101
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
102
|
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Roessler K, Hervey-Jumper S, Penninger JM, Berger MS, Widhalm G, Erhart F. Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas. Cancers (Basel) 2021; 13:cancers13040662. [PMID: 33562253 PMCID: PMC7916021 DOI: 10.3390/cancers13040662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Diffusely infiltrating gliomas are frequent brain tumors with variable prognosis. In addition to the blood pigment’s role of oxygen transportation, the metabolic pathway synthesizing heme has been shown to play a role in the biochemistry of various tumors. In this study we thus investigated the impact of heme biosynthesis factors mRNA expression on the survival in glioma patients and observed a progressive decrease in survival time with increasing mRNA expression signature. This association was present for overall as well as progression-free survival and remained statistically significant after correction for established prognostic factors such as patient age and tumor grade. Abstract Diffusely infiltrating gliomas are characterized by a variable clinical course, and thus novel prognostic biomarkers are needed. The heme biosynthesis cycle constitutes a fundamental metabolic pathway and might play a crucial role in glioma biology. The aim of this study was thus to investigate the role of the heme biosynthesis mRNA expression signature on prognosis in a large glioma patient cohort. Glioma patients with available sequencing data on heme biosynthesis expression were retrieved from The Cancer Genome Atlas (TCGA). In each patient, the heme biosynthesis mRNA expression signature was calculated and categorized into low, medium, and high expression subgroups. Differences in progression-free and overall survival between these subgroups were investigated including a multivariate analysis correcting for WHO grade, tumor subtype, and patient age and sex. In a total of 693 patients, progression-free and overall survival showed a strictly monotonical decrease with increasing mRNA expression signature subgroups. In detail, median overall survival was 134.2 months in the low, 79.9 months in the intermediate, and 16.5 months in the high mRNA expression signature subgroups, respectively. The impact of mRNA expression signature on progression-free and overall survival was independent of the other analyzed prognostic factors. Our data indicate that the heme biosynthesis mRNA expression signature might serve as an additional novel prognostic marker in patients with diffusely infiltrating gliomas to optimize postoperative management.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Daniela Lötsch
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Thomas Roetzer
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Martin Borkovec
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria;
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Correspondence:
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| |
Collapse
|
103
|
Yuan Q, Yang W, Zhang S, Li T, Zuo M, Zhou X, Li J, Li M, Xia X, Chen M, Liu Y. Inhibition of mitochondrial carrier homolog 2 (MTCH2) suppresses tumor invasion and enhances sensitivity to temozolomide in malignant glioma. Mol Med 2021; 27:7. [PMID: 33509092 PMCID: PMC7842075 DOI: 10.1186/s10020-020-00261-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Malignant glioma exerts a metabolic shift from oxidative phosphorylation (OXPHOs) to aerobic glycolysis, with suppressed mitochondrial functions. This phenomenon offers a proliferation advantage to tumor cells and decrease mitochondria-dependent cell death. However, the underlying mechanism for mitochondrial dysfunction in glioma is not well elucidated. MTCH2 is a mitochondrial outer membrane protein that regulates mitochondrial metabolism and related cell death. This study aims to clarify the role of MTCH2 in glioma. Methods Bioinformatic analysis from TCGA and CGGA databases were used to investigate the association of MTCH2 with glioma malignancy and clinical significance. The expression of MTCH2 was verified from clinical specimens using real-time PCR and western blots in our cohorts. siRNA-mediated MTCH2 knockdown were used to assess the biological functions of MTCH2 in glioma progression, including cell invasion and temozolomide-induced cell death. Biochemical investigations of mitochondrial and cellular signaling alternations were performed to detect the mechanism by which MTCH2 regulates glioma malignancy. Results Bioinformatic data from public database and our cohort showed that MTCH2 expression was closely associated with glioma malignancy and poor patient survival. Silencing of MTCH2 expression impaired cell migration/invasion and enhanced temozolomide sensitivity of human glioma cells. Mechanistically, MTCH2 knockdown may increase mitochondrial OXPHOs and thus oxidative damage, decreased migration/invasion pathways, and repressed pro-survival AKT signaling. Conclusion Our work establishes the relationship between MTCH2 expression and glioma malignancy, and provides a potential target for future interventions.
Collapse
Affiliation(s)
- Qiuyun Yuan
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wanchun Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuxin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tengfei Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingrong Zuo
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingwang Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Junhong Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mao Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoqiang Xia
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mina Chen
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Yanhui Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
104
|
Evaluation of Glycolytic Response to Multiple Classes of Anti-glioblastoma Drugs by Noninvasive Measurement of Pyruvate Kinase M2 Using [ 18F]DASA-23. Mol Imaging Biol 2021; 22:124-133. [PMID: 30989436 DOI: 10.1007/s11307-019-01353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, the key process of tumor metabolism. PKM2 is found in high levels in glioblastoma (GBM) cells with marginal expression within healthy brain tissue, rendering it a key biomarker of GBM metabolic re-programming. Our group has reported the development of a novel radiotracer, 1-((2-fluoro- 6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA- 23), to non-invasively detect PKM2 levels with positron emission tomography (PET). PROCEDURE U87 human GBM cells were treated with the IC50 concentration of various agents used in the treatment of GBM, including alkylating agents (temozolomide, carmustine, lomustine, procarbazine), inhibitor of topoisomerase I (irinotecan), vascular endothelial and epidermal growth factor receptor inhibitors (cediranib and erlotinib, respectively) anti-metabolite (5-fluorouracil), microtubule inhibitor (vincristine), and metabolic agents (dichloroacetate and IDH1 inhibitor ivosidenib). Following drug exposure for three or 6 days (n = 6 replicates per condition), the radiotracer uptake of [18F]DASA-23 and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was assessed. Changes in PKM2 protein levels were determined via Western blot and correlated to radiotracer uptake. RESULTS Significant interactions were found between the treatment agent (n = 12 conditions total comprised 11 drugs and vehicle) and the duration of treatment (3- or 6-day exposure to each drug) on the cellular uptake of [18F]DASA-23 (p = 0.0001). The greatest change in the cellular uptake of [18F]DASA-23 was found after exposure to alkylating agents (p < 0. 0001) followed by irinotecan (p = 0. 0012), erlotinib (p = 0. 02), and 5-fluorouracil (p = 0. 005). Correlation of PKM2 protein levels and [18F]DASA-23 cellular uptake revealed a moderate correlation (r = 0.44, p = 0.15). CONCLUSIONS These proof of principle studies emphasize the superiority of [18F]DASA-23 to [18F]FDG in detecting the glycolytic response of GBM to multiple classes of anti-neoplastic drugs in cell culture. A clinical trial evaluating the diagnostic utility of [18F]DASA-23 PET in GBM patients (NCT03539731) is ongoing.
Collapse
|
105
|
Patel CB, Beinat C, Xie Y, Chang E, Gambhir SS. Tumor treating fields (TTFields) impairs aberrant glycolysis in glioblastoma as evaluated by [ 18F]DASA-23, a non-invasive probe of pyruvate kinase M2 (PKM2) expression. Neoplasia 2021; 23:58-67. [PMID: 33221711 PMCID: PMC7689378 DOI: 10.1016/j.neo.2020.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
Despite the anti-proliferative and survival benefits from tumor treating fields (TTFields) in human glioblastoma (hGBM), little is known about the effects of this form of alternating electric fields therapy on the aberrant glycolysis of hGBM. [18F]FDG is the most common radiotracer in cancer metabolic imaging, but its utility in hGBM is impaired due to high glucose uptake in normal brain tissue. With TTFields, radiochemistry, Western blot, and immunofluorescence microscopy, we identified pyruvate kinase M2 (PKM2) as a biomarker of hGBM response to therapeutic TTFields. We used [18F]DASA-23, a novel radiotracer that measures PKM2 expression and which has been shown to be safe in humans, to detect a shift away from hGBM aberrant glycolysis in response to TTFields. Compared to unexposed hGBM, [18F]DASA-23 uptake was reduced in hGBM exposed to TTFields (53%, P< 0.05) or temozolomide chemotherapy (33%, P > 0.05) for 3 d. A 6-d TTFields exposure resulted in a 31% reduction (P = 0.043) in 60-min uptake of [18F]DASA-23. [18F]DASA-23 was retained after a 10 but not 30-min wash-out period. Compared to [18F]FDG, [18F]DASA-23 demonstrated a 4- to 9-fold greater uptake, implying an improved tumor-to-background ratio. Furthermore, compared to no-TTFields exposure, a 6-d TTFields exposure caused a 35% reduction in [18F]DASA-23 30-min uptake compared to only an 8% reduction in [18F]FDG 30-min uptake. Quantitative Western blot analysis and qualitative immunofluorescence for PKM2 confirmed the TTFields-induced reduction in PKM2 expression. This is the first study to demonstrate that TTFields impairs hGBM aberrant glycolytic metabolism through reduced PKM2 expression, which can be non-invasively detected by the [18F]DASA-23 radiotracer.
