101
|
Brar MS, Shi M, Hui RKH, Leung FCC. Genomic evolution of porcine reproductive and respiratory syndrome virus (PRRSV) isolates revealed by deep sequencing. PLoS One 2014; 9:e88807. [PMID: 24698958 PMCID: PMC3974674 DOI: 10.1371/journal.pone.0088807] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/15/2014] [Indexed: 02/05/2023] Open
Abstract
Most studies on PRRSV evolution have been limited to a particular region of the viral genome. A thorough genome-wide understanding of the impact of different mechanisms on shaping PRRSV genetic diversity is still lacking. To this end, deep sequencing was used to obtain genomic sequences of a diverse set of 16 isolates from a region of Hong Kong with a complex PRRSV epidemiological record. Genome assemblies and phylogenetic typing indicated the co-circulation of strains of both genotypes (type 1and type 2) with varying Nsp2 deletion patterns and distinct evolutionary lineages (“High Fever”-like and local endemic type). Recombination analyses revealed genomic breakpoints in structural and non-structural regions of genomes of both genotypes with evidence of many recombination events originating from common ancestors. Additionally, the high fold of coverage per nucleotide allowed the characterization of minor variants arising from the quasispecies of each strain. Overall, 0.56–2.83% of sites were found to be polymorphic with respect to cognate consensus genomes. The distribution of minor variants across each genome was not uniform indicating the influence of selective forces. Proportion of variants capable of causing an amino acid change in their respective codons ranged between 25–67% with many predicted to be non-deleterious. Low frequency deletion variants were also detected providing one possible mechanism for their sudden emergence as cited in previous reports.
Collapse
Affiliation(s)
| | - Mang Shi
- Sydney Emerging Infections & Biosecurity Institute, School of Biological Sciences and Sydney Medical School, The University of Sydney, Darlington, Australia
| | - Raymond Kin-Hi Hui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
102
|
Halas D, Simons AM. Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference. Mol Phylogenet Evol 2014; 70:13-28. [DOI: 10.1016/j.ympev.2013.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 07/31/2013] [Accepted: 08/17/2013] [Indexed: 11/25/2022]
|
103
|
Krebes L, Zeidler L, Frankowski J, Bastrop R. (Cryptic) sex in the microsporidian Nosema granulosis--evidence from parasite rDNA and host mitochondrial DNA. INFECTION GENETICS AND EVOLUTION 2013; 21:259-68. [PMID: 24269340 DOI: 10.1016/j.meegid.2013.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 10/11/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
Microsporidia are single-celled, intracellular eukaryotes that parasitise a wide range of animals. The Nosema/Vairimorpha group includes some putative asexual species, and asexuality is proposed to have originated multiple times from sexual ancestors. Here, we studied the variation in the ribosomal DNA (rDNA) of 14 isolates of the presumed apomictic and vertically transmitted Nosema granulosis to evaluate its sexual status. The analysed DNA fragment contained a part of the small-subunit ribosomal gene (SSU) and the entire intergenic spacer (IGS). The mitochondrial cox1 gene of the host Gammarus duebeni (Crustacea) was analysed to temporally calibrate the system and to test the expectation of cophylogeny of host and parasite genealogies. Genetic variability of the SSU gene was very low within and between the isolates. In contrast, intraisolate (within a single host) variability of the IGS felt in two categories, because 12 isolates possess a very high IGS genetic diversity and two isolates were almost invariable in the IGS. This difference suggests variable models of rDNA evolution involving birth-and-death and unexpectedly concerted evolution. An alternative explanation could be a likewise unattended mixed infection of host individuals by more than one parasite strain. Despite considerable genetic divergence between associated host mitochondrial haplotypes, some N. granulosis 'IGS populations' seem not to belong to different gene pools; the relevant tests failed to show significant differences between populations. A set of recombinant IGS sequences made our data incompatible with the model of a solely maternally inherited, asexual species. In line with recent reports, our study supports the hypothesis that some assumed apomictic Microsporidia did not entirely abstain from the evolutionary advantages of sex. In addition, the presented data indicate that horizontal transmission may occur occasionally. This transmission mode could be a survival strategy of N. granulosis whose host often populates ephemeral habitats.
Collapse
Affiliation(s)
- Lukas Krebes
- University of Rostock, Institute of Biological Sciences, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany.
| | - Lisza Zeidler
- University of Rostock, Institute of Biological Sciences, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany
| | - Jens Frankowski
- University of Rostock, Institute of Biological Sciences, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany
| | - Ralf Bastrop
- University of Rostock, Institute of Biological Sciences, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany
| |
Collapse
|
104
|
Shin D, Richards SL, Alto BW, Bettinardi DJ, Smartt CT. Genome sequence analysis of dengue virus 1 isolated in Key West, Florida. PLoS One 2013; 8:e74582. [PMID: 24098658 PMCID: PMC3787005 DOI: 10.1371/journal.pone.0074582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.
Collapse
Affiliation(s)
- Dongyoung Shin
- Department of Entomology and Nematology, University of Florida, Vero Beach, Florida, United States of America
- * E-mail:
| | - Stephanie L. Richards
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, United States of America
| | - Barry W. Alto
- Department of Entomology and Nematology, University of Florida, Vero Beach, Florida, United States of America
| | - David J. Bettinardi
- Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Chelsea T. Smartt
- Department of Entomology and Nematology, University of Florida, Vero Beach, Florida, United States of America
| |
Collapse
|
105
|
Reddy KE, Noh JH, Kim YH, Yoo MS, Doan HTT, Ramya M, Jung SC, Quyen DV, Kang SW. Analysis of the nonstructural and structural polyprotein regions, and complete genome sequences of Israel acute paralysis viruses identified from honeybees (Apis mellifera) in Korea. Virology 2013; 444:211-7. [PMID: 23886494 DOI: 10.1016/j.virol.2013.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
Phylogenetic trees were constructed for 24 partial nucleotide sequences of the nonstructural polyprotein (ORF1) and structural polyprotein regions (ORF2) of Korean IAPV genotypes, as well as eight previously reported IAPV sequences from various countries. Most of the Korean genotypes formed a distinct cluster, separate from other country genotypes. To investigate this phenomenon in more detail, three complete IAPV genome sequences were identified from different regions in Korea, i.e., Korea1, Korea2, and Korea3. These sequences were aligned with eight previously reported complete genome sequences and various genome regions were compared. The Korean IAPVs were very similar to those from China and Israel, but highly diverged from USA and Australian genotypes. Interestingly, they showed greater variability than the USA and Australian genotypes in ORF1, but highly similar to the Australian genotype in the ORF2 region. Thus, genetic recombination may account for the spatial distance between the Korean IAPV genotypes and those from other countries.
