101
|
Slimene K, El Salabi AA, Dziri O, Mabrouk A, Miniaoui D, Gharsa H, Shokri SA, Alhubge AM, Achour W, Rolain JM, Chouchani C. High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Microb Drug Resist 2021; 27:1546-1554. [PMID: 34029121 DOI: 10.1089/mdr.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored blaOXA-23 gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored blaNDM-1 gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of blaOXA-23 and blaNDM-1 genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Khouloud Slimene
- Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Aymen Mabrouk
- Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse, Université Tunis El Manar, Tunis, Tunisie
| | - Dhouha Miniaoui
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques et Appliqués de Tunis, Université Tunis El Manar, Tunis, Tunisie
| | - Salah A Shokri
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Altaher M Alhubge
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Wafa Achour
- Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse, Université Tunis El Manar, Tunis, Tunisie
| | - Jean-Marc Rolain
- Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| |
Collapse
|
102
|
McMillan IA, Norris MH, Zarzycki-Siek J, Heacock-Kang Y, Sun Z, Borlee BR, Hoang TT. Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei. Sci Rep 2021; 11:10405. [PMID: 34001967 PMCID: PMC8128862 DOI: 10.1038/s41598-021-89852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease endemic to the tropics. Melioidosis manifests in various ways ranging from acute skin lesions to pneumonia and, in rare cases, infection of the central nervous system. Bp is a facultative intracellular pathogen and it can infect various cell types. The Bp intracellular lifecycle has been partially elucidated and is highly complex. Herein, we have identified a transcriptional regulator, BP1026B_II1198, that is differentially expressed as Bp transits through host cells. A deletion mutant of BP1026B_II1198 was attenuated in RAW264.7 cell and BALB/c mouse infection. To further characterize the function of this transcriptional regulator, we endeavored to determine the regulon of BP1026B_II1198. RNA-seq analysis showed the global picture of genes regulated while ChIP-seq analysis identified two specific BP1026B_II1198 binding regions on chromosome II. We investigated the transposon mutants of these genes controlled by BP1026B_II1198 and confirmed that these genes contribute to pathogenesis in RAW264.7 murine macrophage cells. Taken together, the data presented here shed light on the regulon of BP1026B_II1198 and its role during intracellular infection and highlights an integral portion of the highly complex regulation network of Bp during host infection.
Collapse
Affiliation(s)
- Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michael H Norris
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
| |
Collapse
|
103
|
Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 2021; 12:2444. [PMID: 33953184 PMCID: PMC8100170 DOI: 10.1038/s41467-021-22517-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - John P Kemp
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claudio M Sergio
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan C Chai
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Alexander P Corr
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - James T Smith
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - Sindhu T Mohanty
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Faculty of Arts and Science, Department of Biology, New York University, New York, NY, USA
| | - Michelle M McDonald
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Amelia R McGlade
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, NSW, Australia
| | - Matt Jansson
- Viapath Genetics Laboratory, Viapath Analytics LLP, Guy's Hospital, London, UK
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melita D Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | - Emma Duncan
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - J Brent Richards
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Faculty of Medicine, McGill University, Quebec, Canada
| | | | | | - Robert Brink
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tri Giang Phan
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Fremantle, Australia
| | - David M Evans
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Paul A Baldock
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Peter I Croucher
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia.
| |
Collapse
|
104
|
Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Appl Environ Microbiol 2021; 87:AEM.02956-20. [PMID: 33608300 DOI: 10.1128/aem.02956-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple-gene expression at the single-cell level has limited the understanding of phenotypic heterogeneity. To investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple-gene expression at the single-cell level has been generated. This tool, named pRGC, consists of a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP), and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single-cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population without the need for image processing for spectral cross talk correction. In addition, two pRGC variants have been generated for either (i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome that is suitable for long-term experiments in the absence of antibiotic selection or (ii) replication in bacterial genera other than Pseudomonas The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple-gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity.IMPORTANCE Within a bacterial population, single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial subpopulations with distinct phenotypes. The analysis of gene expression at the single-cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation, and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple-gene expression at the single-cell level by fluorescence microscopy without the need for advanced image-processing procedures. A proof of concept has been provided by investigating iron uptake and iron storage gene expression in response to iron availability in P. aeruginosa.
Collapse
|
105
|
King M, Kubo A, Kafer L, Braga R, McLeod D, Khanam S, Conway T, Patrauchan MA. Calcium-Regulated Protein CarP Responds to Multiple Host Signals and Mediates Regulation of Pseudomonas aeruginosa Virulence by Calcium. Appl Environ Microbiol 2021; 87:e00061-21. [PMID: 33674436 PMCID: PMC8117776 DOI: 10.1128/aem.00061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections. Previously, we showed that elevated calcium (Ca2+) levels increase the production of virulence factors in P. aeruginosa In an effort to characterize the Ca2+ regulatory network, we identified a Ca2+-regulated β-propeller protein, CarP, and showed that expression of the encoding gene is controlled by the Ca2+-regulated two-component system CarSR. Here, by using a Galleria melonella model, we showed that CarP plays a role in regulating P. aeruginosa virulence. By using transcriptome sequencing (RNA-Seq), reverse transcription (RT)-PCR, quantitative RT-PCR (RT-qPCR), and promoter fusions, we determined that carP is transcribed into at least two transcripts and regulated by several bacterial and host factors. The transcription of carP is elevated in response to Ca2+ in P. aeruginosa cystic fibrosis isolates and PAO1 laboratory strain. Elevated Fe2+ also induces carP The simultaneous addition of Ca2+ and Fe2+ increased the carP promoter activity synergistically, which requires the presence of CarR. In silico analysis of the intergenic sequence upstream of carP predicted recognition sites of RhlR/LasR, OxyR, and LexA, suggesting regulation by quorum sensing (QS) and oxidative stress. In agreement, the carP promoter was activated in response to stationary-phase PAO1 supernatant and required the presence of elevated Ca2+ and CarR but remained silent in the triple mutant lacking rhlI, lasI, and pqsA synthases. We also showed that carP transcription is regulated by oxidative stress and that CarP contributes to P. aeruginosa Ca2+-dependent H2O2 tolerance. The multifactorial regulation of carP suggests that CarP plays an important role in P. aeruginosa adaptations to host environments.IMPORTANCEP. aeruginosa is a human pathogen causing life-threatening infections. It is particularly notorious for its ability to adapt to diverse environments within the host. Understanding the signals and the signaling pathways enabling P. aeruginosa adaptation is imperative for developing effective therapies to treat infections caused by this organism. One host signal of particular importance is calcium. Previously, we identified a component of the P. aeruginosa calcium-signaling network, CarP, whose expression is induced by elevated levels of calcium. Here, we show that carP plays an important role in P. aeruginosa virulence and is upregulated in P. aeruginosa strains isolated from sputa of patients with cystic fibrosis. We also identified several bacterial and host factors that regulate the transcription of carP Such multifactorial regulation highlights the interconnectedness between regulatory circuits and, together with the pleotropic effect of CarP on virulence, suggests the importance of this protein in P. aeruginosa adaptations to the host.