Collapse
Affiliation(s)
- Chirag B Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Division of Adult Neuro-Oncology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Corinne Beinat
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuanyang Xie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edwin Chang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
106
|
Agnihotri S, Halligan K, Kulandaimanuvel A, Cruz A, Felker J, Daniels C, Taylor M. Pediatric posterior fossa ependymoma and metabolism: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_17_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
107
|
Badr CE, Silver DJ, Siebzehnrubl FA, Deleyrolle LP. Metabolic heterogeneity and adaptability in brain tumors. Cell Mol Life Sci 2020; 77:5101-5119. [PMID: 32506168 PMCID: PMC8272080 DOI: 10.1007/s00018-020-03569-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
The metabolic complexity and flexibility commonly observed in brain tumors, especially glioblastoma, is fundamental for their development and progression. The ability of tumor cells to modify their genetic landscape and adapt metabolically, subverts therapeutic efficacy, and inevitably instigates therapeutic resistance. To overcome these challenges and develop effective therapeutic strategies targeting essential metabolic processes, it is necessary to identify the mechanisms underlying heterogeneity and define metabolic preferences and liabilities of malignant cells. In this review, we will discuss metabolic diversity in brain cancer and highlight the role of cancer stem cells in regulating metabolic heterogeneity. We will also highlight potential therapeutic modalities targeting metabolic vulnerabilities and examine how intercellular metabolic signaling can shape the tumor microenvironment.
Collapse
Affiliation(s)
- Christian E Badr
- Neuro-Oncology Division, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, CF24 4HQ, UK
| | - Loic P Deleyrolle
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
108
|
Ni B, He M, Cao B, He J, Liu Y, Zhao Z. Status Quo and Research Trends of Neurosurgical Departments in China: Bibliometric and Scientometric Analyses (Preprint). J Med Internet Res 2020; 23:e25700. [PMID: 36260378 PMCID: PMC8406120 DOI: 10.2196/25700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bowen Ni
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Minyi He
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- Clinical Medicine Education Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bei Cao
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- Laboratories & Facilities Management Office, Southern Medical University, Guangzhou, China
| | - Jianmin He
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- Institute of Scientific Research, Southern Medical University, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Zhen Zhao
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- Institute of Scientific Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
109
|
Abstract
Conventional medical imaging techniques use contrast agents that are chemically labeled, for example, iodine in the case of computed tomography, radioisotopes in the case of PET, or gadolinium in the case of MR imaging to create or enhance signal contrast and to visualize tissue compartments and features. Dynamic glucose-enhanced MR imaging represents a novel technique that uses natural, unlabeled d-glucose as a nontoxic biodegradable contrast agent in chemical exchange-sensitive MR imaging approaches.
Collapse
Affiliation(s)
- Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Alexander Radbruch
- Clinic for Diagnostic and Interventional Neuroradiology, Venusberg Campus 1, Bonn 53127, Germany
| |
Collapse
|
110
|
Sex differences in health and disease: A review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer Lett 2020; 498:178-187. [PMID: 33130315 DOI: 10.1016/j.canlet.2020.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The influence of biological sex differences on human health and disease, while being increasingly recognized, has long been underappreciated and underexplored. While humans of all sexes are more alike than different, there is evidence for sex differences in the most basic aspects of human biology and these differences have consequences for the etiology and pathophysiology of many diseases. In a disease like cancer, these consequences manifest in the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, targeted therapies to complex cancer cases is limited by our current understanding of the underlying sex differences. Gaining a better understanding of the implications and interplay of sex differences in diseases like cancer will thus be informative for clinical practice and biological research. Here we review the evidence for a broad array of biological sex differences in humans and discuss how these differences may relate to observed sex differences in various diseases, including many cancers and specifically glioblastoma. We focus on areas of human biology that play vital roles in healthy and disease states, including metabolism, development, hormones, and the immune system, and emphasize that the intersection of sex differences in these areas should not go overlooked. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.
Collapse
|
111
|
Wang QW, Wang YW, Wang ZL, Bao ZS, Jiang T, Wang Z, You G. Clinical and Molecular Characterization of Incidentally Discovered Lower-Grade Gliomas with Enrichment of Aerobic Respiration. Onco Targets Ther 2020; 13:9533-9542. [PMID: 33061437 PMCID: PMC7527698 DOI: 10.2147/ott.s248623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/09/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose Incidentally discovered diffusely infiltrating lower-grade gliomas (incidental LGGs, iLGGs) are defined as gliomas occasionally found in patients without tumor-related symptoms. At present, very few in-depth research studies on incidental LGGs were reported. We aimed to find out the inherent difference between iLGGs and LGGs with tumor-related symptoms. Patients and Methods We enrolled 2486 all-grade gliomas and screened 1594 lower-grade gliomas for further analysis. Medical records were retrospectively reviewed for iLGGs. Clinical and mRNA sequencing data were collected for in-depth analysis. Results We found that with increasing grade, the proportion of incidental glioma patients decreased obviously. In 1594 patients who underwent craniotomy for LGG, 80 (5%) patients were discovered incidentally. Grade II patients (88%) and patients bearing 1p/19q co-deletion in their tumors (23%) were more likely to be diagnosed as iLGGs. Regular radiological screening (48%) and trauma (24%) were the main complaint for brain imaging for iLGGs. Kaplan–Meier survival analysis indicated that iLGGs patients lived a significantly longer survival and Cox regression analysis revealed that iLGGs were an independent indicator of better prognosis. Subsequent gene set enrichment analysis and differential expression analysis based on the gene expression profile revealed that mitochondrial aerobic respiration process was enriched in iLGGs. Moreover, we found that iLGGs tended to generate energy by unique mitochondrial aerobic respiration. Conclusion These results provided a primitive exploration of iLGGs, which may potentially assist clinical neurosurgeons with personalized management of iLGGs.
Collapse
Affiliation(s)
- Qiang-Wei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Yi-Wen Wang
- Huadong Medical Institute of Biotechniques, Nanjing, People's Republic of China
| | - Zhi-Liang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
112
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
113
|
Tan AW, Weljie AM. Metabolite Imaging at the Margin: Visualizing Metabolic Tumor Gradients Using Mass Spectrometry. Cancer Res 2020; 80:1231-1233. [PMID: 32169889 DOI: 10.1158/0008-5472.can-20-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) tumors are highly metabolic and vascularized, yet little has been reported regarding the spatial localization of metabolic activity within these tumors. A mass spectrometry imaging (MSI) study by Randall and colleagues in this issue provides provocative observations of metabolic gradients in xenograft GBM models. The intensity of acylcarnitines is dramatically increased at tumor margins, which interface with normal tissue, but not in tumor margins at the edge of the brain. A secondary examination of drug metabolites suggests that the observed metabolic gradients are pharmacologically relevant. These findings underscore previously undescribed spatial metabolic heterogeneity in GBM biology and opportunities for MSI investigations.See related article by Randall et al., p. 1258.
Collapse
Affiliation(s)
- Ai Wen Tan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
114
|
Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules 2020; 10:biom10101370. [PMID: 32993063 PMCID: PMC7599606 DOI: 10.3390/biom10101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
Collapse
|
115
|
Sperry J, Condro MC, Guo L, Braas D, Vanderveer-Harris N, Kim KK, Pope WB, Divakaruni AS, Lai A, Christofk H, Castro MG, Lowenstein PR, Le Belle JE, Kornblum HI. Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. iScience 2020; 23:101453. [PMID: 32861192 PMCID: PMC7471621 DOI: 10.1016/j.isci.2020.101453] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/28/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) metabolism has traditionally been characterized by a primary dependence on aerobic glycolysis, prompting the use of the ketogenic diet (KD) as a potential therapy. In this study we evaluated the effectiveness of the KD in GBM and assessed the role of fatty acid oxidation (FAO) in promoting GBM propagation. In vitro assays revealed FA utilization throughout the GBM metabolome and growth inhibition in nearly every cell line in a broad spectrum of patient-derived glioma cells treated with FAO inhibitors. In vivo assessments revealed that knockdown of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme for FAO, reduced the rate of tumor growth and increased survival. However, the unrestricted ketogenic diet did not reduce tumor growth and for some models significantly reduced survival. Altogether, these data highlight important roles for FA and ketone body metabolism that could serve to improve targeted therapies in GBM.
Collapse
Affiliation(s)
- Jantzen Sperry
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michael C. Condro
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
| | - Lea Guo
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Daniel Braas
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, USA
| | - Nathan Vanderveer-Harris
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
| | - Kristen K.O. Kim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Whitney B. Pope
- Department of Radiological Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Albert Lai
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Heather Christofk
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Janel E. Le Belle
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
| | - Harley I. Kornblum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| |
Collapse
|
116
|
Duan K, Gucer H, Kefeli M, Asa SL, Winer DA, Mete O. Immunohistochemical Analysis of the Metabolic Phenotype of Adrenal Cortical Carcinoma. Endocr Pathol 2020; 31:231-238. [PMID: 32367334 DOI: 10.1007/s12022-020-09624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metabolic reprogramming is a cellular process contributing to carcinogenesis. However, it remains poorly understood in adrenal cortical carcinoma (ACC), an aggressive malignancy with overall poor prognosis and limited therapeutic options. We characterized the metabolic phenotype of ACC, by examining the immunoprofile of key proteins involved in glucose metabolism, hexokinase (HK1), pyruvate kinase (PKM1, PKM2), succinate dehydrogenase (SDHB), and phospho-S6 ribosomal protein (pS6), in a tissue microarray of 137 adrenal cortical tissue samples. Protein expression was compared between ACC (n = 42), adrenal cortical adenoma (ACA; n = 50), and normal adrenal cortical tissue samples (n = 45). Cytoplasmic expression of HK1 and PKM2 was significantly higher in ACC than in ACA (p < 0.001 and p = 0.014, respectively) or normal adrenal cortical tissue samples (p < 0.001 and p < 0.001, respectively). Expression of HK1 and PKM2 was also higher in ACA than in normal adrenal cortical tissue samples (p < 0.001 and p < 0.001, respectively). PKM1 expression was overall low in ACC, ACA, and normal samples, although expression of PKM1 was higher in ACC than in ACA (p = 0.027). There was no loss of cytoplasmic granular SDHB expression in our cohort of adrenal cortical tumors, and cytoplasmic expression of pS6 was lower in ACC than in ACA (p = 0.003) or normal adrenal cortical tissue samples (p = 0.008). Significantly, HK1 expression correlated with pyruvate kinase isoform (PKM2 and PKM1) expression (p < 0.001 and p = 0.007, respectively). Although functional validation was not performed, this study provides further evidence that metabolic reprogramming and altered glucose metabolism may occur in a subset of ACC through overexpression of intracellular glycolytic enzymes, notably HK1 and PKM2. The possibility of utilizing the reprogrammed glucose metabolism in ACC for novel therapeutic strategies should be explored in future studies.