Collapse
Affiliation(s)
- Kondreddy Eswar Reddy
- Parasitology and Insect Disease Research Laboratory, Animal and Plant Quarantine Agency, 480 Anyang, 6 dong, Anyang 420-480, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Marková S, Dufresne F, Manca M, Kotlík P. Mitochondrial capture misleads about ecological speciation in the Daphnia pulex complex. PLoS One 2013; 8:e69497. [PMID: 23869244 PMCID: PMC3711805 DOI: 10.1371/journal.pone.0069497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
The North American ecological species Daphniapulicaria and Daphniapulex are thought to have diverged from a common ancestor by adaptation to sympatric but ecologically distinct lake and pond habitats respectively. Based on mtDNA relationships, European D. pulicaria is considered a different species only distantly related to its North American counterpart, but both species share a lactate dehydrogenase (Ldh) allele F supposedly involved in lake adaptation in North America, and the same allele is also carried by the related Holarctic Daphniatenebrosa. The correct inference of the species' ancestral relationships is therefore critical for understanding the origin of their adaptive divergence. Our species tree inferred from unlinked nuclear loci for D. pulicaria and D. pulex resolved the European and North American D. pulicaria as sister clades, and we argue that the discordant mtDNA gene tree is best explained by capture of D. pulex mtDNA by D. pulicaria in North America. The Ldh gene tree shows that F-class alleles in D. pulicaria and D. tenebrosa are due to common descent (as opposed to introgression), with D. tenebrosa alleles paraphyletic with respect to D. pulicaria alleles. That D. tenebrosa still segregates the ancestral and derived amino acids at the two sites distinguishing the pond and lake alleles suggests that D. pulicaria inherited the derived states from the D. tenebrosa ancestry. Our results suggest that some adaptations restricting the gene flow between D. pulicaria and D. pulex might have evolved in response to selection in ancestral environments rather than in the species' current sympatric habitats. The Arctic (D. tenebrosa) populations are likely to provide important clues about these issues.
Collapse
Affiliation(s)
- Silvia Marková
- Institute of Animal Physiology and Genetics, Laboratory of Molecular Ecology, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - France Dufresne
- Département de Biologie, Centre d’Études Nordiques, Université du Québec à Rimouski, Québec, Canada
| | - Marina Manca
- CNR Istituto per lo Studio degli Ecosistemi, Verbania, Italy
| | - Petr Kotlík
- Institute of Animal Physiology and Genetics, Laboratory of Molecular Ecology, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| |
Collapse
|
107
|
Alfonso-Morales A, Martínez-Pérez O, Dolz R, Valle R, Perera CL, Bertran K, Frías MT, Majó N, Ganges L, Pérez LJ. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region. PLoS One 2013; 8:e65999. [PMID: 23805195 PMCID: PMC3689766 DOI: 10.1371/journal.pone.0065999] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
Collapse
Affiliation(s)
| | | | - Roser Dolz
- Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
| | - Rosa Valle
- Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
| | - Carmen L. Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Kateri Bertran
- Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
| | - Maria T. Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Natàlia Majó
- Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Lester J. Pérez
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
- * E-mail:
| |
Collapse
|
108
|
Villabona-Arenas CJ, de Brito AF, de Andrade Zanotto PM. Genomic mosaicism in two strains of Dengue virus type 3. INFECTION GENETICS AND EVOLUTION 2013; 18:202-12. [PMID: 23727343 DOI: 10.1016/j.meegid.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Recombination is a significant factor driving genomic evolution, but it is not well understood in Dengue virus. We used phylogenetic methods to search for recombination in 636 Dengue virus type 3 (DENV-3) genomes and unveiled complex recombination patterns in two strains, which appear to be the outcome of recombination between genotype II and genotype I parental DENV-3 lineages. Our findings of genomic mosaic structures suggest that strand switching during RNA synthesis may be involved in the generation of genetic diversity in dengue viruses.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1734, CEP: 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
109
|
Systematic phylogenetic analysis of influenza A virus reveals many novel mosaic genome segments. INFECTION GENETICS AND EVOLUTION 2013; 18:367-78. [PMID: 23548803 DOI: 10.1016/j.meegid.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/04/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
Recombination plays an important role in shaping the genetic diversity of a number of DNA and RNA viruses. Although some recent studies have reported bioinformatic evidence of mosaic sequences in a variety of influenza A viruses, it remains controversial as to whether these represent bona fide natural recombination events or laboratory artifacts. Importantly, mosaic genome structures can create significant topological incongruence during phylogenetic analyses, which can mislead additional phylogeny-based molecular evolutionary analyses such as molecular clock dating, the detection of selection pressures and phylogeographic inference. As a result, there is a strong need for systematic screenings for mosaic structures within the influenza virus genome database. We used a combination of sequence-based and phylogeny-based methods to identify 388 mosaic influenza genomic segments, of which 332 are previously unreported and are significantly supported by phylogenetic methods. It is impossible, however, to ascertain whether these represent natural recombinants. To facilitate the future identification of recombinants, reference sets of non-recombinant sequences were selected for use in an automatic screening protocol for detecting mosaic sequences. Tests using real and simulated mosaic sequences indicate that our screening protocol is both sensitive (average >90%) and accurate (average >77%) enough to identify a range of different mosaic patterns. The relatively high prevalence of mosaic influenza virus sequences implies that efficient systematic screens, such as that proposed here, should be performed routinely to detect natural recombinant strains, potential laboratory artifacts, and sequencing contaminants either prior to sequences being deposited in GenBank or before they are used for phylogenetic analyses.
Collapse
|
110
|
Norberg P, Roth A, Bergström T. Genetic recombination of tick-borne flaviviruses among wild-type strains. Virology 2013; 440:105-16. [PMID: 23510672 DOI: 10.1016/j.virol.2013.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 12/28/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
Abstract
Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses.
Collapse
Affiliation(s)
- Peter Norberg
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
111
|
Privman E, Wurm Y, Keller L. Duplication and concerted evolution in a master sex determiner under balancing selection. Proc Biol Sci 2013; 280:20122968. [PMID: 23466984 DOI: 10.1098/rspb.2012.2968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transformer (tra) gene is a key regulator in the signalling hierarchy controlling all aspects of somatic sexual differentiation in Drosophila and other insects. Here, we show that six of the seven sequenced ants have two copies of tra. Surprisingly, the two paralogues are always more similar within species than among species. Comparative sequence analyses indicate that this pattern is owing to the ongoing concerted evolution after an ancestral duplication rather than independent duplications in each of the six species. In particular, there was strong support for inter-locus recombination between the paralogues of the ant Atta cephalotes. In the five species where the location of paralogues is known, they are adjacent to each other in four cases and separated by only few genes in the fifth case. Because there have been extensive genomic rearrangements in these lineages, this suggests selection acting to conserve their synteny. In three species, we also find a signature of positive selection in one of the paralogues. In three bee species where information is available, the tra gene is also duplicated, the copies are adjacent and in at least one species there was recombination between paralogues. These results suggest that concerted evolution plays an adaptive role in the evolution of this gene family.
Collapse
Affiliation(s)
- Eyal Privman
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | | | | |
Collapse
|
112
|
Abstract
Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts.
