101
|
Hrapșa I, Florian IA, Șușman S, Farcaș M, Beni L, Florian IS. External Validation of a Convolutional Neural Network for IDH Mutation Prediction. Medicina (B Aires) 2022; 58:medicina58040526. [PMID: 35454365 PMCID: PMC9025144 DOI: 10.3390/medicina58040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The IDH (isocitrate dehydrogenase) status represents one of the main prognosis factors for gliomas. However, determining it requires invasive procedures and specialized surgical skills. Medical imaging such as MRI is essential in glioma diagnosis and management. Lately, fields such as Radiomics and Radiogenomics emerged as pertinent prediction tools for extracting molecular information out of medical images. These fields are based on Artificial Intelligence algorithms that require external validation in order to evaluate their general performance. The aim of this study was to provide an external validation for the algorithm formulated by Yoon Choi et al. of IDH status prediction using preoperative common MRI sequences and patient age. Material and Methods: We applied Choi’s IDH status prediction algorithm on T1c, T2 and FLAIR preoperative MRI images of gliomas (grades WHO II-IV) of 21 operated adult patients from the Neurosurgery clinic of the Cluj County Emergency Clinical Hospital (CCECH), Cluj-Napoca Romania. We created a script to automate the testing process with DICOM format MRI sequences as input and IDH predicted status as output. Results: In terms of patient characteristics, the mean age was 48.6 ± 15.6; 57% were female and 43% male; 43% were IDH positive and 57% IDH negative. The proportions of WHO grades were 24%, 14% and 62% for II, III and IV, respectively. The validation test achieved a relative accuracy of 76% with 95% CI of (53%, 92%) and an Area Under the Curve (AUC) through DeLong et al. method of 0.74 with 95% CI of (0.53, 0.91) and a p of 0.021. Sensitivity and Specificity were 0.78 with 95% CI of (0.45, 0.96) and 0.75 with 95% CI of (0.47, 0.91), respectively. Conclusions: Although our results match the external test the author made on The Cancer Imaging Archive (TCIA) online dataset, performance of the algorithm on external data is still not high enough for clinical application. Radiogenomic approaches remain a high interest research field that may provide a rapid and accurate diagnosis and prognosis of patients with intracranial glioma.
Collapse
Affiliation(s)
- Iona Hrapșa
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Ioan Alexandru Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Correspondence:
| | - Sergiu Șușman
- Department of Morphological Sciences-Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Marius Farcaș
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Genetics, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lehel Beni
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Ioan Stefan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
102
|
Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers (Basel) 2022; 14:cancers14071778. [PMID: 35406550 PMCID: PMC8997070 DOI: 10.3390/cancers14071778] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are among the most common types of central nervous system (CNS) tumors. A prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the treatment strategy. The objective of this study was to develop a radiomics pipeline based on the clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were investigated to improve the classification, including the Z-score normalization, the feature extraction strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions. The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935 (±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to 0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from 0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status, respectively. Apart from the promising prediction of the glioma subtype, this study also provides a better understanding of the radiomics model development and interpretability. The results in this paper are replicable with our python codes publicly available in github.
Collapse
|
103
|
Guo W, She D, Xing Z, Lin X, Wang F, Song Y, Cao D. Multiparametric MRI-Based Radiomics Model for Predicting H3 K27M Mutant Status in Diffuse Midline Glioma: A Comparative Study Across Different Sequences and Machine Learning Techniques. Front Oncol 2022; 12:796583. [PMID: 35311083 PMCID: PMC8928064 DOI: 10.3389/fonc.2022.796583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives The performance of multiparametric MRI-based radiomics models for predicting H3 K27M mutant status in diffuse midline glioma (DMG) has not been thoroughly evaluated. The optimal combination of multiparametric MRI and machine learning techniques remains undetermined. We compared the performance of various radiomics models across different MRI sequences and different machine learning techniques. Methods A total of 102 patients with pathologically confirmed DMG were retrospectively enrolled (27 with H3 K27M-mutant and 75 with H3 K27M wild-type). Radiomics features were extracted from eight sequences, and 18 feature sets were conducted by independent combination. There were three feature matrix normalization algorithms, two dimensionality-reduction methods, four feature selectors, and seven classifiers, consisting of 168 machine learning pipelines. Radiomics models were established across different feature sets and machine learning pipelines. The performance of models was evaluated using receiver operating characteristic curves with area under the curve (AUC) and compared with DeLong’s test. Results The multiparametric MRI-based radiomics models could accurately predict the H3 K27M mutant status in DMG (highest AUC: 0.807–0.969, for different sequences or sequence combinations). However, the results varied significantly between different machine learning techniques. When suitable machine learning techniques were used, the conventional MRI-based radiomics models shared similar performance to advanced MRI-based models (highest AUC: 0.875–0.915 vs. 0.807–0.926; DeLong’s test, p > 0.05). Most models had a better performance when generated with a combination of MRI sequences. The optimal model in the present study used a combination of all sequences (AUC = 0.969). Conclusions The multiparametric MRI-based radiomics models could be useful for predicting H3 K27M mutant status in DMG, but the performance varied across different sequences and machine learning techniques.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dejun She