Collapse
Affiliation(s)
- Kai Duan
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hasan Gucer
- Department of Pathology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mehmet Kefeli
- Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| | - Sylvia L Asa
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Daniel A Winer
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Canada
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, USA
| | - Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
117
|
Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R. Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Front Neurol 2020; 11:898. [PMID: 32973662 PMCID: PMC7468383 DOI: 10.3389/fneur.2020.00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer and Parkinson's disease (PD) define two disease entities that include opposite concepts. Indeed, the involved mechanisms are at different ends of a spectrum related to cell survival - one due to enhanced cellular proliferation and the other due to premature cell death. There is increasing evidence indicating that patients with neurodegenerative diseases like PD have a reduced incidence for most cancers. In support, epidemiological studies demonstrate an inverse association between PD and cancer. Both conditions apparently can involve the same set of genes, however, in affected tissues the expression was inversely regulated: genes that are down-regulated in PD were found to be up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common genes, that are involved in both diseases and share common key pathways of cell proliferation and metabolism, were shown to be oppositely deregulated in PD and GBM. Here, we provide an overview of the involvement of PD- and GBM-associated genes in common pathways that are dysregulated in both conditions. Moreover, we illustrate why the simultaneous study of PD and GBM regarding the role of common pathways may lead to a deeper understanding of these still incurable conditions. Eventually, considering the inverse regulation of certain genes in PD and GBM will help to understand their mechanistic basis, and thus to define novel target-based strategies for causative treatments.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Zoé Hanss
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Alexis Elbaz
- Institut de Statistique de l'Université de Paris, Paris, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
118
|
Sharanek A, Burban A, Laaper M, Heckel E, Joyal JS, Soleimani VD, Jahani-Asl A. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation. Nat Commun 2020; 11:4116. [PMID: 32807793 PMCID: PMC7431428 DOI: 10.1038/s41467-020-17885-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan. The suppression of the receptor for oncostatin M (OSMR) can prevent glioblastoma cell growth. Here, the authors demonstrate a role for OSMR in modulating glioma stem cell respiration and its impact on resistance to ionizing radiation.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Matthew Laaper
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Emilie Heckel
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Pharmacology and Ophthalmology, Université de Montréal, CHU Sainte-Justine, Montréal, QC, H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC, H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada. .,Integrated program in Neuroscience, Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada. .,Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, 5100 Maisonneuve Blvd West, Suite 720, H4A3T2, Montréal, QC, Canada.
| |
Collapse
|
119
|
Palma A, Grande S, Ricci-Vitiani L, Luciani AM, Buccarelli M, Biffoni M, Dini V, Cirrone GAP, Ciocca M, Guidoni L, Pallini R, Viti V, Rosi A. Different Mechanisms Underlie the Metabolic Response of GBM Stem-Like Cells to Ionizing Radiation: Biological and MRS Studies on Effects of Photons and Carbon Ions. Int J Mol Sci 2020; 21:ijms21145167. [PMID: 32708312 PMCID: PMC7404344 DOI: 10.3390/ijms21145167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with very poor prognosis, high recurrence rate, and failure of chemo-radiotherapy, mainly due to a small fraction of cells with stem-like properties (GSCs). To study the mechanisms of GSCs resistance to radiation, two GSC lines, named line #1 and line #83, with different metabolic patterns and clinical outcome, were irradiated with photon beams and carbon ions and assessed by 1H Magnetic Resonance Spectroscopy (MRS). Both irradiation modalities induced early cytotoxic effects in line #1 with small effects on cell cycle, whereas a proliferative G2/M cytostatic block was observed in line #83. MR spectroscopy signals from mobile lipids (ML) increased in spectra of line #1 after photon and C-ion irradiation with effects on lipid unsaturation level, whereas no effects were detected in line #83 spectra. Gamma-Aminobutyric Acid (GABA), glutamic acid (glu) and Phosphocreatine (pCr) signals showed a significant variation only for line #1 after carbon ion irradiation. Glucose (glc) level and lactate (Lac) extrusion behaved differently in the two lines. Our findings suggest that the differences in irradiation response of GSCs #1 and #83 lines are likely attributable to their different metabolic fingerprint rather than to the different radiation types.
Collapse
Affiliation(s)
- Alessandra Palma
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Sveva Grande
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Anna Maria Luciani
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Valentina Dini
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
- Istituto Nazionale di Fisica Nucleare INFN Sez. di Roma, 00185 Rome, Italy
| | - Giuseppe A. P. Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy;
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica (CNAO)-National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Laura Guidoni
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Roberto Pallini
- Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Vincenza Viti
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Antonella Rosi
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
- Correspondence: ; Tel.: +39-06-49903159
| |
Collapse
|
120
|
Cui J, Zhang Q, Song Q, Wang H, Dmitriev P, Sun MY, Cao X, Wang Y, Guo L, Indig IH, Rosenblum JS, Ji C, Cao D, Yang K, Gilbert MR, Yao Y, Zhuang Z. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro Oncol 2020; 21:1436-1446. [PMID: 31276594 DOI: 10.1093/neuonc/noz117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glioblastoma survival remains unchanged despite continuing therapeutic innovation. Herein, we aim to (i) develop chimeric antigen receptor (CAR) T cells with a specificity to a unique antigen, carbonic anhydrase IX (CAIX), which is expressed in the hypoxic microenvironment characteristic of glioblastoma, and (ii) demonstrate its efficacy with limited off-target effects. METHODS First we demonstrated expression of CAIX in patient-derived glioblastoma samples and available databases. CAR T cells were generated against CAIX and efficacy was assessed in 4 glioblastoma cell lines and 2 glioblastoma stem cell lines. Cytotoxicity of anti-CAIX CAR T cells was assessed via interferon gamma, tumor necrosis factor alpha, and interleukin-2 levels when co-cultured with tumor cells. Finally, we assessed efficacy of direct intratumoral injection of the anti-CAIX CAR T cells on an in vivo xenograft mouse model using the U251 luciferase cell line. Tumor infiltrating lymphocyte analyses were performed. RESULTS We confirm that CAIX is highly expressed in glioblastoma from patients. We demonstrate that CAIX is a suitable target for CAR T-cell therapy using anti-CAIX CAR T cells against glioblastoma in vitro and in vivo. In our mouse model, a 20% cure rate was observed without detectable systemic effects. CONCLUSIONS By establishing the specificity of CAIX under hypoxic conditions in glioblastoma and highlighting its efficacy as a target for CAR T-cell therapy, our data suggest that anti-CAIX CAR T may be a promising strategy to treat glioblastoma. Direct intratumoral injection increases anti-CAIX CAR T-cell potency while limiting its off-target effects.
Collapse
Affiliation(s)
- Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Dmitriev
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell Y Sun
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoyu Cao
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Liemei Guo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Iris H Indig
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jared S Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chunxia Ji
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Dongqing Cao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Kaiyong Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Oaiscell Biotechnologies Inc, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yu Yao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
121
|
Im JH, Yoo BC, Lee JH, Kim KH, Kim TH, Lee KY, Kim JH, Park JB, Kwon JW, Shin SH, Yoo H, Gwak HS. Comparative cerebrospinal fluid metabolites profiling in glioma patients to predict malignant transformation and leptomeningeal metastasis with a potential for preventive personalized medicine. EPMA J 2020; 11:469-484. [PMID: 32849928 DOI: 10.1007/s13167-020-00211-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
Glioma shows progression presenting as malignant transformation or leptomeningeal metastasis (LM). However, longitudinal biopsy of brain parenchyma is difficult due to its critical location, whereas cerebrospinal fluid (CSF) can be obtained serially with a little invasiveness of puncture. Thus, if we could find a biomarker for glioma progression, we could predict such event and determine therapeutic interventions as early as possible. In this study, we examined whether cerebrospinal fluid (CSF) metabolome profiles can reflect glioma grade, difference with non-glial tumor, and LM status. We selected 32 CSF samples from glioma patients, and compared them with 10 non-tumor control and seven non-glial brain tumor (medulloblastoma) samples. A total of 10,408 low-mass ions (LMIs) were detected as a candidate of metabolites using mass spectrometry, and representative LMIs were identified via the Human Metabolome Database. Grade IV gliomas showed eight LMIs, including acetic acid, of higher levels (summed sensitivity and specificity > 180%) than grade III gliomas. Grade IV gliomas demonstrated more abundant 30 LMIs, including glycerophosphate, compared with medulloblastoma, but none was mutually exclusive. Phospholipid derivatives were significantly more abundant in LM (-) than LM (+) gliomas regardless of glioma grade. LMIs representative of LM (+) gliomas were derivatives of glycolysis. We also verified discriminative LMIs based on mean expression level of each LMI (Student t test, p < 0.05) and evaluated the differences of the above analyses. Over 90% of metabolite pathways indicated from two analytical models were common to each other. Non-targeted mass spectrometry of CSF metabolites revealed significantly different profiles across gliomas that possibly permitted differentiation between glioma grades, LM, and non-glial brain tumors.