Collapse
Affiliation(s)
- Michelle King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Leah Kafer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sharmily Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
106
|
High fluoride resistance and virulence profile of environmental Pseudomonas isolated from water sources. Folia Microbiol (Praha) 2021; 66:569-578. [PMID: 33821405 DOI: 10.1007/s12223-021-00867-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
In our previous study, all Pseudomonas strains THP6, THP41, and OHP5 were identified as fluoride-resistant bacteria isolated from Dindigul district, Tamilnadu, India. The selected strains exhibiting a high level of fluoride resistance was determined in Luria broth (LB) medium and LB agar plates. In a further effort, fluoride-resistant organisms were tested for hemolytic activity and showed β-hemolysis on blood agar plates. The virulence factors such as gyrB, toxA, algD and lasB, plcH, rhlC and biofilm response genes (pslA, pelA, ppyR) were detected by PCR analysis. The putative genus-specific and species-specific PCR also confirmed that the selected fluoride-resistant strains were belonging to Pseudomonas aeruginosa species. Fluoride-resistance gene crcB was amplified by gene-specific primers. The crcB gene was cloned in TA vector and transformed into E. coli DH5α. Comparative and blast analysis of THP6, THP41, and OHP5 strains crcB gene sequences were high homology with P. aeruginosa fluoride efflux transporter crcB and P. aeruginosa putative fluoride ion transporter crcB. The recombinants were efficiently growing in the NaF containing LB agar plates. The fluoride tolerance of these strains was also associated with resistance to multiple antibiotics. These results can lead to the use of the fluoride resistance gene of P. aeruginosa for the development of a biosensor for fluoride detection.
Collapse
|
107
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
108
|
Fan K, Cao Q, Lan L. Genome-Wide Mapping Reveals Complex Regulatory Activities of BfmR in Pseudomonas aeruginosa. Microorganisms 2021; 9:485. [PMID: 33668961 PMCID: PMC8025907 DOI: 10.3390/microorganisms9030485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
BfmR is a response regulator that modulates diverse pathogenic phenotypes and induces an acute-to-chronic virulence switch in Pseudomonas aeruginosa, an important human pathogen causing serious nosocomial infections. However, the mechanisms of action of BfmR remain largely unknown. Here, using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we showed that 174 chromosomal regions of P. aeruginosa MPAO1 genome were highly enriched by coimmunoprecipitation with a C-terminal Flag-tagged BfmR. Integration of these data with global transcriptome analyses revealed that 172 genes in 106 predicted transcription units are potential targets for BfmR. We determined that BfmR binds to and modulates the promoter activity of genes encoding transcriptional regulators CzcR, ExsA, and PhoB. Intriguingly, BfmR bound to the promoters of a number of genes belong to either CzcR or PhoB regulon, or both, indicating that CzcRS and PhoBR two-component systems (TCSs) deeply feed into the BfmR-mediated regulatory network. In addition, we demonstrated that phoB is required for BfmR to promote the biofilm formation by P. aeruginosa. These results delineate the direct BfmR regulon and exemplify the complexity of BfmR-mediated regulation of cellular functions in P. aeruginosa.
Collapse
Affiliation(s)
- Ke Fan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Lefu Lan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| |
Collapse
|
109
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
110
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
111
|
Pseudomonas aeruginosa Polynucleotide Phosphorylase Controls Tolerance to Aminoglycoside Antibiotics by Regulating the MexXY Multidrug Efflux Pump. Antimicrob Agents Chemother 2021; 65:AAC.01846-20. [PMID: 33257447 DOI: 10.1128/aac.01846-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and the bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa In this study, we found that mutation of the PNPase-encoding gene (pnp) in P. aeruginosa increases bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that the upregulation of the mexXY genes is responsible for the increased tolerance of the pnp mutant. Furthermore, our experimental results revealed that PNPase controls the translation of the armZ mRNA through its 5' untranslated region (UTR). ArmZ had previously been shown to positively regulate the expression of mexXY Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.
Collapse
|
112
|
Extracellular products-mediated interspecific interaction between Pseudomonas aeruginosa and Escherichia coli. J Microbiol 2020; 59:29-40. [PMID: 33355890 DOI: 10.1007/s12275-021-0478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa adopts several elaborate strategies to colonize a wide range of natural or clinical niches and to overcome the neighboring bacterial competitors in polymicrobial communities. However, the relationship and interaction mechanism of P. aeruginosa with other bacterial pathogens remains largely unexplored. Here we explore the interaction dynamics of P. aeruginosa and Escherichia coli, which frequently coinfect the lungs of immunocompromised hosts, by using a series of on-plate proximity assays and RNA-sequencing. We show that the extracellular products of P. aeruginosa can inhibit the growth of neighboring E. coli and induce a large-scale of transcriptional reprogramming of E. coli, especially in terms of cellular respiration-related primary metabolisms and membrane components. In contrast, the presence of E. coli has no significant effect on the growth of P. aeruginosa in short-term culture, but causes a dysregulated expression of genes positively controlled by the quorum-sensing (QS) system of P. aeruginosa during subsequent pairwise culture. We further demonstrate that the divergent QS-regulation of P. aeruginosa may be related to the function of the transcriptional regulator PqsR, which can be enhanced by E. coli culture supernatant to increase the pyocyanin production by P. aeruginosa in the absence of the central las-QS system. Moreover, the extracellular products of E. coli promote the proliferation and lethality of P. aeruginosa in infecting the Caenorhabditis elegans model. The current study provides a general characterization of the extracellular products-mediated interactions between P. aeruginosa and E. coli, and may facilitate the understanding of polymicrobial infections.
Collapse
|
113
|
Quorum quenching by 2-Hydroxyanisole extracted from Solanum torvum on Pseudomonas aeruginosa and its inhibitory action upon LasR protein. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
114
|
Baldelli V, D’Angelo F, Pavoncello V, Fiscarelli EV, Visca P, Rampioni G, Leoni L. Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE. Virulence 2020; 11:652-668. [PMID: 32423284 PMCID: PMC7549961 DOI: 10.1080/21505594.2020.1770508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of the bacterial pathogen Pseudomonas aeruginosa to cause both chronic and acute infections mainly relies on its capacity to finely modulate the expression of virulence factors through a complex network of regulatory circuits, including the pqs quorum sensing (QS) system. While in most QS systems the signal molecule/receptor complexes act as global regulators that modulate the expression of QS-controlled genes, the main effector protein of the pqs system is PqsE. This protein is involved in the synthesis of the QS signal molecules 2-alkyl-4(1H)-quinolones (AQs), but it also modulates the expression of genes involved in virulence factors production and biofilm formation via AQ-independent pathway(s). P. aeruginosa pqsE mutants disclose attenuated virulence in plant and animal infection models, hence PqsE is considered a good target for the development of antivirulence drugs against P. aeruginosa. In this study, the negative regulation exerted by PqsE on its own transcription has been exploited to develop a screening system for the identification of PqsE inhibitors in a library of FDA-approved drugs. This led to the identification of nitrofurazone and erythromycin estolate, two antibiotic compounds that reduce the expression of PqsE-dependent virulence traits and biofilm formation in the model strain P. aeruginosa PAO1 at concentrations far below those affecting the bacterial growth rate. Notably, both drugs reduce the production of the PqsE-controlled virulence factor pyocyanin also in P. aeruginosa strains isolated from cystic fibrosis patients, and do not antagonize the activity of antibiotics commonly used to treat P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
115
|
Time-course profiling of bovine alphaherpesvirus 1.1 transcriptome using multiplatform sequencing. Sci Rep 2020; 10:20496. [PMID: 33235226 PMCID: PMC7686369 DOI: 10.1038/s41598-020-77520-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Long-read sequencing (LRS) has become a standard approach for transcriptome analysis in recent years. Bovine alphaherpesvirus 1 (BoHV-1) is an important pathogen of cattle worldwide. This study reports the profiling of the dynamic lytic transcriptome of BoHV-1 using two long-read sequencing (LRS) techniques, the Oxford Nanopore Technologies MinION, and the LoopSeq synthetic LRS methods, using multiple library preparation protocols. In this work, we annotated viral mRNAs and non-coding transcripts, and a large number of transcript isoforms, including transcription start and end sites, as well as splice variants of BoHV-1. Our analysis demonstrated an extremely complex pattern of transcriptional overlaps.