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhen Xing
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Feng Wang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
104
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
105
|
Sun C, Fan L, Wang W, Wang W, Liu L, Duan W, Pei D, Zhan Y, Zhao H, Sun T, Liu Z, Hong X, Wang X, Guo Y, Li W, Cheng J, Li Z, Liu X, Zhang Z, Yan J. Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma. Front Oncol 2022; 11:756828. [PMID: 35127472 PMCID: PMC8814098 DOI: 10.3389/fonc.2021.756828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status have been identified as significant markers for therapy and prognosis in lower-grade glioma (LGG). The current study aimed to construct a combined machine learning-based model for predicting the molecular subtypes of LGG, including (1) IDH wild-type astrocytoma (IDHwt), (2) IDH mutant and 1p19q non-codeleted astrocytoma (IDHmut-noncodel), and (3) IDH-mutant and 1p19q codeleted oligodendroglioma (IDHmut-codel), based on multiparametric magnetic resonance imaging (MRI) radiomics, qualitative features, and clinical factors. Methods A total of 335 patients with LGG (WHO grade II/III) were retrospectively enrolled. The sum of 5,929 radiomics features were extracted from multiparametric MRI. Selected robust, non-redundant, and relevant features were used to construct a random forest model based on a training cohort (n = 269) and evaluated on a testing cohort (n = 66). Meanwhile, preoperative MRIs of all patients were scored in accordance with Visually Accessible Rembrandt Images (VASARI) annotations and T2-fluid attenuated inversion recovery (T2-FLAIR) mismatch sign. By combining radiomics features, qualitative features (VASARI annotations and T2-FLAIR mismatch signs), and clinical factors, a combined prediction model for the molecular subtypes of LGG was built. Results The 17-feature radiomics model achieved area under the curve (AUC) values of 0.6557, 0.6830, and 0.7579 for IDHwt, IDHmut-noncodel, and IDHmut-codel, respectively, in the testing cohort. Incorporating qualitative features and clinical factors into the radiomics model resulted in improved AUCs of 0.8623, 0.8056, and 0.8036 for IDHwt, IDHmut-noncodel, and IDHmut-codel, with balanced accuracies of 0.8924, 0.8066, and 0.8095, respectively. Conclusion The combined machine learning algorithm can provide a method to non-invasively predict the molecular subtypes of LGG preoperatively with excellent predictive performance.
Collapse
Affiliation(s)
- Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenqing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunbo Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibiao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuanke Hong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhicheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jing Yan, ; Zhenyu Zhang, ; Xianzhi Liu,
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jing Yan, ; Zhenyu Zhang, ; Xianzhi Liu,
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jing Yan, ; Zhenyu Zhang, ; Xianzhi Liu,
| |
Collapse
|
106
|
Zhang H, Zhang B, Pan W, Dong X, Li X, Chen J, Wang D, Ji W. Preoperative Contrast-Enhanced MRI in Differentiating Glioblastoma From Low-Grade Gliomas in The Cancer Imaging Archive Database: A Proof-of-Concept Study. Front Oncol 2022; 11:761359. [PMID: 35111665 PMCID: PMC8801812 DOI: 10.3389/fonc.2021.761359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study aimed to develop a repeatable MRI-based machine learning model to differentiate between low-grade gliomas (LGGs) and glioblastoma (GBM) and provide more clinical information to improve treatment decision-making.MethodsPreoperative MRIs of gliomas from The Cancer Imaging Archive (TCIA)–GBM/LGG database were selected. The tumor on contrast-enhanced MRI was segmented. Quantitative image features were extracted from the segmentations. A random forest classification algorithm was used to establish a model in the training set. In the test phase, a random forest model was tested using an external test set. Three radiologists reviewed the images for the external test set. The area under the receiver operating characteristic curve (AUC) was calculated. The AUCs of the radiomics model and radiologists were compared.ResultsThe random forest model was fitted using a training set consisting of 142 patients [mean age, 52 years ± 16 (standard deviation); 78 men] comprising 88 cases of GBM. The external test set included 25 patients (14 with GBM). Random forest analysis yielded an AUC of 1.00 [95% confidence interval (CI): 0.86–1.00]. The AUCs for the three readers were 0.92 (95% CI 0.74–0.99), 0.70 (95% CI 0.49–0.87), and 0.59 (95% CI 0.38–0.78). Statistical differences were only found between AUC and Reader 1 (1.00 vs. 0.92, respectively; p = 0.16).ConclusionAn MRI radiomics-based random forest model was proven useful in differentiating GBM from LGG and showed better diagnostic performance than that of two inexperienced radiologists.