Collapse
Affiliation(s)
- Ji Hye Im
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408 Gyeonggi-do Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jun Hwa Lee
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Kyung-Hee Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Tae Hoon Kim
- Department of Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Kyue-Yim Lee
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408 Gyeonggi-do Republic of Korea
| | - Jong Heon Kim
- Department of Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Jong Bae Park
- Department of Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Ji-Woong Kwon
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Sang Hoon Shin
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Heon Yoo
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408 Gyeonggi-do Republic of Korea
- Neuro-oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
122
|
Anderson G. Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:334-355. [PMID: 35582450 PMCID: PMC8992488 DOI: 10.20517/cdr.2020.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Treatment-resistance is common in glioblastoma (GBM) and the glioblastoma stem-like cells (GSC) from which they arise. Current treatment options are generally regarded as very poor and this arises from a poor conceptualization of the biological underpinnings of GBM/GSC and of the plasticity that these cells are capable of utilizing in response to different treatments. A number of studies indicate melatonin to have utility in the management of GBM/GSC, both per se and when adjunctive to chemotherapy. Recent work shows melatonin to be produced in mitochondria, with the mitochondrial melatonergic pathway proposed to be a crucial factor in driving the wide array of changes in intra- and inter-cellular processes, as well as receptors that can be evident in the cells of the GBM/GSC microenvironment. Variations in the enzymatic conversion of N-acetylserotonin (NAS) to melatonin may be especially important in GSC, as NAS can activate the tyrosine receptor kinase B to increase GSC survival and proliferation. Consequently, variations in the NAS/melatonin ratio may have contrasting effects on GBM/GSC survival. It is proposed that mitochondrial communication across cell types in the tumour microenvironment is strongly driven by the need to carefully control the mitochondrial melatonergic pathways across cell types, with a number of intra- and inter-cellular processes occurring as a consequence of the need to carefully regulate the NAS/melatonin ratio. This better integrates previously disparate data on GBM/GSC as well as providing clear future research and treatment options.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
123
|
Ma J, Qi G, Li L. A Novel Serum Exosomes-Based Biomarker hsa_circ_0002130 Facilitates Osimertinib-Resistance in Non-Small Cell Lung Cancer by Sponging miR-498. Onco Targets Ther 2020; 13:5293-5307. [PMID: 32606748 PMCID: PMC7293392 DOI: 10.2147/ott.s243214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Exosomes are the effective delivery system for biological compounds, including circular RNAs. In this research, we aimed to explore the role of circular RNA hsa_circRNA_0002130 in osimertinib-resistant non-small cell lung cancer (NSCLC). Materials and Methods In our study, the relative protein expression of glucose transporter 1 (GLUT1), hexokinase-2 (HK2) and lactate dehydrogenase A (LDHA) was detected by Western blot, while the expression of hsa_circ_0002130 and microRNA-498 (miR-498) was detected by quantitative real-time PCR (qRT-PCR). The biological functions of hsa_circ_0002130 in osimertinib-resistant NSCLC were analyzed by cell viability assay, flow cytometry analysis, luciferase reporter assay, RNA pull-down assay, and tumor xenograft model in vivo. Moreover, glucose uptake, lactate production and extracellular acidification (ECAR) levels were measured by glucose uptake colorimetric assay kit, lactate assay kit II, and Seahorse Extracellular Flux Analyzer XF96 assay, respectively. hsa_circ_0002130 identification and localization were confirmed by RNase R digestion and subcellular localization assay, respectively. Exosomes were isolated from the sera collected from NSCLC patients and identified using a transmission electron microscopy and nanoparticle tracking analysis. Results Osimertinib-resistance was closely related to glycolysis. hsa_circ_0002130 was highly expressed in osimertinib-resistant NSCLC cells and hsa_circ_0002130 deletion inhibited osimertinib-resistance both in vitro and in vivo. Moreover, hsa_circ_0002130 targeted miR-498 to regulate GLUT1, HK2 and LDHA. The inhibitory effects of hsa_circ_0002130 deletion on osimertinib-resistant were reversed by downregulating miR-498. Importantly, hsa_circ_0002130 was upregulated in serum exosomes from osimertinib-resistant NSCLC patients. Conclusion Our findings confirmed that hsa_circ_0002130 served as a promotion role in osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Jing Ma
- Department of Respiratory and Critical Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Guanbin Qi
- Department of Respiratory and Critical Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Lei Li
- Department of Respiratory and Critical Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| |
Collapse
|
124
|
Liu Y, Xu Z, Jin T, Xu K, Liu M, Xu H. Ferroptosis in Low-Grade Glioma: A New Marker for Diagnosis and Prognosis. Med Sci Monit 2020; 26:e921947. [PMID: 32484805 PMCID: PMC7291787 DOI: 10.12659/msm.921947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The extent of glioma resection influences the overall survival (OS) and progression-free survival (PFS). Ferroptosis is a newly recognized type of cell death, which may be associated with low-grade glioma border detection and OS. This study is assessed an optimized ferroptosis gene panel for glioma treatment. Material/Methods We obtained 45 reports on ferroptosis-related proteins in PubMed and conducted a statistical test of the patients’ overall survival (OS) in the TCGA GBMLGG and CGGA databases. The statistically significant genes were screened for an optimal panel, followed by GO and KEGG analysis and evaluated its correlation with known prognostic factors of glioma, including IDH1 mutation, methylated MGMT, tumor purity, 1p/19q LOH, and methionine cycle. Results Eight genes panel (ALOX5, CISD1, FTL, CD44, FANCD2, NFE2L2, SLC1A5, and GOT1) were highly related to OS (P<0.001) and PFS (P<0.001) of low-grade glioma (LGG) patients, out of which 6 genes (ALOX5, CISD1, CD44, FTL, FANCD2, and SLC1A5) were correlated with IDH1_p.R132H (P<0.001) and 5 genes (ALOX5, CD44, FTL, NFE2L2, SLC1A5) showed a correlation with tumor purity (P<0.001). Five genes (ALOX5, CD44, CISD1, FTL, and SLC1A5) were associated with methylated MGMT (P<0.001), out of which 6 genes (ALOX5, CD44, FANCD2, NFE2L2, SLC1A5, and GOT1) had significantly different expression in healthy brain tissue vs. glioma (P<0.001). Conclusions Our panel of 8 ferroptosis genes showed a significant correlation with the diagnostic and prognostic factors of low-grade glioma and can be applied in neuroradiology and surgery.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China (mainland)
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China (mainland)
| | - Tao Jin
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China (mainland)
| | - Ke Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China (mainland)
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China (mainland)
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China (mainland)
| |
Collapse
|
125
|
Zhang C, Gou X, He W, Yang H, Yin H. A glycolysis-based 4-mRNA signature correlates with the prognosis and cell cycle process in patients with bladder cancer. Cancer Cell Int 2020; 20:177. [PMID: 32467671 PMCID: PMC7238531 DOI: 10.1186/s12935-020-01255-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options. Methods mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues. A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells. Results Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle. Conclusion The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.