Collapse
|
113
|
A scalable and flexible approach for investigating the genomic landscapes of phylogenetic incongruence. Mol Phylogenet Evol 2013; 66:1067-74. [DOI: 10.1016/j.ympev.2012.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 11/19/2022]
|
114
|
Behura SK, Severson DW. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection. BMC Microbiol 2013; 13:37. [PMID: 23410119 PMCID: PMC3598932 DOI: 10.1186/1471-2180-13-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/21/2013] [Indexed: 01/26/2023] Open
Abstract
Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon recombination in DENV and suggests that within codons, genetic recombination has a significant role in maintaining extensive purifying selection of DENV in natural populations. Our study also suggests that fixation of beneficial mutations may lead to virus evolution via translational selection of specific sites in the DENV genome.
Collapse
Affiliation(s)
- Susanta K Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, 46556, Notre Dame, IN, USA
| | | |
Collapse
|
115
|
Ironside JE. Diversity and recombination of dispersed ribosomal DNA and protein coding genes in microsporidia. PLoS One 2013; 8:e55878. [PMID: 23405227 PMCID: PMC3566094 DOI: 10.1371/journal.pone.0055878] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/04/2013] [Indexed: 01/26/2023] Open
Abstract
Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a possibility with profound implications for the evolution of virulence, host range and drug resistance in these species.
Collapse
Affiliation(s)
- Joseph Edward Ironside
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.
| |
Collapse
|
116
|
CHEN SP. Molecular evolution and epidemiology of four serotypes of dengue virus in Thailand from 1973 to 2007. Epidemiol Infect 2013; 141:419-24. [PMID: 22584140 PMCID: PMC9167652 DOI: 10.1017/s0950268812000908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/18/2012] [Accepted: 04/14/2012] [Indexed: 11/05/2022] Open
Abstract
Thailand was a hyper-endemic country for dengue with co-circulation of four serotypes and tens of thousands of infected cases annually. Taking into consideration the large number of local dengue virus (DENV) sequences available in GenBank, Thailand was the most ideal locality to study co-evolution of DENV. Therefore, we undertook a large-scale molecular epidemiological analysis of all DENV strains isolated in Thailand. In this study, we demonstrated that DENV strains of four serotypes post-1990 grouped into distinct clades, and that specific mutations in the envelope protein were first confirmed in these clades. Compared to the DENV1, DENV2 and DENV3 clades, the DENV4 clade evolved markedly more slowly (6·4 × 10-5 substitutions/site per year). Our results also showed that the genetic diversity of the predominant genotype of each serotype tended to slightly increase over time with fluctuating changes, followed by a stationary phase after 2000. This suggests that the four DENV clades became the predominant strains due to DENV possessing improved fitness after long-term selection.
Collapse
Affiliation(s)
- S. P. CHEN
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| |
Collapse
|
117
|
Chin-inmanu K, Suttitheptumrong A, Sangsrakru D, Tangphatsornruang S, Tragoonrung S, Malasit P, Tungpradabkul S, Suriyaphol P. Feasibility of using 454 pyrosequencing for studying quasispecies of the whole dengue viral genome. BMC Genomics 2012; 13 Suppl 7:S7. [PMID: 23281804 PMCID: PMC3521222 DOI: 10.1186/1471-2164-13-s7-s7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dengue is the world's most common mosquito-borne viral disease. Poor proofreading by RNA polymerase during its replication results in the accumulation of mutations in its genome. This leads to a diversity of genotypes in the viral population termed quasispecies. Quasispecies play an important role in disease severity. The study of quasispecies in dengue has been hindered because of the requirement for large amounts of cloning and sequencing, which could be overcome by 454 pyrosequencing. In this study, we attempted to demonstrate the feasibility of using 454 pyrosequencing to study genome diversity of dengue virus quasispecies by sequencing a pool of known dengue viral strains. RESULTS Two sets of dengue DNA templates were sequenced by 454/Roche GS FLX. The total number of reads for data 1 and data 2 were 54,440 and 134,441, with average lengths of 221 and 232 bp, respectively. Reads containing ambiguous base Ns were excluded (6.00% in data 1, 7.05% in data 2). More than 99% of reads could be aligned back to the correct serotypes by BLAST. The reads covered the whole genome without any gaps, and the minimum coverage depth was 50×. Frequencies of known strains detected from each data set were highly correlated with the input ratios. We also explored criteria for filtering error reads and artifacts from true variations. CONCLUSIONS This study showed that 454 pyrosequencing, coupled with our analysis procedure, could sequence the whole genome of dengue virus with good coverage. The ratio of detected variants in the sequencing data reflected the starting ratio, proving that the proposed technique could be used to study the frequencies of variants in quasispecies.
Collapse
Affiliation(s)
- Kwanrutai Chin-inmanu
- Bioinformatics and Data Management for Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Routh A, Ordoukhanian P, Johnson JE. Nucleotide-resolution profiling of RNA recombination in the encapsidated genome of a eukaryotic RNA virus by next-generation sequencing. J Mol Biol 2012; 424:257-69. [PMID: 23069247 PMCID: PMC3502730 DOI: 10.1016/j.jmb.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022]
Abstract
Next-generation sequencing has been used in numerous investigations to characterize and quantify the genetic diversity of a virus sample through the mapping of polymorphisms and measurement of mutation frequencies. Next-generation sequencing has also been employed to identify recombination events occurring within the genomes of higher organisms, for example, detecting alternative RNA splicing events and oncogenic chromosomal rearrangements. Here, we combine these two approaches to profile RNA recombination within the encapsidated genome of a eukaryotic RNA virus, flock house virus. We detect hundreds of thousands of recombination events, with single-nucleotide resolution, which result in diversity in the encapsidated genome rivaling that due to mismatch mutation. We detect previously identified defective RNAs as well as many other abundant and novel defective RNAs. Our approach is exceptionally sensitive and unbiased and requires no prior knowledge beyond the virus genome sequence. RNA recombination is a powerful driving force behind the evolution and adaptation of RNA viruses. The strategy implemented here is widely applicable and provides a highly detailed description of the complex mutational landscape of the transmissible viral genome.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
119
|
Genomic sequences of two novel levivirus single-stranded RNA coliphages (family Leviviridae): evidence for recombinationin environmental strains. Viruses 2012; 4:1548-68. [PMID: 23170172 PMCID: PMC3499819 DOI: 10.3390/v4091548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages are likely the most abundant entities in the aquatic environment, yet knowledge of their ecology is limited. During a fecal source-tracking study, two genetically novel Leviviridae strains were discovered. Although the novel strains were isolated from coastal waters 1130 km apart (North Carolina and Rhode Island, USA), these strains shared 97% nucleotide similarity and 97–100% amino acid similarity. When the novel strains were compared to nine Levivirus genogroup I strains, they shared 95–100% similarity among the maturation, capsid and lysis proteins, but only 84–85% in the RNA-dependent RNA polymerase gene. Further bioinformatic analyses suggested a recombination event occurred. To the best of our knowledge, this is the first description of viral recombinants in environmental Leviviridae ssRNA bacteriophages.