Collapse
|
116
|
Zhao K, Huang T, Lin J, Yan C, Du L, Song T, Li J, Guo Y, Chu Y, Deng J, Wang X, Liu C, Zhou Y. Genetic and Functional Diversity of Pseudomonas aeruginosa in Patients With Chronic Obstructive Pulmonary Disease. Front Microbiol 2020; 11:598478. [PMID: 33250886 PMCID: PMC7673450 DOI: 10.3389/fmicb.2020.598478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is the most relevant pathogen to the severe exacerbations of patients with chronic obstructive pulmonary disease (COPD). However, the genetic and functional characteristics of P. aeruginosa isolates from COPD airways still remain less understood. In this study, the genetic, phylogenetic, phenotypic, and transcriptional features of P. aeruginosa isolates from COPD sputa were comprehensively explored by susceptibility testing, comparative-genomic analysis, phylogenetic analysis, phenotypic profiling, and comparative-transcriptomic analysis. We found that P. aeruginosa was prevalent in elder COPD patients and highly resisted to many commonly used antibiotics. P. aeruginosa COPD isolates harbored a substantial number of variant sites that might influence the primary metabolism and substance transport system. These isolates were discretely distributed in the phylogenetic tree and clustered with internationally collected P. aeruginosa in two major groups, and could be classified into three groups according to their differences in virulence-related phenotypes. Furthermore, the transcriptional patterns of COPD isolates could be classified into PAO1-like group with reduced protein secretion and motility and PAO1-distinct group with decreased substance transport but enhanced primary metabolism. In conclusion, this study demonstrates that P. aeruginosa isolates from COPD patients have abundant genetic and phenotypic diversity, and provides an important reference for further exploring the survival strategy of P. aeruginosa in COPD airways and the development of anti-pseudomonal therapy.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Chaochao Yan
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lianming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Jing Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yidong Guo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Chaolan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
117
|
The Enemy of my Enemy: Bacterial Competition in the Cystic Fibrosis Lung. Cell Host Microbe 2020; 28:502-504. [PMID: 33031766 DOI: 10.1016/j.chom.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial competition within host-associated polymicrobial communities shapes their composition, often with far-reaching consequences for human health. In this issue of Cell Host & Microbe, Perault et al. reveal how competition between two opportunistic pathogens could account for the epidemiology of chronic lung infections in people with cystic fibrosis.
Collapse
|
118
|
The Small RNA ErsA Plays a Role in the Regulatory Network of Pseudomonas aeruginosa Pathogenicity in Airway Infections. mSphere 2020; 5:5/5/e00909-20. [PMID: 33055260 PMCID: PMC7565897 DOI: 10.1128/msphere.00909-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial small RNAs play a remarkable role in the regulation of functions involved in host-pathogen interaction. ErsA is a small RNA of Pseudomonas aeruginosa that contributes to the regulation of bacterial virulence traits such as biofilm formation and motility. Shown to take part in a regulatory circuit under the control of the envelope stress response sigma factor σ22, ErsA targets posttranscriptionally the key virulence-associated gene algC Moreover, ErsA contributes to biofilm development and motility through the posttranscriptional modulation of the transcription factor AmrZ. Intending to evaluate the regulatory relevance of ErsA in the pathogenesis of respiratory infections, we analyzed the impact of ErsA-mediated regulation on the virulence potential of P. aeruginosa and the stimulation of the inflammatory response during the infection of bronchial epithelial cells and a murine model. Furthermore, we assessed ErsA expression in a collection of P. aeruginosa clinical pulmonary isolates and investigated the link of ErsA with acquired antibiotic resistance by generating an ersA gene deletion mutant in a multidrug-resistant P. aeruginosa strain which has long been adapted in the airways of a cystic fibrosis (CF) patient. Our results show that the ErsA-mediated regulation is relevant for the P. aeruginosa pathogenicity during acute infection and contributes to the stimulation of the host inflammatory response. Besides, ErsA was able to be subjected to selective pressure for P. aeruginosa pathoadaptation and acquirement of resistance to antibiotics commonly used in clinical practice during chronic CF infections. Our findings establish the role of ErsA as an important regulatory element in the host-pathogen interaction.IMPORTANCE Pseudomonas aeruginosa is one of the most critical multidrug-resistant opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. Thorough knowledge of the regulatory mechanisms involved in the establishment and persistence of the airways infections by P. aeruginosa remains elusive. Emerging candidates as molecular regulators of pathogenesis in P. aeruginosa are small RNAs, which act posttranscriptionally as signal transducers of host cues. Known for being involved in the regulation of biofilm formation and responsive to envelope stress response, we show that the small RNA ErsA can play regulatory roles in acute infection, stimulation of host inflammatory response, and mechanisms of acquirement of antibiotic resistance and adaptation during the chronic lung infections of cystic fibrosis patients. Elucidating the complexity of the networks regulating host-pathogen interactions is crucial to identify novel targets for future therapeutic applications.
Collapse
|
119
|
Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex. Cell Host Microbe 2020; 28:534-547.e3. [PMID: 32755549 PMCID: PMC7554260 DOI: 10.1016/j.chom.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species are opportunistic lung pathogens of cystic fibrosis (CF) patients. While P. aeruginosa can initiate long-term infections in younger CF patients, Bcc infections only arise in teenagers and adults. Both P. aeruginosa and Bcc use type VI secretion systems (T6SSs) to mediate interbacterial competition. Here, we show P. aeruginosa isolates from teenage and adult CF patients, but not those from young CF patients, are outcompeted by the epidemic Bcc isolate Burkholderia cenocepacia strain AU1054 in a T6SS-dependent manner. The genomes of susceptible P. aeruginosa isolates harbor T6SS-abrogating mutations, the repair of which, in some cases, rendered the isolates resistant. Moreover, seven of eight Bcc strains outcompeted P. aeruginosa strains isolated from the same patients. Our findings suggest certain mutations that arise as P. aeruginosa adapts to the CF lung abrogate T6SS activity, making P. aeruginosa and its human host susceptible to potentially fatal Bcc superinfection.
Collapse
Affiliation(s)
- Andrew I Perault
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - David A Rasko
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marsio Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
120
|
Sivakumar R, Gunasekaran P, Rajendhran J. Functional characterization of asnC family transcriptional regulator in Pseudomonas aeruginosa PGPR2 during root colonization. Mol Biol Rep 2020; 47:7941-7957. [PMID: 33011891 DOI: 10.1007/s11033-020-05872-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Transcriptional regulators in bacteria are the crucial players in mediating communication between environmental cues and DNA transcription through a complex network process. Pseudomonas aeruginosa PGPR2 is an efficient root colonizer and a biocontrol strain. Previously, we identified that the transcriptional regulator, asnC, negatively regulates the corn root colonization of P. aeruginosa PGPR2. In a transposon insertion sequencing (INSeq) screen, the asnC insertion mutant was positively selected during root colonization, meaning the disruption of asnC improves the fitness of the P. aeruginosa PGPR2 strain for the root colonization. In this study, we constructed isogenic mutant of asnC family transcriptional regulator encoded by PGPR2_17510 by allele exchange mutagenesis. The ΔasnC mutant was able to efficiently colonize corn roots with a twofold increase in population when compared to the wild-type strain. Similarly, the mutant strain outcompeted the wild-type strain in a competition assay, where the mutant strain represented 90% of the total population recovered from the root. We compared the whole transcriptome of the wild-type and the ΔasnC mutant of P. aeruginosa PGPR2 when exposed to the corn root exudates. The RNA-Seq revealed that a total of 360 genes were differentially expressed in the ΔasnC strain of P. aeruginosa PGPR2. Inactivation of asnC transcriptional regulator resulted in the up-regulation of several genetic factors implicated in metabolism, uptake of nutrients, motility, stress response, and signal transduction, which could play crucial roles in root colonization. This notion was further validated by phenotypic characterization and quantification of transcription pattern of selected genes associated with metabolism, motility, and carbon catabolite repression between wild type and mutant strain, which was in agreement with transcriptome data. Similarly, ΔasnC strain formed increased biofilm on abiotic surface validating our RNA-seq analysis, where transcript levels of several genes associated with biofilm formation were up-regulated in the mutant strain. We report that the inactivation of an asnC family transcriptional regulator encoded by PGPR2_17510 enhances the root colonization and biofilm-forming ability of P. aeruginosa PGPR2. Together, our results provide evidence for the molecular adaptations that enable ΔasnC mutant strain to colonize on the corn roots and to form a biofilm.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
121
|
Zhao Y, Mei L, Si Y, Wu J, Shao J, Wang T, Yan G, Wang C, Wu D. Sodium New Houttuyfonate Affects Transcriptome and Virulence Factors of Pseudomonas aeruginosa Controlled by Quorum Sensing. Front Pharmacol 2020; 11:572375. [PMID: 33123010 PMCID: PMC7566558 DOI: 10.3389/fphar.2020.572375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a major opportunistic pathogen, Pseudomonas aeruginosa can produce various virulence factors and form biofilms. These processes are controlled by the quorum sensing (QS) system. Sodium new houttuyfonate (SNH) is an adduct of houttuyfonate, the main component of the common Chinese medicine plant Houttuynia cordata, which has antibacterial and anti-inflammatory effects. We evaluated the effect of SNH on P. aeruginosa biofilms, virulence factors, and transcription. Transcriptome analysis showed that the key rhlI and pqsA genes of the P. aeruginosa QS system were down-regulated after SNH treatment. SNH reduces proteases and pyocyanin production and inhibits biofilm formation by regulating the P. aeruginosa QS system. SNH also changes the expression of genes related to virulence factors and biofilms (lasA, lasB, lecA, phzM, pqsA, and pilG). These results suggested that the mechanism of SNH against P. aeruginosa by affecting the expression of biofilm and virulence factors controlled by quorum sensing.