Collapse
Affiliation(s)
- Chen Zhang
- 2Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China.,4Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| | - Xin Gou
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| | - Weiyang He
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| | - Huaan Yang
- Department of Urology, Yubei District People's Hospital, No. 69 Jianshe Road, Chongqing, 400016 China
| | - Hubin Yin
- 1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China.,3Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 400016 China
| |
Collapse
|
126
|
Gupta K, Vuckovic I, Zhang S, Xiong Y, Carlson BL, Jacobs J, Olson I, Petterson XM, Macura SI, Sarkaria J, Burns TC. Radiation Induced Metabolic Alterations Associate With Tumor Aggressiveness and Poor Outcome in Glioblastoma. Front Oncol 2020; 10:535. [PMID: 32432031 PMCID: PMC7214818 DOI: 10.3389/fonc.2020.00535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence are poorly understood but may increase tumor aggressiveness. Metabolic changes have been investigated in radiation-induced brain injury; however, the tumor-promoting effect following prior radiation is lacking. Since RT is vital to GBM management, we quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM xenografts and characterized metabolic alterations associated with the protumorigenic microenvironment. Human xenografts (GBM143) were implanted into nude mice 24 hrs following 20 Gy cranial radiation vs. sham animals. Tumors in pre-radiated mice were more proliferative and more infiltrative, yielding faster mortality (p < 0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs) revealed cells with a more fully activated ameboid morphology in pre-radiated animals. Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to the site of implantation were analyzed by unsupervised liquid chromatography-mass spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated with tumor progression (i.e., modified nucleotides and polyols) were identified. Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic alterations in a separate cohort of nude mice using 1H-NMR revealed a significant decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+, Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP, GTP). GSH and ASC showed highest Variable Importance on Projection prediction (VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA); Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation effects, we compared survival with implantation occurring 2 months vs. 24 hrs following radiation, finding worse survival in animals implanted at 2 months. These radiation-induced alterations are consistent with a chronic disease-like microenvironment characterized by reduced levels of antioxidants and NAD+, and elevated extracellular ATP and GTP serving as chemoattractants, promoting cell motility and vesicular secretion with decreased levels of GSH and ASC exacerbating oxidative stress. Taken together, these data suggest IR induces tumor-permissive changes in the microenvironment with metabolomic alterations that may facilitate tumor aggressiveness with important implications for recurrent glioblastoma. Harnessing these metabolomic insights may provide opportunities to attenuate RT-associated aggressiveness of recurrent GBM.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ivan Vuckovic
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Song Zhang
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Yuning Xiong
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua Jacobs
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Slobodan I Macura
- Metabolomics Core Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
127
|
Kant S, Kesarwani P, Prabhu A, Graham SF, Buelow KL, Nakano I, Chinnaiyan P. Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death Dis 2020; 11:253. [PMID: 32312953 PMCID: PMC7170895 DOI: 10.1038/s41419-020-2449-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Despite advances in molecularly characterizing glioblastoma (GBM), metabolic alterations driving its aggressive phenotype are only beginning to be recognized. Integrative cross-platform analysis coupling global metabolomic and gene expression profiling on patient-derived glioma identified fatty acid β-oxidation (FAO) as a metabolic node in GBM. We determined that the biologic consequence of enhanced FAO is directly dependent upon tumor microenvironment. FAO serves as a metabolic cue to drive proliferation in a β-HB/GPR109A dependent autocrine manner in nutrient favorable conditions, while providing an efficient, alternate source of ATP only in nutrient unfavorable conditions. Rational combinatorial strategies designed to target these dynamic roles FAO plays in gliomagenesis resulted in necroptosis-mediated metabolic synthetic lethality in GBM. In summary, we identified FAO as a dominant metabolic node in GBM that provides metabolic plasticity, allowing these cells to adapt to their dynamic microenvironment. Combinatorial strategies designed to target these diverse roles FAO plays in gliomagenesis offers therapeutic potential in GBM.
Collapse
Affiliation(s)
- Shiva Kant
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Pravin Kesarwani
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Antony Prabhu
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Stewart F Graham
- Department of Metabolomics and Obstetrics/Gynecology, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, USA
| | - Katie L Buelow
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA. .,Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| |
Collapse
|
128
|
Larsson I, Uhlén M, Zhang C, Mardinoglu A. Genome-Scale Metabolic Modeling of Glioblastoma Reveals Promising Targets for Drug Development. Front Genet 2020; 11:381. [PMID: 32362913 PMCID: PMC7181968 DOI: 10.3389/fgene.2020.00381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/27/2020] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive type of brain cancer with a poor prognosis for affected patients. The current line of treatment only gives the patients a survival time of on average 15 months. In this work, we use genome-scale metabolic models (GEMs) together with other systems biology tools to examine the global transcriptomics-data of GBM-patients obtained from The Cancer Genome Atlas (TCGA). We reveal the molecular mechanisms underlying GBM and identify potential therapeutic targets for effective treatment of patients. The work presented consists of two main parts. The first part stratifies the patients into two groups, high and low survival, and compares their gene expression. The second part uses GBM and healthy brain tissue GEMs to simulate gene knockout in a GBM cell model to find potential therapeutic targets and predict their side effect in healthy brain tissue. We (1) find that genes upregulated in the patients with low survival are linked to various stages of the glioma invasion process, and (2) identify five essential genes for GBM, whose inhibition is non-toxic to healthy brain tissue, therefore promising to investigate further as therapeutic targets.
Collapse
Affiliation(s)
- Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
129
|
mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett 2020; 478:1-7. [PMID: 32145344 DOI: 10.1016/j.canlet.2020.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is a central hallmark of cancer and is driven by abnormalites of oncogenes and tumor suppressors. This enables tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Accelerated metabolism also translates into cancer cell aggression through epigenetic changes. The aberrant signaling cascades activated by oncogenes coordinate metabolic reprogramming with epigenetic shifts and subsequent global transcriptional changes through the dysregulation of rate-limiting metabolic enzymes as well as by facilitating the production of intermediary metabolites. As the landscape of cancer cell metabolism has been elucidated, it is now time for this knowledge to be translated into benefit for patients. Here we review the recently identified central regulatory role for mechanistic/mammalian target of rapamycin complex 2 (mTORC2), a downstream effector of many cancer-causing mutations, in reprogramming the metabolic and epigenetic landscape. This leads to tumor cell survival and cancer drug resistance.
Collapse
|
130
|
MiR-1297 negatively regulates metabolic reprogramming in glioblastoma via repressing KPNA2. Hum Cell 2020; 33:619-629. [PMID: 32124270 DOI: 10.1007/s13577-019-00316-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Cancer cell growth is characterized by reprogrammed glucose metabolism and subsequent high rate of glycolysis. The metabolic reprogramming is essential for cell proliferation and drug resistance of cancer cells including glioblastoma (GBM). MicroRNAs play pivotal roles during GBM development. In the present study, we discovered a significant downregulation of miR-1297 in GBM. Decreased miR-1297 expression was associated with prolonged overall survival of patients with glioma. Overexpression of miR-1297 promoted cell proliferation and glycolysis in GBM cells. Bioinformatic analysis (TargetScan and miRanda) indicated that miR-1297 might target 3'UTR of KPNA2, a key regulator of glycolysis in GBM. The regulation was confirmed in a dual-luciferase reporter assay in GBM cells. Furthermore, overexpression of KPNA2 could reverse miR-1297 mimic induced cell growth arrest and inhibition of glycolysis in GBM cells. Finally, a negative correlation between miR-1297 and KPNA2 mRNA levels was observed in GBM tissues. Collectively, the data demonstrated that the abnormal metabolic reprogramming was driven by miR-1297 in GBM and suggested miR-1297 as a tumor suppressor.
Collapse
|
131
|
EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 2020; 39:2975-2986. [PMID: 32034306 DOI: 10.1038/s41388-020-1199-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Abstract
Cancer metabolism research has recently been revived and its focus expanded from glucose and the Warburg's effects on other nutrients, such as glutamine. The underlying mechanism of oncogenic alterations of glutaminolysis remains unclear. Genetic alterations of EGFR are observed in ~50% of glioblastoma (GBM) patients, and have been found to play important roles in the metabolic abnormalities of GBM. In this study, we found that glutamine metabolism was upregulated after EGFR activation in a GDH1 (glutamate dehydrogenase 1)-dependent manner. Knockdown of GDH1 significantly reduced the cell proliferation, colony formation and tumorigenesis abilities of glioblastoma cells. Furthermore, we showed that GDH1-mediated glutaminolysis was involved in EGF-promoted cell proliferation. EGFR triggered the phosphorylation of ELK1 at Ser 383 through activating MEK/ERK signaling. Phosphorylated ELK1 enriched in the promoter of GDH1 to activate the transcription of GDH1, which then promoted glutamine metabolism. In addition, EGFR activation did not accelerate glutaminolysis in ELK1 knockdown or ELK1 Ser383-mutated cells. Collectively, our findings indicate that EGFR phosphorylates ELK1 to activate GDH1 transcription and glutaminolysis through MEK/ERK pathway, providing new insight into oncogenic alterations of glutamine metabolism.
Collapse
|
132
|
L-asparaginase and 6-diazo-5-oxo-L-norleucine synergistically inhibit the growth of glioblastoma cells. J Neurooncol 2020; 146:469-475. [PMID: 32020477 DOI: 10.1007/s11060-019-03351-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Glioblastoma is an aggressive central nervous system tumor with a 5-year survival rate of < 10%. The standard therapy for glioblastoma is maximal safe resection, followed by radiation therapy and chemotherapy with temozolomide. New approaches to treatment of glioblastoma, such as targeting metabolism, have been studied. The object of this study is to evaluate whether asparagine could be a new target for treatment of glioblastoma. METHODS We investigated a potential treatment for glioblastoma that targets the amino acid metabolism. U251, U87, and SF767 glioblastoma cells were treated with L-asparaginase and/or 6-diazo-5-oxo-L-norleucine (DON). L-asparaginase hydrolyzes asparagine into aspartate and depletes asparagine. L-asparaginase has been used for the treatment of acute lymphoblastic leukemia. DON is a glutamine analog that inhibits several glutamine-utilizing enzymes, including asparagine synthetase. RESULTS Cell viability was measured after 72 h of treatment. MTS assay showed that L-asparaginase suppressed the proliferation of U251, U87, and SF767 cells in a dose-dependent manner. DON also inhibited the proliferation of these cell lines in a dose-dependent manner. Combined treatment with these drugs had a synergistic antiproliferative effect in these cell lines. Exogenous asparagine rescued the effect of inhibition of proliferation by L-asparaginase and DON. The expression of asparagine synthetase mRNA was increased in cells treated with a combination of L-asparaginase and DON. This combined treatment also induced greater apoptosis and autophagy than did single-drug treatment. CONCLUSION The results suggest that the combination of L-asparaginase and DON could be a new therapeutic option for patients with glioblastoma.