Collapse
|
120
|
Hoshino H, Hino K, Miyakawa H, Takahashi K, Akbar SMF, Mishiro S. Inter-genotypic recombinant hepatitis C virus strains in Japan noted by discrepancies between immunoassay and sequencing. J Med Virol 2012; 84:1018-24. [PMID: 22585717 DOI: 10.1002/jmv.23300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic recombination plays a significant role in the survival and evolution of hepatitis C virus (HCV), but methodological limitations have hindered the exploration of genetic recombination. HCV serotypes were evaluated in 104 patients with chronic hepatitis C when they initially presented in hospitals. Subsequently, HCV genotypes were analyzed using primers for core gene and NS5B gene. Near-complete nucleotide sequences of eight HCV isolates from two suspected patients with 2b/1b recombinant HCV were analyzed by amplification of nine overlapping regions of HCV-specific oligonucleotide primers at different time points: (i) at the first admission; (ii) before and (iii) after interferon therapy; and (iv) after development of hepatocellular carcinoma. The nucleotide sequence of eight HCV isolates obtained was 9,321-9,471 nucleotides in length, comprising a single ORF (polyprotein of 3,014 amino acids.) and segregated into discordant genotypes of 2b and 1b HCV with a recombination junction in NS2. This study highlights the need for more precise characterization of HCV in clinical samples where there is a discrepancy between immunoassays and sequencing. It also demonstrates the circulation of novel inter-genotypic recombinant HCV in Japan, because the cross over point of 2b/1b recombinant HCV in eight clinical isolates of these two patients differed from previously reported HCV recombinant from the Philippines and Japan.
Collapse
|
121
|
Complex dynamic of dengue virus serotypes 2 and 3 in Cambodia following series of climate disasters. INFECTION GENETICS AND EVOLUTION 2012; 15:77-86. [PMID: 22677620 DOI: 10.1016/j.meegid.2012.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/13/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
Abstract
The Dengue National Control Program was established in Cambodia in 2000 and has reported between 10,000 and 40,000 dengue cases per year with a case fatality rate ranging from 0.7 to 1.7. In this study 39 DENV-2 and 57 DENV-3 viruses isolated from patients between 2000 and 2008 were fully sequenced. Five DENV2 and four DENV3 distinct lineages with different dynamics were identified. Each lineage was characterized by the presence of specific mutations with no evidence of recombination. In both DENV-2 and DENV-3 the lineages present prior to 2003 were replaced after that date by unrelated lineages. After 2003, DENV-2 lineages D2-3 and D2-4 cocirculated until 2007 when they were almost completely replaced by a lineage D2-5 which emerged from D2-3 Conversely, all DENV-3 lineages remained, diversified and cocirculated with novel lineages emerging. Years 2006 and 2007 were marked by a high prevalence of DENV-3 and 2007 with a large dengue outbreak and a high proportion of patients with severe disease. Selective sweeps in DENV-1 and DENV-2 were linked to immunological escape to a predominately DENV-3-driven immunological response. The complex dynamic of dengue in Cambodia in the last ten years has been associated with a combination of stochastic climatic events, cocirculation, coevolution, adaptation to different vector populations, and with the human population immunological landscape.
Collapse
|
122
|
Martínez N, Brandão PE, de Souza SP, Barrera M, Santana N, de Arce HD, Pérez LJ. Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene. INFECTION GENETICS AND EVOLUTION 2012; 12:1870-8. [PMID: 22634277 PMCID: PMC7106151 DOI: 10.1016/j.meegid.2012.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022]
Abstract
Bovine coronavirus has been associated with diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract infections in calves and feedlot cattle. In Cuba, the presence of BCoV was first reported in 2006. Since then, sporadic outbreaks have continued to occur. This study was aimed at deepening the knowledge of the evolution, molecular markers of virulence and epidemiology of BCoV in Cuba. A total of 30 samples collected between 2009 and 2011 were used for PCR amplification and direct sequencing of partial or full S gene. Sequence comparison and phylogenetic studies were conducted using partial or complete S gene sequences as phylogenetic markers. All Cuban bovine coronavirus sequences were located in a single cluster supported by 100% bootstrap and 1.00 posterior probability values. The Cuban bovine coronavirus sequences were also clustered with the USA BCoV strains corresponding to the GenBank accession numbers EF424621 and EF424623, suggesting a common origin for these viruses. This phylogenetic cluster was also the only group of sequences in which no recombination events were detected. Of the 45 amino acid changes found in the Cuban strains, four were unique.
Collapse
Affiliation(s)
- Nadia Martínez
- Centro Nacional de Sanidad Agropecuaria, La Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
123
|
Bertrand Y, Töpel M, Elväng A, Melik W, Johansson M. First dating of a recombination event in mammalian tick-borne flaviviruses. PLoS One 2012; 7:e31981. [PMID: 22384119 PMCID: PMC3285191 DOI: 10.1371/journal.pone.0031981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination.
Collapse
Affiliation(s)
- Yann Bertrand
- Department of Plant and Environmental Sciences, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
124
|
Thai KTD, Henn MR, Zody MC, Tricou V, Nguyet NM, Charlebois P, Lennon NJ, Green L, de Vries PJ, Hien TT, Farrar J, van Doorn HR, de Jong MD, Birren BW, Holmes EC, Simmons CP. High-resolution analysis of intrahost genetic diversity in dengue virus serotype 1 infection identifies mixed infections. J Virol 2012; 86:835-43. [PMID: 22090119 PMCID: PMC3255838 DOI: 10.1128/jvi.05985-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/17/2011] [Indexed: 11/20/2022] Open
Abstract
Little is known about the rate at which genetic variation is generated within intrahost populations of dengue virus (DENV) and what implications this diversity has for dengue pathogenesis, disease severity, and host immunity. Previous studies of intrahost DENV variation have used a low frequency of sampling and/or experimental methods that do not fully account for errors generated through amplification and sequencing of viral RNAs. We investigated the extent and pattern of genetic diversity in sequence data in domain III (DIII) of the envelope (E) gene in serial plasma samples (n = 49) taken from 17 patients infected with DENV type 1 (DENV-1), totaling some 8,458 clones. Statistically rigorous approaches were employed to account for artifactual variants resulting from amplification and sequencing, which we suggest have played a major role in previous studies of intrahost genetic variation. Accordingly, nucleotide sequence diversities of viral populations were very low, with conservative estimates of the average levels of genetic diversity ranging from 0 to 0.0013. Despite such sequence conservation, we observed clear evidence for mixed infection, with the presence of multiple phylogenetically distinct lineages present within the same host, while the presence of stop codon mutations in some samples suggests the action of complementation. In contrast to some previous studies we observed no relationship between the extent and pattern of DENV-1 genetic diversity and disease severity, immune status, or level of viremia.