Collapse
Affiliation(s)
- Yeye Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanqing Si
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jiadi Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China
| | - Guiming Yan
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China.,Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
122
|
Abstract
Mechanisms that define the chromosome as a structural entity remain unknown. Key elements in this process are condensins, which globally organize chromosomes and contribute to their segregation. This study characterized condensin and chromosome dynamics in Pseudomonas aeruginosa, which harbors condensins from two major protein superfamilies, SMC and MksBEF. The study revealed that both proteins play a dual role in chromosome maintenance by spatially organizing the chromosomes and guiding their segregation but can substitute for each other in some activities. The timing of chromosome, SMC, and MksBEF relocation was highly ordered and interdependent, revealing causative relationships in the process. Moreover, MksBEF produced clusters at the site of chromosome replication that survived cell division and remained in place until replication was complete. Overall, these data delineate the functions of condensins from the SMC and MksBEF superfamilies, reveal the existence of a chromosome organizing center, and suggest a mechanism that might explain the biogenesis of chromosomes. Condensins are essential for global chromosome organization in diverse bacteria. Atypically, the Pseudomonas aeruginosa chromosome encodes condensins from two superfamilies, SMC-ScpAB and MksBEF. Here, we report that the two proteins play specialized roles in chromosome packing and segregation and are synthetically lethal with ParB. Inactivation of SMC or MksB affected, in a protein-dependent manner, global chromosome layout and its timing of segregation and sometimes triggered a chromosomal inversion. The localization pattern was also unique to each protein. SMC clusters colocalized with oriC throughout the cell cycle except shortly after origin duplication, whereas MksB clusters emerged at cell quarters shortly prior to oriC duplication and stayed there even after cell division. The relocation of the proteins was abrupt and coordinated with oriC dynamic. These data reveal that the two condensins play distinct dual roles in chromosome maintenance by organizing it and mediating its segregation. Furthermore, the choreography of condensins and oriC relocations suggest an elegant mechanism for the birth and maturation of chromosomes. IMPORTANCE Mechanisms that define the chromosome as a structural entity remain unknown. Key elements in this process are condensins, which globally organize chromosomes and contribute to their segregation. This study characterized condensin and chromosome dynamics in Pseudomonas aeruginosa, which harbors condensins from two major protein superfamilies, SMC and MksBEF. The study revealed that both proteins play a dual role in chromosome maintenance by spatially organizing the chromosomes and guiding their segregation but can substitute for each other in some activities. The timing of chromosome, SMC, and MksBEF relocation was highly ordered and interdependent, revealing causative relationships in the process. Moreover, MksBEF produced clusters at the site of chromosome replication that survived cell division and remained in place until replication was complete. Overall, these data delineate the functions of condensins from the SMC and MksBEF superfamilies, reveal the existence of a chromosome organizing center, and suggest a mechanism that might explain the biogenesis of chromosomes.
Collapse
|
123
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
124
|
Chen SK, Guan HH, Wu PH, Lin LT, Wu MC, Chang HY, Chen NC, Lin CC, Chuankhayan P, Huang YC, Lin PJ, Chen CJ. Structural insights into the histidine-containing phospho-transfer protein and receiver domain of sensor histidine kinase suggest a complex model in the two-component regulatory system in Pseudomonas aeruginosa. IUCRJ 2020; 7:934-948. [PMID: 32939285 PMCID: PMC7467158 DOI: 10.1107/s2052252520009665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In Pseudomonas aeruginosa, an important opportunistic pathogen that causes numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phospho-relay, and consists of hybrid-sensor histidine kinase (HK), histidine-containing phospho-transfer protein (Hpt) and response regulator (RR). In this work, two crystal structures of HptB and the receiver domain of HK PA1611 (PA1611REC) of P. aeruginosa have been determined in order to elucidate their interactions for the transfer of the phospho-ryl group. The structure of HptB folds into an elongated four-helix bundle - helices α2, α3, α4 and α5, covered by the short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue His57, located near the middle of helix α3, protrudes from the bundle and is exposed to solvent. The structure of PA1611REC possesses a conventional (β/α)5 topology with five-stranded parallel β-sheets folded in the central region, surrounded by five α-helices. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567. The HptB-PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared with other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of the TCS in P. aeruginosa and could potentially lead to the discovery of a new treatment for infection.
Collapse
Affiliation(s)
- Shao-Kang Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pei-Hsun Wu
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Li-Ting Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Meng-Chun Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Jung Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
125
|
Azevedo J, Antunes JT, Machado AM, Vasconcelos V, Leão PN, Froufe E. Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach. Sci Rep 2020; 10:13461. [PMID: 32778680 PMCID: PMC7417558 DOI: 10.1038/s41598-020-70307-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Marine biofouling remains an unsolved problem with a serious economic impact on several marine associated industries and constitutes a major vector for the spread of non-indigenous species (NIS). The implementation of biofouling monitoring programs allows for better fouling management and also for the early identification of NIS. However, few monitoring studies have used recent methods, such as metabarcoding, that can significantly enhance the detection of those species. Here, we employed monthly monitoring of biofouling growth on stainless steel plates in the Atlantic Port of Leixões (Northern Portugal), over one year to test the effect of commercial anti-corrosion paint in the communities. Fouling organisms were identified by combining morpho-taxonomy identification with community DNA metabarcoding using multiple markers (16S rRNA, 18S rRNA, 23S rRNA, and COI genes). The dominant colonizers found at this location were hard foulers, namely barnacles and mussels, while other groups of organisms such as cnidarians, bryozoans, and ascidians were also abundant. Regarding the temporal dynamics of the fouling communities, there was a progressive increase in the colonization of cyanobacteria, green algae, and red algae during the sampled period with the replacement of less abundant groups. The tested anticorrosion paint demonstrated to have a significant prevention effect against the biofouling community resulting in a biomass reduction. Our study also reports, for the first time, 29 NIS in this port, substantiating the need for the implementation of recurring biofouling monitoring programs in ports and harbours.