Collapse
|
133
|
A novel strategy for glioblastoma treatment combining alpha-cyano-4-hydroxycinnamic acid with cetuximab using nanotechnology-based delivery systems. Drug Deliv Transl Res 2020; 10:594-609. [DOI: 10.1007/s13346-020-00713-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
134
|
Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front Immunol 2020; 10:3137. [PMID: 32038644 PMCID: PMC6990128 DOI: 10.3389/fimmu.2019.03137] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas (GBM) are highly aggressive primary brain tumors. Complex and dynamic tumor microenvironment (TME) plays a crucial role in the sustained growth, proliferation, and invasion of GBM. Several means of intercellular communication have been documented between glioma cells and the TME, including growth factors, cytokines, chemokines as well as extracellular vesicles (EVs). EVs carry functional genomic and proteomic cargo from their parental cells and deliver that information to surrounding and distant recipient cells to modulate their behavior. EVs are emerging as crucial mediators of establishment and maintenance of the tumor by modulating the TME into a tumor promoting system. Herein we review recent literature in the context of GBM TME and the means by which EVs modulate tumor proliferation, reprogram metabolic activity, induce angiogenesis, escape immune surveillance, acquire drug resistance and undergo invasion. Understanding the multifaceted roles of EVs in the niche of GBM TME will provide invaluable insights into understanding the biology of GBM and provide functional insights into the dynamic EV-mediated intercellular communication during gliomagenesis, creating new opportunities for GBM diagnostics and therapeutics.
Collapse
Affiliation(s)
- Anuroop Yekula
- Government General Hospital, Guntur Medical College, Guntur, India
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Keiko Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
135
|
Human biodistribution and radiation dosimetry of [ 18F]DASA-23, a PET probe targeting pyruvate kinase M2. Eur J Nucl Med Mol Imaging 2020; 47:2123-2130. [PMID: 31938892 DOI: 10.1007/s00259-020-04687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To assess the safety, biodistribution, and radiation dosimetry of the novel positron emission tomography (PET) radiopharmaceutical 1-((2-fluoro-6-[[18F]]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in healthy volunteers. METHODS We recruited 5 healthy volunteers who provided a written informed consent. Volunteers were injected with 295.0 ± 8.2 MBq of [18F]DASA-23 intravenously. Immediately following injection, a dynamic scan of the brain was acquired for 15 min. This was followed by serial whole-body PET/MRI scans acquired up to 3 h post-injection. Blood samples were collected at regular intervals, and vital signs monitored pre- and post-radiotracer administration. Regions of interest were drawn around multiple organs, time-activity curves were calculated, and organ uptake and dosimetry were estimated with OLINDA/EXM (version 1.1) software. RESULTS All subjects tolerated the PET/MRI examination, without adverse reactions to [18F]DASA-23. [18F]DASA-23 passively crossed the blood-brain barrier, followed by rapid clearance from the brain. High accumulation of [18F]DASA-23 was noted in organs such as the gallbladder, liver, small intestine, and urinary bladder, suggesting hepatobiliary and urinary clearance. The effective dose of [18F]DASA-23 was 23.5 ± 5.8 μSv/MBq. CONCLUSION We successfully completed a pilot first-in-human study of [18F]DASA-23. Our results indicate that [18F]DASA-23 can be used safely in humans to evaluate pyruvate kinase M2 levels. Ongoing studies are evaluating the ability of [18F]DASA-23 to visualize intracranial malignancies, NCT03539731. TRIAL REGISTRATION ClinicalTrials.gov , NCT03539731 (registered 28 May 2018).
Collapse
|
136
|
Petővári G, Dankó T, Krencz I, Hujber Z, Rajnai H, Vetlényi E, Raffay R, Pápay J, Jeney A, Sebestyén A. Inhibition of Metabolic Shift can Decrease Therapy Resistance in Human High-Grade Glioma Cells. Pathol Oncol Res 2020; 26:23-33. [PMID: 31187466 PMCID: PMC7109188 DOI: 10.1007/s12253-019-00677-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
The high-grade brain malignancy, glioblastoma multiforme (GBM), is one of the most aggressive tumours in central nervous system. The developing resistance against recent therapies and the recurrence rate of GBMs are extremely high. In spite several new ongoing trials, GBM therapies could not significantly increase the survival rate of the patients as significantly. The presence of inter- and intra-tumoral heterogeneity of GBMs arise the problem to find both the pre-existing potential resistant clones and the cellular processes which promote the adaptation mechanisms such as multidrug resistance, stem cell-ness or metabolic alterations, etc. In our work, the in situ metabolic heterogeneity of high-grade human glioblastoma cases were analysed by immunohistochemistry using tissue-microarray. The potential importance of the detected metabolic heterogeneity was tested in three glioma cell lines (grade III-IV) using protein expression analyses (Western blot and WES Simple) and therapeutic drug (temozolomide), metabolic inhibitor treatments (including glutaminase inhibitor) to compare the effects of rapamycin (RAPA) and glutaminase inhibitor combinations in vitro (Alamar Blue and SRB tests). The importance of individual differences and metabolic alterations were observed in mono-therapeutic failures, especially the enhanced Rictor expressions after different mono-treatments in correlation to lower sensitivity (temozolomide, doxycycline, etomoxir, BPTES). RAPA combinations with other metabolic inhibitors were the best strategies except for RAPA+glutaminase inhibitor. These observations underline the importance of multi-targeting metabolic pathways. Finally, our data suggest that the detected metabolic heterogeneity (the high mTORC2 complex activity, enhanced expression of Rictor, p-Akt, p-S6, CPT1A, and LDHA enzymes in glioma cases) and the microenvironmental or treatment induced metabolic shift can be potential targets in combination therapy. Therefore, it should be considered to map tissue heterogeneity and alterations with several cellular metabolism markers in biopsy materials after applying recently available or new treatments.
Collapse
Affiliation(s)
- Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Enikő Vetlényi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Judit Pápay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
137
|
Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer 2020; 20:57-70. [PMID: 31806884 DOI: 10.1038/s41568-019-0226-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
Altered cellular metabolism is a hallmark of gliomas. Propelled by a set of recent technological advances, new insights into the molecular mechanisms underlying glioma metabolism are rapidly emerging. In this Review, we focus on the dynamic nature of glioma metabolism and how it is shaped by the interaction between tumour genotype and brain microenvironment. Recent advances integrating metabolomics with genomics are discussed, yielding new insight into the mechanisms that drive glioma pathogenesis. Studies that shed light on interactions between the tumour microenvironment and tumour genotype are highlighted, providing important clues as to how gliomas respond to and adapt to their changing tissue and biochemical contexts. Finally, a road map for the discovery of potential new glioma drug targets is suggested, with the goal of translating these new insights about glioma metabolism into clinical benefits for patients.
Collapse
Affiliation(s)
- Junfeng Bi
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Sudhir Chowdhry
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Wenjing Zhang
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, UCSD School of Medicine, La Jolla, CA, USA.
- Moores Cancer Center, UCSD School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
138
|
Ji CC, Hu YY, Cheng G, Liang L, Gao B, Ren YP, Liu JT, Cao XL, Zheng MH, Li SZ, Wan F, Han H, Fei Z. A ketogenic diet attenuates proliferation and stemness of glioma stem‑like cells by altering metabolism resulting in increased ROS production. Int J Oncol 2019; 56:606-617. [PMID: 31894296 DOI: 10.3892/ijo.2019.4942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 11/05/2022] Open
Abstract
Abnormal metabolism serves a critical role in the development and progression of different types of malignancies including glioblastoma (GBM), and may therefore serve as a promising target for treatment of cancer. Preclinical studies have indicated that a ketogenic diet (KD) may exhibit beneficial effects in patients with GBM; however, the underlying mechanisms remain incompletely understood. The aim of the present study was to evaluate the effects of a KD on glioma stem‑like cells (GSCs), by culturing patient‑derived primary GSCs as well as a GSC cell line in glucose‑restricted, β‑hydroxybutyrate‑containing medium (BHB‑Glow) which was used to mimic clinical KD treatment. GSCs cultured in BHB‑Glow medium exhibited reduced proliferation and increased apoptosis compared with cells grown in the control medium. Furthermore, decreased expression of stem cell markers, diminished self‑renewal in vitro, and reduced tumorigenic capacity in vivo, providing evidence that the stemness of GSCs was compromised. Mechanistically, culturing in BHB‑Glow medium reduced glucose uptake and inhibited glycolysis in GSCs. Furthermore, culturing in the BHB‑Glow medium resulted in morphological and functional disturbances to the mitochondria of GSCs. These metabolic changes may have reduced ATP production, promoted lactic acid accumulation, and thus, increased the production of reactive oxygen species (ROS) in GSCs. The expression levels and activation of mammalian target of rapamycin, hypoxia‑inducible factor 1 and B‑cell lymphoma 2 were decreased, consistent with the reduced proliferation of GSCs in BHB‑Glow medium. ROS scavenging reversed the inhibitory effects of a KD on GSCs. Taken together, the results demonstrate that treatment with KD inhibited proliferation of GSCs, increased apoptosis and attenuated the stemness in GSCs by increasing ROS production.