Collapse
Affiliation(s)
- Khoa T D Thai
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Vidovic S, Horsman GB, Liao M, Dillon JAR. Influence of conserved and hypervariable genetic markers on genotyping circulating strains of Neisseria gonorrhoeae. PLoS One 2011; 6:e28259. [PMID: 22163288 PMCID: PMC3233552 DOI: 10.1371/journal.pone.0028259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Presently there is no vaccine against Neisseria gonorrhoeae and therefore accurate information on gonococcal transmission plays a crucial role for interventions designed to limit the spread of infections caused by this microorganism. We evaluated the impact of two different categories of genetic markers, (i) concatenated sequences of 10 housekeeping genes and (ii) hypervariable porB DNA sequences, on the genetic relatedness and subsequently on genotyping analysis of this human pathogen. Eighty gonococcal isolates from Canada, China, the US, Argentina, Venezuela and Chile, collected over different times, were analyzed. Our results show that the choice of genetic marker had a profound effect on the interpretation of genotyping results associated with N. gonorrhoeae. The concatenated sequences of the housekeeping genes preserved the genetic relatedness of closely related isolates, enabling detection of the predominant strains circulating within a community (Saskatchewan, Canada) over an extended period of time. In contrast, a genetic marker based on antigen gene, porB, may lead to a failure to detect these predominant circulating strains. Based on the analysis of the DNA sequences of the 10 housekeeping genes, we identified two major clonal complexes, CC33 and CC22, which comprised STs from China, and Argentina as well as two STs from Canada. Several minor clonal complexes were observed among isolates from Saskatchewan. eBURST analysis suggested that the majority of the tested gonococcal isolates from Saskatchewan, Canada were endemic, with only a couple of genotypes introduced.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Greg B. Horsman
- Saskatchewan Disease Control Laboratory, Regina, Saskatchewan, Canada
| | - Mingmin Liao
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
126
|
Kühnert D, Wu CH, Drummond AJ. Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2011; 11:1825-41. [PMID: 21906695 PMCID: PMC7106223 DOI: 10.1016/j.meegid.2011.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022]
Abstract
Epidemic modeling of infectious diseases has a long history in both theoretical and empirical research. However the recent explosion of genetic data has revealed the rapid rate of evolution that many populations of infectious agents undergo and has underscored the need to consider both evolutionary and ecological processes on the same time scale. Mathematical epidemiology has applied dynamical models to study infectious epidemics, but these models have tended not to exploit--or take into account--evolutionary changes and their effect on the ecological processes and population dynamics of the infectious agent. On the other hand, statistical phylogenetics has increasingly been applied to the study of infectious agents. This approach is based on phylogenetics, molecular clocks, genealogy-based population genetics and phylogeography. Bayesian Markov chain Monte Carlo and related computational tools have been the primary source of advances in these statistical phylogenetic approaches. Recently the first tentative steps have been taken to reconcile these two theoretical approaches. We survey the Bayesian phylogenetic approach to epidemic modeling of infection diseases and describe the contrasts it provides to mathematical epidemiology as well as emphasize the significance of the future unification of these two fields.
Collapse
|
127
|
Cui J, Gao M, Ren X. Phylogeny and homologous recombination in Chikungunya viruses. INFECTION GENETICS AND EVOLUTION 2011; 11:1957-63. [PMID: 21925290 DOI: 10.1016/j.meegid.2011.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 05/24/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
The periodic and recent outbreaks of endemic Chikungunya virus (CHIKV) infection have jeopardized the public health in wider geographical regions. Particularly, full genome-based phylogenetic analyses and recombination of CHIKV have rarely been reported. In this study, phylogenetic and recombination analyses were performed on 122 complete CHIKV genomes. Three major phylogroups were identified which included West African genotype (group I); Asian genotype (group II) as well as ESCA and Indian Ocean genotype (group III). The latter was divided into three subgroups: East/South/Central African subgroup (IIIa and b) and Indian Ocean and Asian subgroup (IIIc). Re-emerging of the CHIKV in Asian countries gave rise to a novel subgroup. Two potential recombination events were found; nevertheless, neither of both was supported by further phylogenetic and statistical analyses. These data refine the phylogeny of the currently available CHIKVs and homologous recombination did not contribute to the genetic diversity of these viruses.
Collapse
Affiliation(s)
- Jin Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | | | | |
Collapse
|
128
|
Chen R, Vasilakis N. Dengue--quo tu et quo vadis? Viruses 2011; 3:1562-608. [PMID: 21994796 PMCID: PMC3187692 DOI: 10.3390/v3091562] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 02/08/2023] Open
Abstract
Dengue viruses (DENV) are by far the most important arboviral pathogens in the tropics around the world, putting at risk of infection nearly a third of the global human population. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise four antigenically distinct serotypes (DENV-1-4). Although they share almost identical epidemiological features, they are genetically distinct. Phylogenetic analyses have revealed valuable insights into the origins, epidemiology and the forces that shape DENV evolution in nature. In this review, we examine the current status of DENV evolution, including but not limited to rates of evolution, selection pressures, population sizes and evolutionary constraints, and we discuss how these factors influence transmission, pathogenesis and emergence.
Collapse
Affiliation(s)
- Rubing Chen
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
129
|
McGee CE, Tsetsarkin KA, Guy B, Lang J, Plante K, Vanlandingham DL, Higgs S. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus. PLoS One 2011; 6:e23247. [PMID: 21826243 PMCID: PMC3149644 DOI: 10.1371/journal.pone.0023247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.
Collapse
Affiliation(s)
- Charles E McGee
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Recombination occurs in many RNA viruses and can be of major evolutionary significance. However, rates of recombination vary dramatically among RNA viruses, which can range from clonal to highly recombinogenic. Here, we review the factors that might explain this variation in recombination frequency and show that there is little evidence that recombination is favoured by natural selection to create advantageous genotypes or purge deleterious mutations, as predicted if recombination functions as a form of sexual reproduction. Rather, recombination rates seemingly reflect larger-scale patterns of viral genome organization, such that recombination may be a mechanistic by-product of the evolutionary pressures acting on other aspects of virus biology.
Collapse
Affiliation(s)
- Etienne Simon-Loriere
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, The Pennsylvania State University, University Park, USA.
| | | |
Collapse
|
131
|
Duong V, Simmons C, Gavotte L, Viari A, Ong S, Chantha N, Lennon NJ, Birren BW, Vong S, Farrar JJ, Henn MR, Deubel V, Frutos R, Buchy P. Genetic diversity and lineage dynamic of dengue virus serotype 1 (DENV-1) in Cambodia. INFECTION GENETICS AND EVOLUTION 2011; 15:59-68. [PMID: 21757030 DOI: 10.1016/j.meegid.2011.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/12/2011] [Accepted: 06/27/2011] [Indexed: 11/28/2022]
Abstract
In Cambodia, dengue virus (DENV) was first isolated in 1963 and has become endemic with peak epidemic during raining season. Since 2000, the Dengue National Control Program has reported from 10,000 to 40,000 cases per year with fatality rates ranging from 0.7 to 1.7. All four dengue serotypes are found circulating in Cambodia with alternative predominance of serotypes DENV-2 and DENV-3. The DENV-1 represents from 5% to 20% of all circulating viruses, depending upon the year. In this work, 79 clinical strains of DENV-1 were isolated between 2000 and 2009 and their genome fully sequenced. Four distinct lineages with different dynamics were identified. The main evolutionary drive was negative selective pressure but each lineage was characterized by the presence of specific mutations acquired through evolution. Coexistence, extinction and replacement of lineages occurred over the 10-year period. Lineages 1, 2 and 3 were all detected since 2000-2002 and disappeared in 2003, 2004-2005 and 2007, respectively. Lineages 1 and 2 displayed different dynamics. Lineage 1 was very diverse whereas lineage 2 was very homogeneous. Lineage 4 which derived from lineage 3 in 2003 remained the only one at the end of the sampling period in 2008-2009 owing to a selective sweep. The lineages dynamic of DENV-1 viruses and consequences for molecular epidemiology are discussed.