Collapse
Affiliation(s)
- Huangqi Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Binhao Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenting Pan
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Xue Dong
- Department of Radiology, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Xin Li
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Jinyao Chen
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Dongnv Wang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenbin Ji
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- *Correspondence: Wenbin Ji,
| |
Collapse
|
107
|
Ryzhova MV, Galstyan SA, Telysheva EN, Pitskhelauri DI, Kosyrkova AV, Latyshev YA. [IDH-mutant brainstem glioma]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:52-57. [PMID: 36534624 DOI: 10.17116/neiro20228606152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diffuse midline gliomas are relatively rare in adults. Regardless of age, all diffuse midline gliomas are routinely examined in our Center for the presence of the H3F3A K27M gene mutation. However, we identified IDH-mutant brainstem glioma in a 42-year-old man for the first time.
Collapse
Affiliation(s)
- M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
108
|
Kang CY, Duarte SE, Kim HS, Kim E, Park J, Lee AD, Kim Y, Kim L, Cho S, Oh Y, Gim G, Park I, Lee D, Abazeed M, Velichko YS, Chae YK. OUP accepted manuscript. Oncologist 2022; 27:e471-e483. [PMID: 35348765 PMCID: PMC9177100 DOI: 10.1093/oncolo/oyac036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
The recent, rapid advances in immuno-oncology have revolutionized cancer treatment and spurred further research into tumor biology. Yet, cancer patients respond variably to immunotherapy despite mounting evidence to support its efficacy. Current methods for predicting immunotherapy response are unreliable, as these tests cannot fully account for tumor heterogeneity and microenvironment. An improved method for predicting response to immunotherapy is needed. Recent studies have proposed radiomics—the process of converting medical images into quantitative data (features) that can be processed using machine learning algorithms to identify complex patterns and trends—for predicting response to immunotherapy. Because patients undergo numerous imaging procedures throughout the course of the disease, there exists a wealth of radiological imaging data available for training radiomics models. And because radiomic features reflect cancer biology, such as tumor heterogeneity and microenvironment, these models have enormous potential to predict immunotherapy response more accurately than current methods. Models trained on preexisting biomarkers and/or clinical outcomes have demonstrated potential to improve patient stratification and treatment outcomes. In this review, we discuss current applications of radiomics in oncology, followed by a discussion on recent studies that use radiomics to predict immunotherapy response and toxicity.
Collapse
Affiliation(s)
| | | | - Hye Sung Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugene Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Alice Daeun Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yoojin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gahyun Gim
- Department of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Inae Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongyup Lee
- Department of Physical Medicine and Rehabilitation, Geisinger Health System, Danville, PA, USA
| | - Mohamed Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yury S Velichko
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Young Kwang Chae
- Corresponding author: Young Kwang Chae, Department of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
109
|
Hou Z, Zhang K, Liu X, Fang S, Li L, Wang Y, Jiang T. Molecular subtype impacts surgical resection in low-grade gliomas: A Chinese Glioma Genome Atlas database analysis. Cancer Lett 2021; 522:14-21. [PMID: 34517083 DOI: 10.1016/j.canlet.2021.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Surgeons have considered extending the resection margins for better outcomes in gliomas, but have not considered molecular pathology. We investigated the impact of molecular pathology on the surgical benefit in gliomas. Herein, we collected the clinical and pathological information of 449 patients with glioma from the Chinese Glioma Genome Atlas database, and enrolled those who underwent surgical resection. We measured the impact of the extent of resection on survival time in subgroups classified by clinical characteristics. We found that gross total resection (GTR) was associated with longer survival times in the entire cohort, and each of the three molecular subtypes. Even after age stratification, there was no survival benefit from GTR in those with a Karnofsky performance score (KPS) ≤ 80. In patients aged >45 years with a KPS >80, extensive resection resulted in longer survival times in isocitrate dehydrogenase-mutated astrocytomas. Additionally, GTR was associated with longer overall survival times in patients aged ≤45 years with a KPS >80. In conclusion, extensive resection does not always prolong survival in patients with glioma. Along with clinical characteristics, molecular pathology positively impacts survival in gliomas. Neurosurgeons may consider our findings when planning surgery in the future.