Collapse
Affiliation(s)
- Chen-Chen Ji
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi-Yang Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying-Peng Ren
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jin-Tao Liu
- Department of Orthopedic Surgery, 413 Hospital, Zhoushan, Zhejiang 316000, P.R. China
| | - Xiu-Li Cao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Min-Hua Zheng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Han
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
139
|
Pekov SI, Eliferov VA, Sorokin AA, Shurkhay VA, Zhvansky ES, Vorobyev AS, Potapov AA, Nikolaev EN, Popov IA. Inline cartridge extraction for rapid brain tumor tissue identification by molecular profiling. Sci Rep 2019; 9:18960. [PMID: 31831871 PMCID: PMC6908710 DOI: 10.1038/s41598-019-55597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
The development of perspective diagnostic techniques in medicine requires efficient high-throughput biological sample analysis methods. Here, we present an inline cartridge extraction that facilitates the screening rate of mass spectrometry shotgun lipidomic analysis of tissue samples. We illustrate the method by its application to tumor tissue identification in neurosurgery. In perspective, this high-performance method provides new possibilities for the investigation of cancer pathogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vasily A Eliferov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vsevolod A Shurkhay
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Evgeny S Zhvansky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander S Vorobyev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander A Potapov
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Eugene N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation.
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation.
| |
Collapse
|
140
|
Ni W, Xia Y, Luo L, Wen F, Hu D, Bi Y, Qi J. High expression of ALDH1A3 might independently influence poor progression-free and overall survival in patients with glioma via maintaining glucose uptake and lactate production. Cell Biol Int 2019; 44:569-582. [PMID: 31642564 DOI: 10.1002/cbin.11257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
Recent studies have found that the acetaldehyde dehydrogenase 1A3 (ALDH1A3) gene is a marker of glioma stem cells. A total of 115 brain glioma specimens were collected and classified into grade I-IV, while non-tumor brain tissue specimens, taken from 12 patients of vascular malformation surgery, were used as control. ALDH1A3 gene promoter methylation in glioma tissues was detected by pyrosequencing, while immunohistochemistry and western blot were used to detect ALDH1A3 protein expressions in different grades of glioma tissues and normal brain tissues. The expression of ALDH1A3 in the glioma cell line U87 was detected by quantitative real-time polymerase chain reaction and RNA-Seq technology was applied to investigate differentially expressed genes before and after silencing the ALDH1A3 gene. Among the 115 glioma tissue specimens, 50 (43.48%) showed low and 65 (56.52%) high expression of ALDH1A3, but no expression was detected in the control. Univariate and multivariate COX regression analyses showed that the patient's tumor pathological grade, the methylation status of ALDH1A3 promoter, and the expression of ALDH1A3 protein were risk factors for progression-free survival (PFS) and overall survival (OS) (all P < 0.05) and the OS of mice with silenced ALDH1A3 in a glioma nude mouse model was prolonged. U87 experiments revealed that ALDH1A3 expression had significant effects on apoptosis, proliferation, cell cycle, mitochondrial membrane potential, glucose consumption, lactate production, invasion ability, and expression of the pyruvate kinase M2 (PKM2) and hexokinase 2 (HK2) in glioma cells. ALDH1A3 protein expression is a marker for poor PFS and OS in glioma patients.
Collapse
Affiliation(s)
- Wei Ni
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Lin Luo
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Fan Wen
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Dong Hu
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yuxu Bi
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Junhui Qi
- Department of Neurosurgery, Second People's Hospital of Yunnan Province, Kunming, 650021, China
| |
Collapse
|
141
|
Sorokin A, Shurkhay V, Pekov S, Zhvansky E, Ivanov D, Kulikov EE, Popov I, Potapov A, Nikolaev E. Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry. Curr Top Med Chem 2019; 19:1521-1534. [PMID: 31362676 DOI: 10.2174/1568026619666190729154543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.
Collapse
Affiliation(s)
- Anatoly Sorokin
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
| | - Vsevolod Shurkhay
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Stanislav Pekov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Evgeny Zhvansky
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Daniil Ivanov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Emanuel Institute of Biochemical Physics RAS, Moscow, Russian Federation
| | - Eugene E Kulikov
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Federal Research Center "Fundamentals of biotechnology", Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Popov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Alexander Potapov
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Eugene Nikolaev
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| |
Collapse
|
142
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
143
|
Stadlbauer A, Zimmermann M, Doerfler A, Oberndorfer S, Buchfelder M, Coras R, Kitzwögerer M, Roessler K. Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. Neuro Oncol 2019; 20:1536-1546. [PMID: 29718366 DOI: 10.1093/neuonc/noy066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The intratumoral heterogeneity of oxygen metabolism in combination with variable patterns of neovascularization (NV) as well as reprogramming of energy metabolism affects the landscape of tumor microenvironments (TMEs) in glioblastoma. Knowledge of the hypoxic and perivascular niches within the TME is essential for understanding treatment failure. Methods Fifty-two patients with untreated glioblastoma (isocitrate dehydrogenase 1 wild type [IDH1wt]) were examined with a physiological MRI protocol including a multiparametric quantitative blood oxygen level dependent (qBOLD) approach and vascular architecture mapping (VAM). Imaging biomarker information about oxygen metabolism (mitochondrial oxygen tension) and neovascularization (microvascular density and type) were fused for classification of 6 different TMEs: necrosis, hypoxia with/without neovascularization, oxidative phosphorylation (OxPhos), and glycolysis with/without neovascularization. Association of the different TME volume fractions with progression-free survival (PFS) was assessed using Kaplan-Meier analysis and Cox proportional hazards models. Results A common spatial structure of TMEs was detected: central necrosis surrounded by tumor hypoxia (with defective and functional neovasculature) and different TMEs with a predominance of OxPhos and glycolysis for energy production, respectively. The percentage of the different TMEs on the total tumor volume uncovered 2 clearly different subtypes of glioblastoma IDH1wt: a glycolytic dominated phenotype with predominantly functional neovasculature and a necrotic/hypoxic dominated phenotype with approximately 50% of defective neovasculature. Patients with a necrotic/hypoxic dominated phenotype showed significantly shorter PFS (P = 0.035). Conclusions Our non-invasive mapping approach allows for classification of the TME and detection of tumor-supportive niches in glioblastoma which may be helpful for both clinical patient management and research.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Radiology, University Clinic of St Pölten, St Pölten, Austria
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Oberndorfer
- Department of Neurology, University Clinic of St Pölten, St Pölten, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Karl Roessler
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
144
|
Nguyen TTT, Ishida CT, Shang E, Shu C, Torrini C, Zhang Y, Bianchetti E, Sanchez‐Quintero MJ, Kleiner G, Quinzii CM, Westhoff M, Karpel‐Massler G, Canoll P, Siegelin MD. Activation of LXRβ inhibits tumor respiration and is synthetically lethal with Bcl-xL inhibition. EMBO Mol Med 2019; 11:e10769. [PMID: 31468706 PMCID: PMC6783693 DOI: 10.15252/emmm.201910769] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Liver-X-receptor (LXR) agonists are known to bear anti-tumor activity. However, their efficacy is limited and additional insights regarding the underlying mechanism are necessary. By performing transcriptome analysis coupled with global polar metabolite screening, we show that LXR agonists, LXR623 and GW3965, enhance synergistically the anti-proliferative effect of BH3 mimetics in solid tumor malignancies, which is predominantly mediated by cell death with features of apoptosis and is rescued by exogenous cholesterol. Extracellular flux analysis and carbon tracing experiments (U-13 C-glucose and U-13 C-glutamine) reveal that within 5 h, activation of LXRβ results in reprogramming of tumor cell metabolism, leading to suppression of mitochondrial respiration, a phenomenon not observed in normal human astrocytes. LXR activation elicits a suppression of respiratory complexes at the protein level by reducing their stability. In turn, energy starvation drives an integrated stress response (ISR) that up-regulates pro-apoptotic Noxa in an ATF4-dependent manner. Cholesterol and nucleotides rescue from the ISR elicited by LXR agonists and from cell death induced by LXR agonists and BH3 mimetics. In conventional and patient-derived xenograft models of colon carcinoma, melanoma, and glioblastoma, the combination treatment of ABT263 and LXR agonists reduces tumor sizes significantly stronger than single treatments. Therefore, the combination treatment of LXR agonists and BH3 mimetics might be a viable efficacious treatment approach for solid malignancies.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Chiaki Tsuge Ishida
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Enyuan Shang
- Department of Biological SciencesBronx Community CollegeCity University of New YorkBronxNYUSA
| | - Chang Shu
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Consuelo Torrini
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Yiru Zhang
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Elena Bianchetti
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | | | - Giulio Kleiner
- Department of NeurologyColumbia University Medical CenterNew YorkNYUSA
| | | | - Mike‐Andrew Westhoff
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Peter Canoll
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Markus D Siegelin
- Department of Pathology & Cell BiologyColumbia University Medical CenterNew YorkNYUSA
| |
Collapse
|
145
|
Guda MR, Labak CM, Omar SI, Asuthkar S, Airala S, Tuszynski J, Tsung AJ, Velpula KK. GLUT1 and TUBB4 in Glioblastoma Could be Efficacious Targets. Cancers (Basel) 2019; 11:cancers11091308. [PMID: 31491891 PMCID: PMC6771132 DOI: 10.3390/cancers11091308] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and deadly brain tumor, portending a median 13-month survival even following gross total resection with adjuvant chemotherapy and radiotherapy. This prognosis necessitates improved therapies for the disease. A target of interest for novel chemotherapies is the Warburg Effect, which describes the tumor's shift away from oxidative phosphorylation towards glycolysis. Here, we elucidate GLUT1 (Glucose transporter 1) and one of its associated binding partners, TUBB4 (Tubulin 4), as potentially druggable targets in GBM. Using data mining approach, we demonstrate that GLUT1 is overexpressed as a function of tumor grade in astrocytoma's and that its overexpression is associated with poorer prognosis. Using both mass spectrometry performed on hGBM (human glioblastoma patient specimen) and in silico modeling, we show that GLUT1 interacts with TUBB4, and more accurately demonstrates GLUT1's binding with fasentin. Proximity ligation assay (PLA) and immunoprecipitation studies confirm GLUT1 interaction with TUBB4. Treatment of GSC33 and GSC28 cells with TUBB4 inhibitor, CR-42-24, reduces the expression of GLUT1 however, TUBB4 expression is unaltered upon fasentin treatment. Using human pluripotent stem cell antibody array, we demonstrate reduced levels of Oct3/4, Nanog, Sox2, Sox17, Snail and VEGFR2 (Vascular endothelial growth factor receptor 2) upon CR-42-24 treatment. Overall, our data confirm that silencing TUBB4 or GLUT1 reduce GSC tumorsphere formation, self-renewal and proliferation in vitro. These findings suggest GLUT1 and its binding partner TUBB4 as druggable targets that warrant further investigation in GBM.