Collapse
Affiliation(s)
- Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge T Antunes
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| | - Elsa Froufe
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| |
Collapse
|
126
|
Pseudomonas Aeruginosa Induced Cell Death in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21155356. [PMID: 32731491 PMCID: PMC7432812 DOI: 10.3390/ijms21155356] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen responsible for the cause of acute lung injury and acute respiratory distress syndrome. P. aeruginosa isthe leading species isolated from patients with nosocomial infection and is detected in almost all the patients with long term ventilation in critical care units. P. aeruginosa infection is also the leading cause of deleterious chronic lung infections in patients suffering from cystic fibrosis as well as the major reason for morbidity in people with chronic obstructive pulmonary disease. P. aeruginosa infections are linked to diseases with high mortality rates and are challenging for treatment, for which no effective remedies have been developed. Massive lung epithelial cell death is a hallmark of severe acute lung injury and acute respiratory distress syndrome caused by P. aeruginosa infection. Lung epithelial cell death poses serious challenges to air barrier and structural integrity that may lead to edema, cytokine secretion, inflammatory infiltration, and hypoxia. Here we review different types of cell death caused by P. aeruginosa serving as a starting point for the diseases it is responsible for causing. We also review the different mechanisms of cell death and potential therapeutics in countering the serious challenges presented by this deadly bacterium.
Collapse
|
127
|
Abstract
Mucus is thought to serve as a protective coating on wet epithelial surfaces. Recent research has shown that glycans, which are branched sugar molecules found in mucin, a part of mucus, can prevent bacteria from communicating with each other and forming biofilms. This could hinder microbes from causing infections. The present editorial, focusing on a paper by Wheeler et al. [1], published in October 2019 in Nature Microbiology, describes how mucus can attenuate the virulence of Pseudomonas aeruginosa. In addition, streptococci and Candida albicans can be ‘tamed’ by mucin.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
128
|
Banzhaf M, Resendis-Antonio O, Zepeda-Mendoza ML. Uncovering the Dynamic Mechanisms of the Pseudomonas Aeruginosa Quorum Sensing and Virulence Networks Using Boolean Modelling. IEEE Trans Nanobioscience 2020; 19:394-402. [DOI: 10.1109/tnb.2020.2977820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
129
|
Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 2020; 48:5967-5985. [PMID: 32406921 PMCID: PMC7293031 DOI: 10.1093/nar/gkaa377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenyang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
130
|
Zhao K, Li J, Yuan Y, Lin J, Wang X, Guo Y, Chu Y. Nutrient factor-dependent performance of bacterial quorum sensing system during population evolution. Arch Microbiol 2020; 202:2181-2188. [PMID: 32519021 DOI: 10.1007/s00203-020-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022]
Abstract
Bacterial quorum sensing (QS) system regulates the production of most costly but sharable extracellular products (public goods) in a growth-phase-dependent manner, and the development of this energy-intensive process is susceptible to environmental changes. However, the role of nutrient factors in dominating the QS-mediated cooperative interaction and intracellular metabolism still remains less understood. Here we studied the performance of QS system by growing Pseudomonas aeruginosa under different nutrient and culture conditions. The results of comparative-transcriptomic analyses revealed that carbon source-limitation was the main factor suppressing the activation of QS system, and a substantial number of public-good-encoding genes were induced when phosphorus is limiting in short-term culture. By contrast, although the QS regulation of P. aeruginosa in all the cultures was generally decreased along with the enrichment of QS-deficient individuals during evolution, limitation of different nutrient factors had discrepant effects in directing the formation of population structure by coordinating the production of public goods and primary metabolism, especially the starch and sucrose metabolism. These findings demonstrate the pleiotropy of QS regulation in balancing the development of cooperative behavior and metabolism, and provide a reference for further understanding the role of QS system in causing persistent infections.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China.
| | - Jing Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Yang Yuan
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Jiafu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Yidong Guo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
131
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
132
|
Badal D, Jayarani AV, Kollaran MA, Kumar A, Singh V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J Med Microbiol 2020; 69:906-919. [PMID: 32459613 DOI: 10.1099/jmm.0.001199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction. Indwelling medical devices such as endotracheal tubes (ETTs), urinary catheters, vascular access devices, tracheostomies and feeding tubes are often associated with hospital-acquired infections. Bacterial biofilm formed on the ETTs in intubated patients is a significant risk factor associated with ventilator-associated pneumonia. Pseudomonas aeruginosa is one of the four frequently encountered bacteria responsible for causing pneumonia, and the biofilm formation on ETTs. However, understanding of biofilm formation on ETT and interventions to prevent biofilm remains lagging. The ability to sense and adapt to external cues contributes to their success. Thus, the biofilm formation is likely to be influenced by the two-component systems (TCSs) that are composed of a membrane-associated sensor kinase and an intracellular response regulator.Aim. This study aims to establish an in vitro method to analyse the P. aeruginosa biofilm formation on ETTs, and identify the TCSs that contribute to this process.Methodology. In total, 112 P. aeruginosa PA14 TCS mutants were tested for their ability to form biofilm on ETTs, their effect on quorum sensing (QS) and motility.Results. Out of 112 TCS mutants studied, 56 had altered biofilm biomass on ETTs. Although the biofilm formation on ETTs is QS-dependent, none of the 56 loci controlled quorum signal. Of these, 18 novel TCSs specific to ETT biofilm were identified, namely, AauS, AgtS, ColR, CopS, CprR, NasT, KdpD, ParS, PmrB, PprA, PvrS, RcsC, PA14_11120, PA14_32580, PA14_45880, PA14_49420, PA14_52240, PA14_70790. The set of 56 included the GacS network, TCS proteins involved in fimbriae synthesis, TCS proteins involved in antimicrobial peptide resistance, and surface-sensing. Additionally, several of the TCS-encoding genes involved in biofilm formation on ETTs were found to be linked to flagellum-dependent swimming motility.Conclusions. Our study established an in vitro method for studying P. aeruginosa biofilm formation on the ETT surfaces. We also identified novel ETT-specific TCSs that could serve as targets to prevent biofilm formation on indwelling devices frequently used in clinical settings.
Collapse
Affiliation(s)
- Divakar Badal
- Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Abhijith Vimal Jayarani
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Mohammed Ameen Kollaran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA.,Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA.,Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| |
Collapse
|
133
|
Dynamic changes in bacterial communities in the recirculating nutrient solution of cucumber plug seedlings cultivated in an ebb-and-flow subirrigation system. PLoS One 2020; 15:e0232446. [PMID: 32353053 PMCID: PMC7192414 DOI: 10.1371/journal.pone.0232446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/04/2022] Open
Abstract
Ebb-and-flow subirrigation systems are highly efficient, water-saving and environmentally friendly. However, one concern with these recirculating systems is the possible transmission of plant pathogens. Here, through 16S rRNA-targeted Illumina sequencing, the bacterial dynamics in a recirculating nutrient solution were characterized for cucumber plug seedlings cultivated in an ebb-and-flow system in summer and winter. Both the bacterial number and diversity in the nutrient solution increased immediately after the first irrigation cycle; then, these values were gradually stable with recirculating irrigation. In summer and winter, different bacterial compositions and changing patterns were observed. In summer, the predominant genera in the nutrient solution included Comamonas, Pseudomonas, Acinetobacter, Reyranella, Sphingobium, Bradyrhizobium, Sphingomonas, and Acidovorax. Of those genera, during recirculating irrigation, the relative abundance of Bradyrhizobium gradually decreased, whereas those of Pseudomonas, Reyranella, Sphingobium, Sphingomonas, and Acidovorax gradually increased. In winter, the bacterial communities were mainly composed of Nevskia, Bosea, Sphingobium, Acidovorax, Pseudomonas, and Hydrocarboniphaga. Of those genera, the relative abundance of Bosea, Sphingobium, and Acidovorax showed an increasing trend, whereas those of Nevskia and Hydrocarboniphaga decreased overall. Furthermore, in both summer and winter, no plant pathogenic bacteria on cucumber could be detected; however, some potentially beneficial bacteria, including Comamonas testosteroni, Acinetobacter baumannii, Pseudomonas aeruginosa, P. koreensis and Sphingobium yanoikuyae, colonized the nutrient solution and exhibited increased relative abundances during irrigation. The colonization of these bacteria might facilitate the plant growth promotion. Inoculation of the microbes from the effluent nutrient solution also promoted the growth of cucumber seedlings, but did not lead to any disease. The present data elucidate the bacterial dynamics in a cucumber cultivation ebb-and-flow system and provide useful information for biological control during cucumber seedling production.