Collapse
Affiliation(s)
- Ziming Hou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kenan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
110
|
Fathi Kazerooni A, Bagley SJ, Akbari H, Saxena S, Bagheri S, Guo J, Chawla S, Nabavizadeh A, Mohan S, Bakas S, Davatzikos C, Nasrallah MP. Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers (Basel) 2021; 13:cancers13235921. [PMID: 34885031 PMCID: PMC8656630 DOI: 10.3390/cancers13235921] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Radiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the role of radiomics in providing more accurate diagnoses, prognostication, and surveillance of patients with high-grade glioma, and on the potential application of radiomics in clinical practice, with the overarching goal of advancing precision medicine for optimal patient care. Abstract Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Stephen J. Bagley
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sanjay Saxena
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Jun Guo
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Ali Nabavizadeh
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Suyash Mohan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - MacLean P. Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
111
|
Chen H, Lin F, Zhang J, Lv X, Zhou J, Li ZC, Chen Y. Deep Learning Radiomics to Predict PTEN Mutation Status From Magnetic Resonance Imaging in Patients With Glioma. Front Oncol 2021; 11:734433. [PMID: 34671557 PMCID: PMC8521070 DOI: 10.3389/fonc.2021.734433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives Phosphatase and tensin homolog (PTEN) mutation is an indicator of poor prognosis of low-grade and high-grade glioma. This study built a reliable model from multi-parametric magnetic resonance imaging (MRI) for predicting the PTEN mutation status in patients with glioma. Methods In this study, a total of 244 patients with glioma were retrospectively collected from our center (n = 77) and The Cancer Imaging Archive (n = 167). All patients were randomly divided into a training set (n = 170) and a validation set (n = 74). Three models were built from preoperative MRI for predicting PTEN status, including a radiomics model, a convolutional neural network (CNN) model, and an integrated model based on both radiomics and CNN features. The performance of each model was evaluated by accuracy and the area under the receiver operating characteristic curve (AUC). Results The CNN model achieved an AUC of 0.84 and an accuracy of 0.81, which performed better than did the radiomics model, with an AUC of 0.83 and an accuracy of 0.66. Combining radiomics with CNN will further benefit the predictive performance (accuracy = 0.86, AUC = 0.91). Conclusions The combination of both the CNN and radiomics features achieved significantly higher performance in predicting the mutation status of PTEN in patients with glioma than did the radiomics or the CNN model alone.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fuhua Lin
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinming Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Lv
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zhou
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
112
|
Cluceru J, Interian Y, Phillips JJ, Molinaro AM, Luks TL, Alcaide-Leon P, Olson MP, Nair D, LaFontaine M, Shai A, Chunduru P, Pedoia V, Villanueva-Meyer JE, Chang SM, Lupo JM. Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro Oncol 2021; 24:639-652. [PMID: 34653254 DOI: 10.1093/neuonc/noab238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diagnostic classification of diffuse gliomas now requires an assessment of molecular features, often including IDH-mutation and 1p19q-codeletion status. Because genetic testing requires an invasive process, an alternative noninvasive approach is attractive, particularly if resection is not recommended. The goal of this study was to evaluate the effects of training strategy and incorporation of biologically relevant images on predicting genetic subtypes with deep learning. METHODS Our dataset consisted of 384 patients with newly-diagnosed gliomas who underwent preoperative MR imaging with standard anatomical and diffusion-weighted imaging, and 147 patients from an external cohort with anatomical imaging. Using tissue samples acquired during surgery, each glioma was classified into IDH-wildtype (IDHwt), IDH-mutant/1p19q-noncodeleted (IDHmut-intact), and IDH-mutant/1p19q-codeleted (IDHmut-codel) subgroups. After optimizing training parameters, top performing convolutional neural network (CNN) classifiers were trained, validated, and tested using combinations of anatomical and diffusion MRI with either a 3-class or tiered structure. Generalization to an external cohort was assessed using anatomical imaging models. RESULTS The best model used a 3-class CNN containing diffusion-weighted imaging as an input, achieving 85.7% (95% CI:[77.1,100]) overall test accuracy and correctly classifying 95.2%, 88.9%, 60.0% of the IDHwt, IDHmut-intact, and IDHmut-codel tumors. In general, 3-class models outperformed tiered approaches by 13.5-17.5%, and models that included diffusion-weighted imaging were 5-8.8% more accurate than those that used only anatomical imaging. CONCLUSION Training a classifier to predict both IDH-mutation and 1p19q-codeletion status outperformed a tiered structure that first predicted IDH-mutation, then1p19q-codeletion. Including ADC, a surrogate marker of cellularity, more accurately captured differences between subgroups.