Collapse
Affiliation(s)
- Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Collin M Labak
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Sara Ibrahim Omar
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Subra Airala
- Department of Health Professions, Rollins College, Winter Park, FL 32789, USA
| | - Jack Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Illinois Neurological Institute, Peoria, IL 61605, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| |
Collapse
|
146
|
Pölönen P, Jawahar Deen A, Leinonen HM, Jyrkkänen HK, Kuosmanen S, Mononen M, Jain A, Tuomainen T, Pasonen-Seppänen S, Hartikainen JM, Mannermaa A, Nykter M, Tavi P, Johansen T, Heinäniemi M, Levonen AL. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene 2019; 38:7473-7490. [PMID: 31444413 DOI: 10.1038/s41388-019-0956-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Abstract
Accumulating evidence suggests that constitutively active Nrf2 has a pivotal role in cancer as it induces pro-survival genes that promote cancer cell proliferation and chemoresistance. The mechanisms of Nrf2 dysregulation and functions in cancer have not been fully characterized. Here, we jointly analyzed the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Atlas (TCGA) multi-omics data in order to identify cancer types where Nrf2 activation is present. We found that Nrf2 is hyperactivated in a subset of glioblastoma (GBM) patients, whose tumors display a mesenchymal subtype, and uncover several different mechanisms contributing to increased Nrf2 activity. Importantly, we identified a positive feedback loop between SQSTM1/p62 and Nrf2 as a mechanism for activation of the Nrf2 pathway. We also show that autophagy and serine/threonine signaling regulates p62 mediated Keap1 degradation. Our results in glioma cell lines indicate that both Nrf2 and p62 promote proliferation, invasion and mesenchymal transition. Finally, Nrf2 activity was associated with decreased progression free survival in TCGA GBM patient samples, suggesting that treatments have limited efficacy if this transcription factor is overactivated. Overall, our findings place Nrf2 and p62 as the key components of the mesenchymal subtype network, with implications to tumorigenesis and treatment resistance. Thus, Nrf2 activation could be used as a surrogate prognostic marker in mesenchymal subtype GBMs. Furthermore, strategies aiming at either inhibiting Nrf2 or exploiting Nrf2 hyperactivity for targeted gene therapy may provide novel treatment options for this subset of GBM.
Collapse
Affiliation(s)
- Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Ashik Jawahar Deen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Hanna M Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Suvi Kuosmanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Mimmi Mononen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Ashish Jain
- Institute of Medical Biology, University of Tromsø, 9037, Tromsø, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P. O. Box 1627, N-0379, Oslo, Norway
| | - Tomi Tuomainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, University of Eastern Finland, P. O. Box 1627, FIN-70211, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, University of Eastern Finland, P. O. Box 1627, FIN-70211, Kuopio, Finland
| | - Matti Nykter
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, P. O. Box 100, FIN-33014, Tampere, Finland
| | - Pasi Tavi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Terje Johansen
- Institute of Medical Biology, University of Tromsø, 9037, Tromsø, Norway
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| |
Collapse
|
147
|
Kessler R, Fleischer M, Springsguth C, Bigl M, Warnke JP, Eschrich K. Prognostic Value of PFKFB3 to PFKFB4 mRNA Ratio in Patients With Primary Glioblastoma (IDH-Wildtype). J Neuropathol Exp Neurol 2019; 78:865-870. [DOI: 10.1093/jnen/nlz067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract
A hallmark of glioblastoma is the high level of aerobic glycolysis. PFKFB3 and PFKFB4 are regulatory glycolytic enzymes, which are overexpressed in glioblastomas. Selective inhibition of these enzymes has emerged as a new approach in tumor therapy. We investigated the ratios of PFKFB3 to PFKFB4 mRNA expression in 66 astrocytic tumors of different malignancy grades. PFKFB3 mRNA levels were considerably higher than those of PFKFB4 in all analyzed tumors. IDH-wildtype glioblastomas showed lower PFKFB3 to PFKFB4 mRNA ratios (7.7:1) than IDH-mutant low-grade astrocytomas (36.5:1), indicating a dependency of the ratio on malignancy grade. In IDH-wildtype glioblastomas exhibiting loss of heterozygosity (LOH) of the PFKFB3 gene locus, the decrease of PFKFB3 mRNA levels was accompanied by lower PFKFB4 mRNA levels, but the PFKFB3 to PFKFB4 mRNA ratio did not differ between tumors with or without PFKFB3 LOH. IDH-wildtype primary glioblastoma patients with high PFKFB3 to PFKFB4 mRNA ratios above the average of 7.7:1 had a significantly longer overall survival time (14 months) than patients with lower ratios (9 months). Our results indicate that low PFKFB3 to PFKFB4 expression ratio is a poor prognostic factor in patients with IDH-wildtype primary glioblastoma and that PFKFB3 and PFKFB4 might represent promising targets for astrocytoma and glioblastoma treatment.
Collapse
Affiliation(s)
- Renate Kessler
- Rudolf Schoenheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, University of Leipzig, Germany
| | | | - Christopher Springsguth
- Rudolf Schoenheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, University of Leipzig, Germany
| | - Marina Bigl
- Rudolf Schoenheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, University of Leipzig, Germany
| | - Jan-Peter Warnke
- Department of Neurosurgery, Paracelsus Hospital, Zwickau, Germany
| | - Klaus Eschrich
- Rudolf Schoenheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, University of Leipzig, Germany
| |
Collapse
|
148
|
Hu X, Matsumoto K, Jung RS, Weston TA, Heizer PJ, He C, Sandoval NP, Allan CM, Tu Y, Vinters HV, Liau LM, Ellison RM, Morales JE, Baufeld LJ, Bayley NA, He L, Betsholtz C, Beigneux AP, Nathanson DA, Gerhardt H, Young SG, Fong LG, Jiang H. GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. eLife 2019; 8:e47178. [PMID: 31169500 PMCID: PMC6594755 DOI: 10.7554/elife.47178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022] Open
Abstract
GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for the generation of lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent from the capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in the capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We use NanoSIMS imaging to show that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells.
Collapse
Affiliation(s)
- Xuchen Hu
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Ken Matsumoto
- VIB-KU Leuven Center for Cancer Biology (CCB)LeuvenBelgium
| | - Rachel S Jung
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Thomas A Weston
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Patrick J Heizer
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Cuiwen He
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Norma P Sandoval
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Christopher M Allan
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Yiping Tu
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Jonsson Comprehensive Cancer Center (JCCC), David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Rochelle M Ellison
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Jazmin E Morales
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Lynn J Baufeld
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Ahmanson Translational Imaging Division, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Ahmanson Translational Imaging Division, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
- Integrated Cardio Metabolic Centre (ICMC)Karolinska InstitutetHuddingeSweden
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Ahmanson Translational Imaging Division, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Holger Gerhardt
- VIB-KU Leuven Center for Cancer Biology (CCB)LeuvenBelgium
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Stephen G Young
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Loren G Fong
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Haibo Jiang
- Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- School of Molecular SciencesUniversity of Western AustraliaPerthAustralia
| |
Collapse
|
149
|
The SR-B1 Receptor as a Potential Target for Treating Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:1805841. [PMID: 31275377 PMCID: PMC6583082 DOI: 10.1155/2019/1805841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022]
Abstract
Purpose The goal of these studies was to provide proof of concept for a novel targeted therapy for Glioblastoma Multiforme (GBM). Methods. These studies involve the evaluation of reconstituted high density lipoprotein (rHDL) nanoparticles (NPs) as delivery agents for the drug, mammalian Target of Rapamycin (mTOR) inhibitor Everolimus (EVR) to GBM cells. Cytotoxicity studies and assessment of downstream effects, including apoptosis, migration, and cell cycle events, were probed, in relation to the expression of scavenger receptor B type 1 (SR-B1) by GBM cells. Results Findings from cytotoxicity studies indicate that the rHDL/EVR formulation was 185 times more potent than free EVR against high SR-B1 expressing cell line (LN 229). Cell cycle analysis revealed that rHDL/EVR treated LN229 cells had a 5.8 times higher apoptotic cell population than those treated with EVR. The sensitivity of GBM cells to EVR treatment was strongly correlated with SR-B1 expression. Conclusions These studies present strong proof of concept regarding the efficacy of delivering EVR and likely other agents, via a biocompatible transport system, targeted to the SR-B1 receptor that is upregulated in most cancers, including GBM. Targeting the SR-B1 receptor could thus lead to effective personalized therapy of GBM.
Collapse
|
150
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|