Collapse
|
134
|
Trembinski DJ, Bink DI, Theodorou K, Sommer J, Fischer A, van Bergen A, Kuo CC, Costa IG, Schürmann C, Leisegang MS, Brandes RP, Alekseeva T, Brill B, Wietelmann A, Johnson CN, Spring-Connell A, Kaulich M, Werfel S, Engelhardt S, Hirt MN, Yorgan K, Eschenhagen T, Kirchhof L, Hofmann P, Jaé N, Wittig I, Hamdani N, Bischof C, Krishnan J, Houtkooper RH, Dimmeler S, Boon RA. Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat Commun 2020; 11:2039. [PMID: 32341350 PMCID: PMC7184724 DOI: 10.1038/s41467-020-15995-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.
Collapse
Affiliation(s)
- D Julia Trembinski
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Diewertje I Bink
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Kosta Theodorou
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Janina Sommer
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ariane Fischer
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Anke van Bergen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ralf P Brandes
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute for Cardiovascular Physiology, Medical Faculty, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tijna Alekseeva
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Boris Brill
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Astrid Wietelmann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christopher N Johnson
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, USA
| | | | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Stanislas Werfel
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Pharmacology and Toxicology, Technical University Munich, Munich, Germany
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Stefan Engelhardt
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Pharmacology and Toxicology, Technical University Munich, Munich, Germany
| | - Marc N Hirt
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaja Yorgan
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luisa Kirchhof
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Patrick Hofmann
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Nicolas Jaé
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Functional Proteomics, Medical School, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Nazha Hamdani
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Corinne Bischof
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
135
|
Rémy B, Plener L, Decloquement P, Armstrong N, Elias M, Daudé D, Chabrière É. Lactonase Specificity Is Key to Quorum Quenching in Pseudomonas aeruginosa. Front Microbiol 2020; 11:762. [PMID: 32390993 PMCID: PMC7193897 DOI: 10.3389/fmicb.2020.00762] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
The human opportunistic pathogen Pseudomonas aeruginosa orchestrates the expression of many genes in a cell density-dependent manner by using quorum sensing (QS). Two acyl-homoserine lactones (AHLs) are involved in QS circuits and contribute to the regulation of virulence factors production, biofilm formation, and antimicrobial sensitivity. Disrupting QS, a strategy referred to as quorum quenching (QQ) can be achieved using exogenous AHL-degrading lactonases. However, the importance of enzyme specificity on quenching efficacy has been poorly investigated. Here, we used two lactonases both targeting the signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and butyryl-homoserine lactone (C4 HSL) albeit with different efficacies on C4 HSL. Interestingly, both lactonases similarly decreased AHL concentrations and comparably impacted the expression of AHL-based QS genes. However, strong variations were observed in Pseudomonas Quinolone Signal (PQS) regulation depending on the lactonase used. Both lactonases were also found to decrease virulence factors production and biofilm formation in vitro, albeit with different efficiencies. Unexpectedly, only the lactonase with lower efficacy on C4 HSL was able to inhibit P. aeruginosa pathogenicity in vivo in an amoeba infection model. Similarly, proteomic analysis revealed large variations in protein levels involved in antibiotic resistance, biofilm formation, virulence and diverse cellular mechanisms depending on the chosen lactonase. This global analysis provides evidences that QQ enzyme specificity has a significant impact on the modulation of QS-associated behavior in P. aeruginosa PA14.
Collapse
Affiliation(s)
- Benjamin Rémy
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France.,Gene&GreenTK, Marseille, France
| | | | - Philippe Decloquement
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics - BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | | | - Éric Chabrière
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| |
Collapse
|
136
|
Sun S, Tan LTH, Fang YL, Jin ZJ, Zhou L, Goh BH, Lee LH, Zhou J, He YW. Overexpression of oxyR Increases Phenazine-1-Carboxylic Acid Biosynthesis via Small RNA phrS in the Rhizobacterium Strain Pseudomonas PA1201. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:488-498. [PMID: 31710580 DOI: 10.1094/mpmi-09-19-0264-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) is the primary active component in the newly registered, commercial biopesticide Shenqinmycin and is produced during fermentation by the engineered rhizobacterium strain Pseudomonas PA1201. Both phz1 and phz2 gene clusters contribute to PCA biosynthesis. In this study, we evaluated the role of OxyR in the regulation of PCA biosynthesis in PA1201. We first showed a functional link between oxyR expression and PCA biosynthesis. Deletion of oxyR and overexpression of oxyR both increase PCA biosynthesis. The molecular mechanisms underlying OxyR regulation of PCA production were investigated using several approaches. OxyR acts divergently in phz1 and phz2. Overexpression of oxyR activated the expression of phz1 and phz1-dependent PCA production. However, overexpression of oxyR had little effect on phz2-dependent PCA biosynthesis, while deletion of oxyR promoted phz2-dependent PCA production and exerted a negative effect on phz2 expression. Further, OxyR directly bound to the phz2 promoter region. In addition, the regulation of PCA biosynthesis by OxyR was associated with quorum sensing (QS) systems. Overexpression of OxyR positively regulated pqs QS system. Finally, transcriptomic analysis and subsequent genetic analysis revealed the small RNA phrS plays a key role in OxyR-dependent PCA accumulation. Specifically, OxyR directly binds to the phrS promoter region to positively regulate phrS expression wherein PhrS regulates the PCA positive regulator MvfR in order to control PCA biosynthesis.
Collapse
Affiliation(s)
- Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
137
|
Lu Y, Li H, Pu J, Xiao Q, Zhao C, Cai Y, Liu Y, Wang L, Li Y, Huang B, Zeng J, Chen C. Identification of a novel RhlI/R-PrrH-LasI/Phzc/PhzD signalling cascade and its implication in P. aeruginosa virulence. Emerg Microbes Infect 2020; 8:1658-1667. [PMID: 31718472 PMCID: PMC6853234 DOI: 10.1080/22221751.2019.1687262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Small regulatory RNAs (sRNAs) act as key regulators in many bacterial signalling cascades. However, in P. aeruginosa, the sRNAs involved in quorum sensing (QS) regulation and their function are still largely unknown. Here, we explored how the prrH locus sRNA influences P. aeruginosa virulence in the context of the QS regulatory network. First, gain- and loss-of-function studies showed that PrrH affects pyocyanin, elastase and rhamnolipid production; biofilm formation; and swimming and swarming motility and impaired the viability of P. aeruginosa in human whole blood. Next, our investigation disclosed that LasI and PhzC/D were directly repressed by PrrH. In addition, RhlI, the key member of the rhl QS system, diminished the expression of PrrH and enhanced the expression of downstream genes. Bioinformatics analysis found two binding sites of RhlR, the transcription factor of the rhl system, on the promoter region of prrH. Further β-galactosidase reporter and qPCR assays confirmed that PrrH was transcriptionally repressed by RhlR. Collectively, our data identified a novel RhlI/R-PrrH-LasI/PhzC/PhzD regulatory circuitry that may contribute to P. aeruginosa pathogenesis. Our findings indicate that PrrH is a quorum regulatory RNA (Qrr) in P. aeruginosa and provide new insight into PrrH’s function.