Collapse
Affiliation(s)
- Veasna Duong
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, 5 Monivong Boulevard, PO Box 983, Phnom Penh, Cambodia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS One 2011; 6:e20843. [PMID: 21731626 PMCID: PMC3120775 DOI: 10.1371/journal.pone.0020843] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/10/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont. However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and Dirofilariinae, from mammals. METHODOLOGY/PRINCIPAL FINDINGS We investigated the Wolbachia distribution testing 35 filarial species, including 28 species and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent analysis, and cocladogenesis analysis. (i) Among the newly screened Onchocercinae from mammals eight species harbour Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii) Wolbachia are not detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii) Supergroup F Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv) Type F Wolbachia infect the intestinal cells and somatic female genital tract. (v) Among Oswaldofilariinae, Waltonellinae and Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected. CONCLUSIONS/SIGNIFICANCE The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F Wolbachia, modify the current view on the role and evolution of the endosymbiont and their hosts. Further genomic analyses on some of the newly sampled species are welcomed to decipher the open questions.
Collapse
|
133
|
Complex patterns of speciation in cosmopolitan “rock posy” lichens – Discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evol 2011; 59:587-602. [DOI: 10.1016/j.ympev.2011.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
|
134
|
Abstract
Throughout the living world, genetic recombination and nucleotide substitution are the primary processes that create the genetic variation upon which natural selection acts. Just as analyses of substitution patterns can reveal a great deal about evolution, so too can analyses of recombination. Evidence of genetic recombination within the genomes of apparently asexual species can equate with evidence of cryptic sexuality. In sexually reproducing species, nonrandom patterns of sequence exchange can provide direct evidence of population subdivisions that prevent certain individuals from mating. Although an interesting topic in its own right, an important reason for analysing recombination is to account for its potentially disruptive influences on various phylogenetic-based molecular evolution analyses. Specifically, the evolutionary histories of recombinant sequences cannot be accurately described by standard bifurcating phylogenetic trees. Taking recombination into account can therefore be pivotal to the success of selection, molecular clock and various other analyses that require adequate modelling of shared ancestry and draw increased power from accurately inferred phylogenetic trees. Here, we review various computational approaches to studying recombination and provide guidelines both on how to gain insights into this important evolutionary process and on how it can be properly accounted for during molecular evolution studies.
Collapse
Affiliation(s)
- Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
135
|
Gazis R, Rehner S, Chaverri P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 2011; 20:3001-13. [PMID: 21557783 DOI: 10.1111/j.1365-294x.2011.05110.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The estimation of species diversity in fungal endophyte communities is based either on species counts or on the assignment of operational taxonomic units (OTUs). Consequently, the application of different species recognition criteria affects not only diversity estimates but also the ecological hypotheses that arise from those observations. The main objective of the study was to examine how the choice and number of genetic markers and species delimitation criteria influence biodiversity estimates. Here, we compare approaches to defining species boundaries in three dominant species complexes of tropical endophytes, specially Colletotrichum gloeosporioides agg., Pestalotiopsis microspora agg. and Trichoderma harzianum agg., from two Amazonian trees: Hevea brasiliensis and H. guianensis. Molecular tools were used to describe and compare the diversity of the different assemblages. Multilocus phylogenetic analyses [gpd, internal transcribed spacer (ITS) and tef1] and modern techniques for phylogenetic species delimitation were overlaid with ecological data to recognize putative species or OTUs. The results demonstrate that ITS alone generally underestimates the number of species predicted by other nuclear loci. These results question the use of ITS and arbitrary divergence thresholds for species delimitation.
Collapse
Affiliation(s)
- Romina Gazis
- Department of Plant Sciences and Landscape Architecture, University of Maryland, 2112 Plant Sciences Building, College Park, MD 20742, USA.
| | | | | |
Collapse
|
136
|
Hyder MZ, Shah SH, Hameed S, Naqvi SMS. Evidence of recombination in the Banana bunchy top virus genome. INFECTION GENETICS AND EVOLUTION 2011; 11:1293-300. [PMID: 21539936 DOI: 10.1016/j.meegid.2011.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
Viruses serve as good model for evolutionary studies, owing to their short generation times and small genomes. Banana bunchy top virus (BBTV) is a significant subject being multicomponent circular single stranded DNA virus. BBTV belongs to family Nanoviridae and contains DNA-R, -U3, -S, -M, -C, and -N as integral genomic components. Evolutionary studies have shown genetic re-assortment of components among its isolates and revealed a concerted type evolution in non-coding regions of its genome. The DNA U3 having been shown as the most diverse component in our previous studies, was subjected to sequencing from some Pakistani isolates for the first time. Sequence analysis revealed intergenomic recombination in DNA-U3 among the isolates of two sub-groups and a very rare intragenomic recombination in Pakistani BBTV population. This indicates that like other evolutionary processes including intergenomic recombination, intragenomic recombination among the genomic components of the same isolate may also have a significant contribution in the evolution of BBTV genome. Intragenomic recombination therefore appears to be a unique way to generate genetic diversity in the multicomponent ssDNA viruses.
Collapse
Affiliation(s)
- Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Islamabad 44000, Pakistan
| | | | | | | |
Collapse
|
137
|
Song G, Hsu CH, Riemer C, Miller W. Evaluation of methods for detecting conversion events in gene clusters. BMC Bioinformatics 2011; 12 Suppl 1:S45. [PMID: 21342577 PMCID: PMC3044302 DOI: 10.1186/1471-2105-12-s1-s45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Gene clusters are genetically important, but their analysis poses significant computational challenges. One of the major reasons for these difficulties is gene conversion among the duplicated regions of the cluster, which can obscure their true relationships. Many computational methods for detecting gene conversion events have been released, but their performance has not been assessed for wide deployment in evolutionary history studies due to a lack of accurate evaluation methods. RESULTS We designed a new method that simulates gene cluster evolution, including large-scale events of duplication, deletion, and conversion as well as small mutations. We used this simulation data to evaluate several different programs for detecting gene conversion events. CONCLUSIONS Our evaluation identifies strengths and weaknesses of several methods for detecting gene conversion, which can contribute to more accurate analysis of gene cluster evolution.
