comparative sequence analysis revealed very high conservation across the entire 3'UTR of human SNCA over millions of years, suggesting the presence of multiple functionally important domains. EST and RT-PCR analyses showed that four different polyadenylation events occur in the 3'UTR of human SNCA. Finally, using luciferase assays, we examined the effect of the minor allele of five naturally occurring single nucleotide polymorphisms (SNPs) in the 3'UTR of SNCA on gene expression. The minor allele of SNP rs17016074 increased luciferase expression by 32% in a transient transfection assay in SHSY5Y neuroblastoma cells. Understanding the role of the 3'UTR of human SNCA and identifying functionally important naturally occurring SNPs using reporter assays can complement disease association studies in humans, uncovering potential susceptibility or protective polymorphisms in Parkinson disease. Our findings demonstrate that the 3'UTR of human SNCA, as a whole, and rs17016074, in particular, are loci of potential clinical importance for Parkinson disease.
Collapse
|
133
|
Ringhoff DN, Cassimeris L. Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning. Mol Biol Cell 2009; 20:3451-8. [PMID: 19515833 DOI: 10.1091/mbc.e09-02-0140] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stathmin is a microtubule-destabilizing protein ubiquitously expressed in vertebrates and highly expressed in many cancers. In several cell types, stathmin regulates the partitioning of tubulin between unassembled and polymer forms, but the mechanism responsible for partitioning has not been determined. We examined stathmin function in two cell systems: mouse embryonic fibroblasts (MEFs) isolated from embryos +/+, +/-, and -/- for the stathmin gene and porcine kidney epithelial (LLCPK) cells expressing stathmin-cyan fluorescent protein (CFP) or injected with stathmin protein. In MEFs, the relative amount of stathmin corresponded to genotype, where cells heterozygous for stathmin expressed half as much stathmin mRNA and protein as wild-type cells. Reduction or loss of stathmin resulted in increased microtubule polymer but little change to microtubule dynamics at the cell periphery. Increased stathmin level in LLCPK cells, sufficient to reduce microtubule density, but allowing microtubules to remain at the cell periphery, also did not have a major impact on microtubule dynamics. In contrast, stathmin level had a significant effect on microtubule nucleation rate from centrosomes, where lower stathmin levels increased nucleation and higher stathmin levels reduced nucleation. The stathmin-dependent regulation of nucleation is only active in interphase; overexpression of stathmin-CFP did not impact metaphase microtubule nucleation rate in LLCPK cells and the number of astral microtubules was similar in stathmin +/+ and -/- MEFs. These data support a model in which stathmin functions in interphase to control the partitioning of tubulins between dimer and polymer pools by setting the number of microtubules per cell.
Collapse
Affiliation(s)
- Danielle N Ringhoff
- Department of Chemistry and Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | |
Collapse
|
134
|
Cronin KD, Ge D, Manninger P, Linnertz C, Rossoshek A, Orrison BM, Bernard DJ, El-Agnaf OMA, Schlossmacher MG, Nussbaum RL, Chiba-Falek O. Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human alpha-synuclein in transgenic mouse brain. Hum Mol Genet 2009; 18:3274-85. [PMID: 19498036 PMCID: PMC2722989 DOI: 10.1093/hmg/ddp265] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
α-Synuclein (SNCA) gene has been implicated in the development of rare forms of familial Parkinson disease (PD). Recently, it was shown that an increase in SNCA copy numbers leads to elevated levels of wild-type SNCA-mRNA and protein and is sufficient to cause early-onset, familial PD. A critical question concerning the molecular pathogenesis of PD is what contributory role, if any, is played by the SNCA gene in sporadic PD. The expansion of SNCA-Rep1, an upstream, polymorphic microsatellite of the SNCA gene, is associated with elevated risk for sporadic PD. However, whether SNCA-Rep1 is the causal variant and the underlying mechanism with which its effect is mediated by remained elusive. We report here the effects of three distinct SNCA-Rep1 variants in the brains of 72 mice transgenic for the entire human SNCA locus. Human SNCA-mRNA and protein levels were increased 1.7- and 1.25-fold, respectively, in homozygotes for the expanded, PD risk-conferring allele compared with homozygotes for the shorter, protective allele. When adjusting for the total SNCA-protein concentration (endogenous mouse and transgenic human) expressed in each brain, the expanded risk allele contributed 2.6-fold more to the SNCA steady-state than the shorter allele. Furthermore, targeted deletion of Rep1 resulted in the lowest human SNCA-mRNA and protein concentrations in murine brain. In contrast, the Rep1 effect was not observed in blood lysates from the same mice. These results demonstrate that Rep1 regulates human SNCA expression by enhancing its transcription in the adult nervous system and suggest that homozygosity for the expanded Rep1 allele may mimic locus multiplication, thereby elevating PD risk.
Collapse
Affiliation(s)
- Kenneth D Cronin
- Center for Human Genome Variation, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology. ACTA ACUST UNITED AC 2008; 132:1795-809. [PMID: 19052140 DOI: 10.1093/brain/awn323] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parkinson's disease is caused by a progressive loss of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta. Although the main cause of Parkinson's disease remains unknown, there is increasing evidence that it is a complex disorder caused by a combination of genetic and environmental factors, which affect key signalling pathways in substantia nigra DA neurons. Insights into pathogenesis of Parkinson's disease stem from in vitro and in vivo models and from postmortem analyses. Recent technological developments have added a new dimension to this research by determining gene expression profiles using high throughput microarray assays. However, many of the studies reported to date were based on whole midbrain dissections, which included cells other than DA neurons. Here, we have used laser microdissection to isolate single DA neurons from the substantia nigra pars compacta of controls and subjects with idiopathic Parkinson's disease matched for age and postmortem interval followed by microarrays to analyse gene expression profiling. Our data confirm a dysregulation of several functional groups of genes involved in the Parkinson's disease pathogenesis. In particular, we found prominent down-regulation of members of the PARK gene family and dysregulation of multiple genes associated with programmed cell death and survival. In addition, genes for neurotransmitter and ion channel receptors were also deregulated, supporting the view that alterations in electrical activity might influence DA neuron function. Our data provide a 'molecular fingerprint identity' of late-stage Parkinson's disease DA neurons that will advance our understanding of the molecular pathology of this disease.
Collapse
Affiliation(s)
- Filip Simunovic
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.
Collapse
Affiliation(s)
- Changyoun Kim
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | | |
Collapse
|