Collapse
Affiliation(s)
- Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Honglin Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Qian Xiao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Chanjing Zhao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Yimei Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Lina Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Youqiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
138
|
Otero-Asman JR, Quesada JM, Jim KK, Ocampo-Sosa A, Civantos C, Bitter W, Llamas MA. The extracytoplasmic function sigma factor σ VreI is active during infection and contributes to phosphate starvation-induced virulence of Pseudomonas aeruginosa. Sci Rep 2020; 10:3139. [PMID: 32081993 PMCID: PMC7035377 DOI: 10.1038/s41598-020-60197-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The extracytoplasmic function sigma factor σVreI of the human pathogen Pseudomonas aeruginosa promotes transcription of potential virulence determinants, including secretion systems and secreted proteins. Its activity is modulated by the VreR anti-σ factor that inhibits the binding of σVreI to the RNA polymerase in the absence of a (still unknown) inducing signal. The vreI-vreR genes are expressed under inorganic phosphate (Pi) starvation, a physiological condition often encountered in the host that increases P. aeruginosa pathogenicity. However, whether or not σVreI is active in vivo during infection and contributes to the Pi starvation-induced virulence of this pathogen has not been analyzed yet. Using zebrafish embryos and a human alveolar basal epithelial cell line as P. aeruginosa hosts, we demonstrate in this work that σVreI is active during infection and that lack of σVreI considerably reduces the Pi starvation-induced virulence of this pathogen. Surprisingly, lack of the σVreI inhibitor, the VreR anti-σ factor, also diminishes the virulence of P. aeruginosa. By transcriptomic analyses we show that VreR modulates gene expression not only in a σVreI-dependent but also in a σVreI-independent manner. This includes potential virulence determinants and transcriptional regulators that could be responsible for the reduced virulence of the ΔvreR mutant.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Kin K Jim
- Department of Medical Microbiology and Infection Control, Amsterdam University medical centers, location VU University, Amsterdam, The Netherlands
| | - Alain Ocampo-Sosa
- Service of Microbiology, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Sanitaria Valdecilla, Santander, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University medical centers, location VU University, Amsterdam, The Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
139
|
Abstract
Pseudomonas aeruginosa, a versatile Gram-negative pathogen that can cause a wide range of infections, is the most common causative agent in cases of bacterial keratitis associated with contact-lens use. Corneal infections with P. aeruginosa often have poor clinical outcomes and can result in long and costly treatments. During the infection process, the pathogen exploits its large genome, encoding complex regulatory networks and a wide range of virulence factors, including motility and the secretion of various proteases and toxins. Although antibiotic resistance levels in the UK are low, higher levels have been seen in some other countries. In the face of increasing antibiotic resistance, alternative therapeutic approaches such as antivirulence strategies and phage therapy are being developed. There is increasing evidence to suggest that keratitis infections are associated with a phylogenetic subgroup of P. aeruginosa isolates carrying the gene encoding the potent cytotoxin exotoxin U, one of two mutually exclusive exotoxins secreted via the type III secretion system. The mechanisms behind this association are unclear, but understanding the genetic differences that predispose P. aeruginosa to cause corneal infections may allow for the development of targeted and more effective future treatments to reduce the morbidity of P. aeruginosa keratitis. In order to minimize the risk of severe P. aeruginosa eye infections, a wide range of contact-lens disinfection solutions are available. Constant exposure to biocides at a range of concentrations, from sub-inhibitory to inhibitory, could contribute to the development of resistance to both antibiotics and disinfectants.
Collapse
Affiliation(s)
- Yasmin Hilliam
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Craig Winstanley
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| |
Collapse
|
140
|
Skariyachan S, Gopal D, Kadam SP, Muddebihalkar AG, Uttarkar A, Niranjan V. Carbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Acinetobacter baumanni and Pseudomonas aerugenosa: computational modeling and MD simulation studies. J Biomol Struct Dyn 2020; 39:1121-1137. [PMID: 32036742 DOI: 10.1080/07391102.2020.1726821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to screen putative drug targets associated with biofilm formation of multidrug-resistant Acinetobacter baumannii and Pseudomonas areugenosa and prioritize carbon nano-fullerene as potential lead molecule by structure-based virtual screening. Based on the functional role, 36 and 83 genes that are involved in biofilm formation of A. baumannii and P. areugenosa respectively were selected and metabolic network was computationally constructed. The genes that lack three-dimensional structures were predicted and validated. Carbon nano-fullerene selected as lead molecule and their drug-likeliness and pharmacokinetics properties were computationally predicted. The binding potential of carbon nano-fullerene toward selected drug targets was modeled and compared with the binding of conventional drugs, doripenem, and polymyxin-B with their usual targets. The stabilities of four best-docked complexes were confirmed by molecular dynamic (MD) simulation. This study suggested that selected genes demonstrated relevant interactions in the constructed metabolic pathways. Carbon fullerene exhibited significant binding abilities to most of the prioritized targets in comparison with the binding of last-resort antibiotics and their usual target. The four best ligand-receptor interactions predicted by molecular docking revealed that stability throughout MD simulation. Notably, carbon fullerene exhibited profound binding with outer membrane protein (OmpA) and ribonuclease-HII (rnhB) of A. baumannii and 2-heptyl-4(1H)-quinolone synthase (pqsBC) and chemotaxis protein (wspA) of P. aeruginosa. Thus, the current study suggested that carbon fullerene was probably used as potential lead molecules toward selected targets of A. baumannii and P. aeruginosa and the applied aspects probably scaled up to design promising lead molecules toward these pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, India
| | - Dharshini Gopal
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Sanjana Pratab Kadam
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Aditi G Muddebihalkar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.,Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| |
Collapse
|
141
|
GC-MS-FID characterization and antibacterial activity of the Mikania cordifolia essential oil and limonene against MDR strains. Food Chem Toxicol 2020; 136:111023. [DOI: 10.1016/j.fct.2019.111023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
|
142
|
Lakshmanan D, Harikrishnan A, Jyoti K, Idul Ali M, Jeevaratnam K. A compound isolated from Alpinia officinarum Hance. inhibits swarming motility of Pseudomonas aeruginosa and down regulates virulence genes. J Appl Microbiol 2020; 128:1355-1365. [PMID: 31869477 DOI: 10.1111/jam.14563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
AIM The study was aimed at purifying the active principle from Alpinia officinarum rhizomes responsible for inhibition of swarming motility of Pseudomonas aeruginosa and analysing the mechanism of action. METHODS AND RESULTS The active compound from methanol extract of A. officinarum was purified by silica gel column chromatography followed by elution from Amberlite resin. The compound 1-(3,5-dihydroxyphenyl)-2-(methylamino)ethan-1-one, inhibited swarming motility at 12·5 µg ml-1 . This inhibition was independent of rhamnolipid production. Real-time PCR analysis showed significant down-regulation of virulence-associated genes including T3SS exoS, exoT and flagella master regulator fleQ. CONCLUSIONS The compound from A. officinarum inhibited swarming motility and significantly down-regulated the expression of type III secretory system effector genes exoS and exoT and flagellar master regulator fleQ genes. SIGNIFICANCE AND IMPACT OF THE STUDY The study identifies a potent swarming inhibitory compound from the common medicinal plant A. officinarum and reinstates the potential of plant-derived compounds in tackling virulence properties of pathogenic bacteria.
Collapse
Affiliation(s)
- D Lakshmanan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - A Harikrishnan
- Department of Chemistry, Pondicherry University, Kalapet, Pondicherry, India
| | - K Jyoti
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - M Idul Ali
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - K Jeevaratnam
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| |
Collapse
|
143
|
Rodríguez-Martínez R, Leonard G, Milner DS, Sudek S, Conway M, Moore K, Hudson T, Mahé F, Keeling PJ, Santoro AE, Worden AZ, Richards TA. Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink. ISME JOURNAL 2020; 14:984-998. [PMID: 31919469 PMCID: PMC7082347 DOI: 10.1038/s41396-019-0581-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022]
Abstract
Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the 'ribosomally active' eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic-saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic-saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.