Collapse
Affiliation(s)
- Giltae Song
- Center for Comparative Genomics and Bioinformatics, 506 Wartik Lab, Pennsylvania State University, University Park, PA 16802, USA
| | - Chih-Hao Hsu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cathy Riemer
- Center for Comparative Genomics and Bioinformatics, 506 Wartik Lab, Pennsylvania State University, University Park, PA 16802, USA
| | - Webb Miller
- Center for Comparative Genomics and Bioinformatics, 506 Wartik Lab, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
138
|
First complete genomic characterization of two tick-borne encephalitis virus isolates obtained from wild rodents in South Korea. Virus Genes 2011; 42:307-16. [PMID: 21286797 DOI: 10.1007/s11262-011-0575-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/14/2011] [Indexed: 12/30/2022]
Abstract
We determined for the first time the complete genome sequences of two Korean strains of the tick-borne encephalitis virus (TBEV), designated KrM 93 and KrM 213, isolated from the lung tissues of wild rodents in 2006. The genomes are 11,097 nucleotides (nt) in length and consist of a 132 nt 5'-noncoding region (NCR), a 10,245 nt open reading frame (ORF) containing 10 viral protein-coding regions (3,415 amino acids), and a 720 nt 3'-NCR. Compared with the 31 fully sequenced TBEV strains currently available, KrM 93 and KrM 213 show genomic nucleotide (and deduced amino acid) sequence divergences ranging from 1.8 (0.7) to 19.2 (26.6)% and 1.9 (0.8) to 19.3 (26.7)%, respectively. Phylogenetic and recombination analyses based on the complete genome sequence were performed to identify genetic variations and relationships between the TBEV strains. These showed that the Korean TBEV strains clustered with the Western subtype rather than with Far-Eastern or Siberian subtypes, and phylogenetic trees derived from capsid (C), envelope (E), nonstructural (NS) 4B and NS5 regions represented the same branching pattern shown by the complete genome-based tree. Although no recombination events were identified in these two Korean strains, 11 putative recombination events were identified within the NS5 regions or in the 3'-NCRs of TBEV strains in general. The results provide insight into the genetics of TBEV strains to understand the molecular epidemiology, genetic diversity, and evolution of TBEV.
Collapse
|
139
|
Mes THM, van Doornum GJJ. Recombination in hepatitis C virus genotype 1 evaluated by phylogenetic and population-genetic methods. J Gen Virol 2010; 92:279-86. [PMID: 21068218 DOI: 10.1099/vir.0.024414-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although hepatitis C virus (HCV) is a major cause of viral hepatitis and hepatocellular carcinoma, many aspects of its evolution remain poorly understood. Relevant to its evolution and the development of antiviral drug resistance is the role of recombination in HCV, which has not been resolved using phylogenetic tests. In line with previous studies, we found no strong support for a role of recombination in the dominant subtypes 1A and 1B using phylogenetic approaches. In contrast, signatures of gene conversion were abundant if a population recombination model, which takes into account diversity within and between groups, was used (9676 gene conversion signatures between the genomes of subtypes 1A and 1B and 170 between the NS5A regions of subtypes 1A and 1B and the minor subtypes 1c-1g). The gene conversion signatures coincided with a striking lack of diagnostically informative sites between subtypes and a large number of shared mutations between complete subtype 1A and 1B genomes (0.76 and 62.2 % of nucleotide sites, respectively). Maximum-likelihood trees revealed significant topological incongruence among conserved PFAM domains and genome regions targeted by diagnostic assays, which underpins a major role for recombination. The same results were obtained with smaller numbers of genomes and with only synonymous sites. Topological concordance increased only marginally if larger genome regions were compared. The level of recombination in HCV subtype 1, which is probably significantly higher than can currently be measured, also illustrates the complexity of designing diagnostic assays based on the unusual patterns of genomic diversity of HCV.
Collapse
Affiliation(s)
- Ted H M Mes
- Department of Pathology, University Medical Centre Groningen, Hanzeplein 1, EA10, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | |
Collapse
|
140
|
Koundal V, Haq QMR, Praveen S. Characterization, genetic diversity, and evolutionary link of Cucumber mosaic virus strain New Delhi from India. Biochem Genet 2010; 49:25-38. [PMID: 20978836 DOI: 10.1007/s10528-010-9382-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022]
Abstract
The genome of Cucumber mosaic virus New Delhi strain (CMV-ND) from India, obtained from tomato, was completely sequenced and compared with full genome sequences of 14 known CMV strains from subgroups I and II, for their genetic diversity. Sequence analysis suggests CMV-ND shares maximum sequence identity at the nucleotide level with a CMV strain from Taiwan. Among all 15 strains of CMV, the encoded protein 2b is least conserved, whereas the coat protein (CP) is most conserved. Sequence identity values and phylogram results indicate that CMV-ND belongs to subgroup I. Based on the recombination detection program result, it appears that CMV is prone to recombination, and different RNA components of CMV-ND have evolved differently. Recombinational analysis of all 15 CMV strains detected maximum recombination breakpoints in RNA2; CP showed the least recombination sites.
Collapse
Affiliation(s)
- Vikas Koundal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
141
|
Gotzek D, Clarke J, Shoemaker D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol Biol 2010; 10:300. [PMID: 20929580 PMCID: PMC2958920 DOI: 10.1186/1471-2148-10-300] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/07/2010] [Indexed: 01/02/2023] Open
Abstract
Background Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. Results We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four mitogenomes from three species of fire ants, genus Solenopsis, which represent various evolutionary depths. Overall, ant mitogenomes appear to be typical of hymenopteran mitogenomes, displaying a general A+T-bias. The Solenopsis mitogenomes are slightly more compact than other hymentoperan mitogenomes (~15.5 kb), retaining all protein coding genes, ribosomal, and transfer RNAs. We also present evidence of recombination between the mitogenomes of the two conspecific Solenopsis mitogenomes. Finally, we discuss potential ways to improve the estimation of phylogenies using complete mitochondrial genome sequences. Conclusions The ant mitogenome presents an important addition to the continued efforts in studying hymenopteran mitogenome architecture, evolution, and phylogenetics. We provide further evidence that the sampling across many taxonomic levels (including conspecifics and congeners) is useful and important to gain detailed insights into mitogenome evolution. We also discuss ways that may help improve the use of mitogenomes in phylogenetic analyses by accounting for non-stationary and non-homogeneous evolution among branches.
Collapse
Affiliation(s)
- Dietrich Gotzek
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
142
|
BROWN AMANDAMV, KENT MICHAELL, ADAMSON MARTINL. Description of Five New Loma (Microsporidia) Species in Pacific Fishes with Redesignation of the Type Species Loma morhua Morrison & Sprague, 1981, Based on Morphological and Molecular Species-Boundaries Tests. J Eukaryot Microbiol 2010; 57:529-53. [DOI: 10.1111/j.1550-7408.2010.00508.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
143
|
Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010; 26:2462-3. [PMID: 20798170 PMCID: PMC2944210 DOI: 10.1093/bioinformatics/btq467] [Citation(s) in RCA: 1292] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED RDP3 is a new version of the RDP program for characterizing recombination events in DNA-sequence alignments. Among other novelties, this version includes four new recombination analysis methods (3SEQ, VISRD, PHYLRO and LDHAT), new tests for recombination hot-spots, a range of matrix methods for visualizing over-all patterns of recombination within datasets and recombination-aware ancestral sequence reconstruction. Complementary to a high degree of analysis flow automation, RDP3 also has a highly interactive and detailed graphical user interface that enables more focused hands-on cross-checking of results with a wide variety of newly implemented phylogenetic tree construction and matrix-based recombination signal visualization methods. The new RDP3 can accommodate large datasets and is capable of analyzing alignments ranging in size from 1000 × 10 kilobase sequences to 20 × 2 megabase sequences within 48 h on a desktop PC. AVAILABILITY RDP3 is available for free from its web site http://darwin.uvigo.es/rdp/rdp.html.