Collapse
Affiliation(s)
- Julia Cluceru
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | | | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco.,Department of Pathology, University of California San Francisco
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco
| | - Tracy L Luks
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Paula Alcaide-Leon
- Department of Radiology & Biomedical Imaging, University of California San Francisco.,Department of Medical Imaging, University of Toronto
| | - Marram P Olson
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Devika Nair
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Marisa LaFontaine
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco
| | - Pranathi Chunduru
- Department of Neurological Surgery, University of California San Francisco
| | - Valentina Pedoia
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | | | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco
| | - Janine M Lupo
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| |
Collapse
|
113
|
Yi Z, Long L, Zeng Y, Liu Z. Current Advances and Challenges in Radiomics of Brain Tumors. Front Oncol 2021; 11:732196. [PMID: 34722274 PMCID: PMC8551958 DOI: 10.3389/fonc.2021.732196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Imaging diagnosis is crucial for early detection and monitoring of brain tumors. Radiomics enable the extraction of a large mass of quantitative features from complex clinical imaging arrays, and then transform them into high-dimensional data which can subsequently be mined to find their relevance with the tumor's histological features, which reflect underlying genetic mutations and malignancy, along with grade, progression, therapeutic effect, or even overall survival (OS). Compared to traditional brain imaging, radiomics provides quantitative information linked to meaningful biologic characteristics and application of deep learning which sheds light on the full automation of imaging diagnosis. Recent studies have shown that radiomics' application is broad in identifying primary tumor, differential diagnosis, grading, evaluation of mutation status and aggression, prediction of treatment response and recurrence in pituitary tumors, gliomas, and brain metastases. In this descriptive review, besides establishing a general understanding among protocols, results, and clinical significance of these studies, we further discuss the current limitations along with future development of radiomics.
Collapse
Affiliation(s)
- Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifu Long
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
114
|
Abstract
This article reviews recent advances in the use of standard and advanced imaging techniques for diagnosis and treatment of central nervous system (CNS) tumors, including glioma and brain metastasis. Following the recent transition from a histology-based approach in classifying CNS tumors to one that integrates histology with the molecular information of tumor, the approaches for imaging CNS tumors have also been adapted to this new framework. Some challenges related to the diagnosis and treatment of CNS tumors, such as differentiating tumor from treatment-related imaging changes, require further progress to implement advanced imaging for clinical use.
Collapse
Affiliation(s)
- Raymond Y Huang
- Department of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Whitney B Pope
- Radiology, Section of Neuroradiology, Brain Tumor Imaging, UCLA Medical Center, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| |
Collapse
|
115
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
116
|
Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, Zhang S, Zhang Z. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 2021; 5:72. [PMID: 34312469 PMCID: PMC8313682 DOI: 10.1038/s41698-021-00205-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuaitong Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,School of Engineering Medicine, Beihang University, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
117
|
Liu D, Chen J, Hu X, Yang K, Liu Y, Hu G, Ge H, Zhang W, Liu H. Imaging-Genomics in Glioblastoma: Combining Molecular and Imaging Signatures. Front Oncol 2021; 11:699265. [PMID: 34295824 PMCID: PMC8290166 DOI: 10.3389/fonc.2021.699265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Based on artificial intelligence (AI), computer-assisted medical diagnosis can scientifically and efficiently deal with a large quantity of medical imaging data. AI technologies including deep learning have shown remarkable progress across medical image recognition and genome analysis. Imaging-genomics attempts to explore the associations between potential gene expression patterns and specific imaging phenotypes. These associations provide potential cellular pathophysiology information, allowing sampling of the lesion habitat with high spatial resolution. Glioblastoma (GB) poses spatial and temporal heterogeneous characteristics, challenging to current precise diagnosis and treatments for the disease. Imaging-genomics provides a powerful tool for non-invasive global assessment of GB and its response to treatment. Imaging-genomics also has the potential to advance our understanding of underlying cancer biology, gene alterations, and corresponding biological processes. This article reviews the recent progress in the utilization of the imaging-genomics analysis in GB patients, focusing on its implications and prospects in individualized diagnosis and management.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Institute of Brain Sciences, The Affilated Nanjing Brain Hosptial of Nanjing Medical University, Nanjing, China