Collapse
Affiliation(s)
- Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - David S Milner
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Mike Conway
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Karen Moore
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Theresa Hudson
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Frédéric Mahé
- CIRAD, UMR LSTM, Montpellier, France.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thomas A Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
144
|
Luo G, Sun Y, Huang L, Su Y, Zhao L, Qin Y, Xu X, Yan Q. Time-resolved dual RNA-seq of tissue uncovers Pseudomonas plecoglossicida key virulence genes in host-pathogen interaction with Epinephelus coioides. Environ Microbiol 2019; 22:677-693. [PMID: 31797531 DOI: 10.1111/1462-2920.14884] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
Abstract
Bacterial pathogen-host interactions are highly dynamic, regulated processes that have been primarily investigated using in vitro assays. The dynamics of bacterial pathogen-host interplay in vivo are poorly understood. Using time-resolved dual RNA-seq in a Pseudomonas plecoglossicida-Epinephelus coioides infection model, we observed that bacterial genes encoding classical virulence factors and host genes involved in immune regulation were dynamically expressed during infection. Using network inferencing, we were able to predict interspecies regulatory networks linking bacterial virulence genes to host immune genes. Together with gene co-expression network analysis of the pathogen, secY was predicted to be a key virulence gene for P. plecoglossicida pathogenicity in the host, fliN was predicted to be a less important virulence gene. The results of bioinformatics prediction were confirmed by animal infection experiments. Our work provides the first paradigm to study dynamic alterations of bacterial pathogen and host interactions based on the elucidation of time-resolved interactive transcriptomes in vivo, and may be developed into a novel and universal method for revealing the true complexity of the bacterial infection process.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yujia Sun
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Xiaojin Xu
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| |
Collapse
|
145
|
Magalhães AP, Jorge P, Pereira MO. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction. Crit Rev Microbiol 2019; 45:712-728. [DOI: 10.1080/1040841x.2019.1700209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andreia Patrícia Magalhães
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
146
|
Jovic K, Grilli J, Sterken MG, Snoek BL, Riksen JAG, Allesina S, Kammenga JE. Transcriptome resilience predicts thermotolerance in Caenorhabditis elegans. BMC Biol 2019; 17:102. [PMID: 31822273 PMCID: PMC6905072 DOI: 10.1186/s12915-019-0725-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. RESULTS Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. CONCLUSION Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.
Collapse
Affiliation(s)
- Katharina Jovic
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Jacopo Grilli
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, I-34014, Trieste, Italy
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
147
|
Efficacy of Artesunate against Pseudomonas aeruginosa Biofilm Mediated by Iron. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4810217. [PMID: 31815139 PMCID: PMC6878810 DOI: 10.1155/2019/4810217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/21/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa is capable of causing a variety of chronic infections due to the formation of biofilms. Iron is essential for growth of Pseudomonas aeruginosa, and therapies that interfere with iron may help treat P. aeruginosa infections. Herein, we investigated whether artesunate, which is a type of iron-dependent drug, could influence Pseudomonas aeruginosa biofilm formation and structure, including the underlying mechanisms. Artesunate could enhance twitching motility significantly and decrease the proportion of surviving cells in Pseudomonas aeruginosa biofilms in a dose-dependent manner. Artesunate treatment also reduced biofilm thickness, diffusion in the biomass, and the content of Fe(II). However, changes in biofilm structure and ion concentration were very similar following treatment with 512 μg/ml and 1024 μg/ml artesunate. Interestingly, both biofilm structure and surviving cell fraction were recovered after iron supplementation. These results suggest that artesunate interferes with Pseudomonas aeruginosa biofilms by decreasing bacterial viability and enhancing twitching motility in an iron-independent manner.
Collapse
|
148
|
Sana TG, Lomas R, Gimenez MR, Laubier A, Soscia C, Chauvet C, Conesa A, Voulhoux R, Ize B, Bleves S. Differential Modulation of Quorum Sensing Signaling through QslA in Pseudomonas aeruginosa Strains PAO1 and PA14. J Bacteriol 2019; 201:e00362-19. [PMID: 31405911 PMCID: PMC6779463 DOI: 10.1128/jb.00362-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Two clinical isolates of the opportunist pathogen Pseudomonas aeruginosa named PAO1 and PA14 are commonly studied in research laboratories. Despite the isolates being closely related, PA14 exhibits increased virulence compared to that of PAO1 in various models. To determine which players are responsible for the hypervirulence phenotype of the PA14 strain, we elected a transcriptomic approach through RNA sequencing. We found 2,029 genes that are differentially expressed between the two strains, including several genes that are involved with or regulated by quorum sensing (QS), known to control most of the virulence factors in P. aeruginosa Among them, we chose to focus our study on QslA, an antiactivator of QS whose expression was barely detectable in the PA14 strain according our data. We hypothesized that lack of expression of qslA in PA14 could be responsible for higher QS expression in the PA14 strain, possibly explaining its hypervirulence phenotype. After confirming that QslA protein was highly produced in PAO1 but not in the PA14 strain, we obtained evidence showing that a PAO1 deletion strain of qslA has faster QS gene expression kinetics than PA14. Moreover, known virulence factors activated by QS, such as (i) pyocyanin production, (ii) H2-T6SS (type VI secretion system) gene expression, and (iii) Xcp-T2SS (type II secretion system) machinery production and secretion, were all lower in PAO1 than in PA14, due to higher qslA expression. However, biofilm formation and cytotoxicity toward macrophages, although increased in PA14 compared to PAO1, were independent of QslA control. Together, our findings implicated differential qslA expression as a major determinant of virulence factor expression in P. aeruginosa strains PAO1 and PA14.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen responsible for acute nosocomial infections and chronic pulmonary infections. P. aeruginosa strain PA14 is known to be hypervirulent in different hosts. Despite several studies in the field, the underlining molecular mechanisms sustaining this phenotype remain enigmatic. Here we provide evidence that the PA14 strain has faster quorum sensing (QS) kinetics than the PAO1 strain, due to the lack of QslA expression, an antiactivator of QS. QS is a major regulator of virulence factors in P. aeruginosa; therefore, we propose that the hypervirulent phenotype of the PA14 strain is, at least partially, due to the lack of QslA expression. This mechanism could be of great importance, as it could be conserved among other P. aeruginosa isolates.
Collapse
Affiliation(s)
- T G Sana
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - R Lomas
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - M R Gimenez
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - A Laubier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - C Soscia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - C Chauvet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - A Conesa
- Microbiology and Cell Science, IFAS, Genetics Insitute, University of Florida, Gainesville, Florida, USA
| | - R Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - B Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - S Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| |
Collapse
|
149
|
La Rosa R, Johansen HK, Molin S. Adapting to the Airways: Metabolic Requirements of Pseudomonas aeruginosa during the Infection of Cystic Fibrosis Patients. Metabolites 2019; 9:E234. [PMID: 31623245 PMCID: PMC6835255 DOI: 10.3390/metabo9100234] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is one of the major causes of morbidity and mortality of cystic fibrosis patients. During the infection, the bacteria colonize the nutritional rich lung mucus, which is present in the airway secretions in the patients, and they adapt their phenotype accordingly to the lung environment. In the airways, P. aeruginosa undergoes a broad metabolic rewiring as a consequence of the nutritional and stressful complexity of the lungs. However, the role of such metabolic rewiring on the infection outcome is poorly understood. Here, we review the metabolic evolution of clinical strains of P. aeruginosa during a cystic fibrosis lung infection and the metabolic functions operating in vivo under patho-physiological conditions. Finally, we discuss the perspective of modeling the cystic fibrosis environment using genome scale metabolic models of P. aeruginosa. Understanding the physiological changes occurring during the infection may pave the way to a more effective treatment for P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
150
|
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019; 4:2146-2154. [PMID: 31611643 PMCID: PMC7157942 DOI: 10.1038/s41564-019-0581-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota1. Rarely do these microorganisms cause infections in healthy mucus1, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.
Collapse
|