Collapse
Affiliation(s)
- Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Centre for High Performance Computing, Rosebank, Cape Town, South Africa.
| | | | | | | | | | | |
Collapse
|
144
|
Zhang Y, Zhang H, Dong X, Yuan J, Zhang H, Yang X, Zhou P, Ge X, Li Y, Wang LF, Shi Z. Hantavirus outbreak associated with laboratory rats in Yunnan, China. INFECTION GENETICS AND EVOLUTION 2010; 10:638-44. [PMID: 20380897 DOI: 10.1016/j.meegid.2010.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/20/2010] [Accepted: 03/30/2010] [Indexed: 11/25/2022]
Abstract
An outbreak of hemorrhagic fever with renal syndrome occurred among students in a college (College A) in Kunming, Yunnan province, China in 2003. Subsequent investigations revealed the presence of hantavirus antibodies and antigens in laboratory rats at College A and two other institutions. Hantavirus antibodies were detected in 15 additional individuals other than the index case in these three locations. Epidemiologic data indicated that the human infections were a result of zoonotic transmission of the virus from laboratory rats. A virus was isolated from rats in College A and the full-length genome sequence revealed that this was a new Hantaan virus isolate, designated strain KY. Sequence analysis of the three genome segments indicated that this new isolate is a reassortant derived from human and rat Hantaan viruses. Further sequence analysis of the medium (M) genome segment revealed that it originated from a recombination event between two rat Hantaan virus lineages.
Collapse
Affiliation(s)
- Yunzhi Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Clarkson JJ, Kelly LJ, Leitch AR, Knapp S, Chase MW. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol Phylogenet Evol 2010; 55:99-112. [PMID: 19818862 DOI: 10.1016/j.ympev.2009.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species.
Collapse
Affiliation(s)
- James J Clarkson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| | - Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Andrew R Leitch
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Sandra Knapp
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
146
|
Kelly LJ, Leitch AR, Clarkson JJ, Hunter RB, Knapp S, Chase MW. Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae). Mol Biol Evol 2010; 27:781-99. [PMID: 19897524 DOI: 10.1093/molbev/msp267] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Reticulate evolution may function both at the species level, through homoploid and polyploid hybridization, and below the species level, through inter and intragenic recombination. These processes represent challenges for the reconstruction of evolutionary relationships between species, because they cannot be represented adequately with bifurcating trees. We use data from low-copy nuclear genes to evaluate long-standing hypotheses of homoploid (interspecific) hybrid speciation in Nicotiana (Solanaceae) and reconstruct a complex series of reticulation events that have been important in the evolutionary history of this genus. Hybrid origins for three diploid species (Nicotiana glauca, N. linearis, and N. spegazzinii) are inferred on the basis of gene tree incongruence, evidence for interallelic recombination between likely parental alleles, and support for incompatible splits in Lento plots. Phylogenetic analysis of recombinant gene sequences illustrates that recombinants may be resolved with one of their progenitor lineages with a high posterior probability under Bayesian inference, and thus there is no indication of the conflict between phylogenetic signals that results from reticulation. Our results illustrate the importance of hybridization in shaping evolution in Nicotiana and also show that intragenic recombination may be relatively common. This finding demonstrates that it is important to investigate the possibility of recombination when aiming to detect hybrids from DNA-sequence data and reconstruct patterns of reticulate evolution between species.
Collapse
Affiliation(s)
- Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
147
|
Marshall WL, Berbee ML. Population-level analyses indirectly reveal cryptic sex and life history traits of Pseudoperkinsus tapetis (Ichthyosporea, Opisthokonta): a unicellular relative of the animals. Mol Biol Evol 2010; 27:2014-26. [PMID: 20360212 DOI: 10.1093/molbev/msq078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We use population genetics to detect the molecular footprint of a sexual cycle, of a haploid vegetative state, and of lack of host specificity in Pseudoperkinsus tapetis, a marine unicellular relative of the animals. Prior to this study, complete life cycles were not known for any of the unicellular lineages sharing common ancestry with multicellular animals and fungi. We established the first collection of conspecific cultures of any member from the unicellular opisthokont lineage ichthyosporea, isolating 126 cultures of P. tapetis from guts of marine invertebrates ranging from clams to sea cucumbers. We sequenced fragments of the elongation factor alpha-like (EFL) and heat-shock protein 70 (HSP70) genes for a subset of our isolates. Absence of heterozygotes from the EFL locus in 52 isolates provided evidence for haploidy. Phylogenetic incongruence and a lack of support for linkage between two loci from 34 sequenced isolates signified a history of recombination consistent with a sexual cycle. Shared haplotypes in different invertebrate species showed that P. tapetis was not host specific. Based on estimates of the frequency of sex and on observations of cultures, we propose that P. tapetis is transmitted between hosts via asexual endospores. New protists are continually being discovered, and, as this study illustrates, analysis of culturable collections from natural habitats can transform a species from a near unknown to a model system for better understanding the evolution of life histories.
Collapse
Affiliation(s)
- Wyth L Marshall
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
148
|
Fluoroquinolone resistance in Streptococcus dysgalactiae subsp. equisimilis and evidence for a shared global gene pool with Streptococcus pyogenes. Antimicrob Agents Chemother 2010; 54:1769-77. [PMID: 20145082 DOI: 10.1128/aac.01377-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolone resistance is an emerging problem in Streptococcus pyogenes, and recombination with Streptococcus dysgalactiae DNA has been implicated as a frequent mechanism leading to resistance. We have characterized a collection of S. dysgalactiae subsp. equisimilis isolates responsible for infections in humans (n = 314) and found a high proportion of levofloxacin-resistant isolates (12%). Resistance was associated with multiple emm types and genetic lineages, as determined by pulsed-field gel electrophoretic profiling. Since we could not find evidence for a role of efflux pumps in resistance, we sequenced the quinolone resistance-determining regions of the gyrA and parC genes of representative resistant and susceptible isolates. We found much greater diversity among the parC genes (19 alleles) than among the gyrA genes (5 alleles). While single mutations in either GyrA or ParC were sufficient to raise the MIC so that the strains were classified as intermediately resistant, higher-level resistance was associated with mutations in both GyrA and ParC. Evidence for recombination with S. pyogenes DNA was found in some parC alleles, but this was not exclusively associated with resistance. Our data support the existence of a common reservoir of genes conferring quinolone resistance shared between S. dysgalactiae subsp. equisimilis and S. pyogenes, while no recombination with the animal pathogen S. dysgalactiae subsp. dysgalactiae could be found.
Collapse
|
149
|
A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J Virol 2010; 84:599-611. [PMID: 19864381 DOI: 10.1128/jvi.01063-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a "recombination trap," which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses but that its frequency appears to be very low and that therefore it probably does not represent a major risk in the use of live, attenuated flavivirus vaccines.
Collapse
|
150
|
Boulila M. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis. Biochem Genet 2009; 48:357-75. [PMID: 20035376 DOI: 10.1007/s10528-009-9317-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.
Collapse
|