| |
Collapse
|
118
|
Gutman DC, Young RJ. IDH glioma radiogenomics in the era of deep learning. Neuro Oncol 2021; 23:182-183. [PMID: 33416080 DOI: 10.1093/neuonc/noaa294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- David C Gutman
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
119
|
Nuechterlein N, Li B, Feroze A, Holland EC, Shapiro L, Haynor D, Fink J, Cimino PJ. Radiogenomic modeling predicts survival-associated prognostic groups in glioblastoma. Neurooncol Adv 2021; 3:vdab004. [PMID: 33615222 PMCID: PMC7883769 DOI: 10.1093/noajnl/vdab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Beibin Li
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Abdullah Feroze
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - James Fink
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Patrick J Cimino
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, Division of Neuropathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
120
|
Peng Z, Wang Y, Wang Y, Jiang S, Fan R, Zhang H, Jiang W. Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci 2021; 17:475-486. [PMID: 33613106 PMCID: PMC7893590 DOI: 10.7150/ijbs.55716] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
With the continuous development of medical image informatics technology, more and more high-throughput quantitative data could be extracted from digital medical images, which has resulted in a new kind of omics-Radiomics. In recent years, in addition to genomics, proteomics and metabolomics, radiomic has attracted the interest of more and more researchers. Compared to other omics, radiomics can be perfectly integrated with clinical data, even with the pathology and molecular biomarker, so that the study can be closer to the clinical reality and more revealing of the tumor development. Mass data will also be generated in this process. Machine learning, due to its own characteristics, has a unique advantage in processing massive radiomic data. By analyzing mass amounts of data with strong clinical relevance, people can construct models that more accurately reflect tumor development and progression, thereby providing the possibility of personalized and sequential treatment of patients. As one of the cancer types whose treatment and diagnosis rely on imaging examination, radiomics has a very broad application prospect in head and neck cancers (HNC). Until now, there have been some notable results in HNC. In this review, we will introduce the concepts and workflow of radiomics and machine learning and their current applications in head and neck cancers, as well as the directions and applications of artificial intelligence in the treatment and diagnosis of HNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
121
|
Hatt M, Cheze Le Rest C, Antonorsi N, Tixier F, Tankyevych O, Jaouen V, Lucia F, Bourbonne V, Schick U, Badic B, Visvikis D. Radiomics in PET/CT: Current Status and Future AI-Based Evolutions. Semin Nucl Med 2020; 51:126-133. [PMID: 33509369 DOI: 10.1053/j.semnuclmed.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This short review aims at providing the readers with an update on the current status, as well as future perspectives in the quickly evolving field of radiomics applied to the field of PET/CT imaging. Numerous pitfalls have been identified in study design, data acquisition, segmentation, features calculation and modeling by the radiomics community, and these are often the same issues across all image modalities and clinical applications, however some of these are specific to PET/CT (and SPECT/CT) imaging and therefore the present paper focuses on those. In most cases, recommendations and potential methodological solutions do exist and should therefore be followed to improve the overall quality and reproducibility of published studies. In terms of future evolutions, the techniques from the larger field of artificial intelligence (AI), including those relying on deep neural networks (also known as deep learning) have already shown impressive potential to provide solutions, especially in terms of automation, but also to maybe fully replace the tools the radiomics community has been using until now in order to build the usual radiomics workflow. Some important challenges remain to be addressed before the full impact of AI may be realized but overall the field has made striking advances over the last few years and it is expected advances will continue at a rapid pace.
Collapse
Affiliation(s)
- Mathieu Hatt
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | - Catherine Cheze Le Rest
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; Nuclear Medicine Department, CHU Milétrie, Poitiers, France
| | - Nils Antonorsi
- Nuclear Medicine Department, CHU Milétrie, Poitiers, France
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States of America
| | | | - Vincent Jaouen
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; IMT-Atlantique, Plouzané, France
| | - Francois Lucia
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | | | - Ulrike Schick
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | - Bogdan Badic
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | | |
Collapse
|