101
|
Park J, Conteas CN. Anti-carcinogenic properties of curcumin on colorectal cancer. World J Gastrointest Oncol 2010; 2:169-76. [PMID: 21160593 PMCID: PMC2999181 DOI: 10.4251/wjgo.v2.i4.169] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 02/05/2023] Open
Abstract
Curcumin has been used in traditional Indian medicine for many centuries for its anti-inflammatory and anti-carcinogenic properties. There has been some promising research concerning curcumin as a safe therapeutic agent for many cancers, colorectal cancer being among them. This has been shown through research in cell cultures, animal models, and humans. At this time, it appears that curcumin’s anti-carcinogenic properties are most likely due to its effects on multiple molecular targets, such as nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). NF-κB and AP-1 are both major transcription factors that regulate inflammation and thus affect cell proliferation, differentiation and even apoptosis. Curcumin has also been shown to affect a variety of other key players involved in carcinogenesis, such as cyclooxygenase-2, matrix metallopeptidases 2 and 9 and tumor necrosis factor α induced vascular cell adhesion molecule, just to name a few. Although many molecular targets are involved, curcumin has been well tolerated in many studies: doses up to 8 g a day have been confirmed to be safe for humans. In this brief review, we will examine the current studies and literature and touch upon many molecular pathways affected by curcumin, and demonstrate the exciting possibility of curcumin as a chemopreventive agent for colorectal cancer.
Collapse
Affiliation(s)
- Jung Park
- Jung Park, Department of Internal Medicine, Kaiser Permanente Los Angeles Medical Center, 1526 Edgemont Ave, Los Angeles, CA 90027, United States
| | | |
Collapse
|
102
|
|
103
|
Moyes KM, Drackley JK, Morin DE, Rodriguez-Zas SL, Everts RE, Lewin HA, Loor JJ. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response. Physiol Genomics 2010; 41:161-70. [PMID: 20103698 DOI: 10.1152/physiolgenomics.00197.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows.
Collapse
Affiliation(s)
- Kasey M Moyes
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B, Meiss R, Navone N, Vazquez ES. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res 2009; 7:1745-55. [PMID: 19903769 DOI: 10.1158/1541-7786.mcr-08-0325] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Inflammation has been recognized as a risk factor for this disease. Heme oxygenase 1 (HO-1), the inducible isoform of the rate-limiting enzyme in heme degradation, counteracts oxidative and inflammatory damage. Here, we investigated the regulated expression of HO-1 and its functional consequences in PCa. We studied the effect of genetic and pharmacologic disruption of HO-1 in the growth, invasion, and migration in androgen-sensitive (MDA PCa2b and LNCaP) and androgen-insensitive (PC3) PCa cell lines. Our results show that HO-1 levels are markedly decreased in PC3 compared with MDA PCa2b and LNCaP. Hemin treatment increased HO-1 at both protein and mRNA levels in all cell lines and decreased cell proliferation and invasion. Furthermore, overexpression of HO-1 in PC3 resulted in markedly reduced cell proliferation and migration. Accordingly, small interfering RNA-mediated silencing of HO-1 expression in MDA PCa2b cells resulted in increased proliferation and invasion. Using reverse transcription-quantitative PCR-generated gene array, a set of inflammatory and angiogenic genes were upregulated or downregulated in response to HO-1 overexpression identifying matrix metalloprotease 9 (MMP9) as a novel downstream target of HO-1. MMP9 production and activity was downregulated by HO-1 overexpression. Furthermore, PC3 cells stably transfected with HO-1 (PC3HO-1) and controls were injected into nu/nu mice for analysis of in vivo tumor xenograft phenotype. Tumor growth and MMP9 expression was significantly reduced in PC3HO-1 tumors compared with control xenografts. Taken together, these results implicate HO-1 in PCa cell migration and proliferation suggesting its potential role as a therapeutic target in clinical settings.
Collapse
Affiliation(s)
- Geraldine Gueron
- Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Moreau A, Hill M, Thébault P, Deschamps JY, Chiffoleau E, Chauveau C, Moullier P, Anegon I, Alliot-Licht B, Cuturi MC. Tolerogenic dendritic cells actively inhibit T cells through heme oxygenase‐1 in rodents and in nonhuman primates. FASEB J 2009; 23:3070-7. [DOI: 10.1096/fj.08-128173] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- A. Moreau
- INSERM U649 CHU Hotel-Dieu Nantes France
| | - M. Hill
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - P. Thébault
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - J. Y. Deschamps
- Ecole Nationale Vétérinaire de Nantes Service d'Urgence Nantes France
| | - E. Chiffoleau
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - C. Chauveau
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | | | - I. Anegon
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - B. Alliot-Licht
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - M. C. Cuturi
- INSERM U643 Nantes France
- CHU Nantes Institut de Transplantation et de Recherche en Transplantation Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| |
Collapse
|
106
|
Criado G, Šimelyte E, Inglis JJ, Essex D, Williams RO. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. ACTA ACUST UNITED AC 2009; 60:1342-51. [DOI: 10.1002/art.24446] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
107
|
Rémy S, Blancou P, Tesson L, Tardif V, Brion R, Royer PJ, Motterlini R, Foresti R, Painchaut M, Pogu S, Gregoire M, Bach JM, Anegon I, Chauveau C. Carbon Monoxide Inhibits TLR-Induced Dendritic Cell Immunogenicity. THE JOURNAL OF IMMUNOLOGY 2009; 182:1877-84. [DOI: 10.4049/jimmunol.0802436] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
108
|
Shintani T, Iwabuchi T, Soga T, Kato Y, Yamamoto T, Takano N, Hishiki T, Ueno Y, Ikeda S, Sakuragawa T, Ishikawa K, Goda N, Kitagawa Y, Kajimura M, Matsumoto K, Suematsu M. Cystathionine beta-synthase as a carbon monoxide-sensitive regulator of bile excretion. Hepatology 2009; 49:141-50. [PMID: 19085910 DOI: 10.1002/hep.22604] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Carbon monoxide (CO) is a stress-inducible gas generated by heme oxygenase (HO) eliciting adaptive responses against toxicants; however, mechanisms for its reception remain unknown. Serendipitous observation in metabolome analysis in CO-overproducing livers suggested roles of cystathionine beta-synthase (CBS) that rate-limits transsulfuration pathway and H(2)S generation, for the gas-responsive receptor. Studies using recombinant CBS indicated that CO binds to the prosthetic heme, stabilizing 6-coordinated CO-Fe(II)-histidine complex to block the activity, whereas nitric oxide (NO) forms 5-coordinated structure without inhibiting it. The CO-overproducing livers down-regulated H(2)S to stimulate HCO(3) (-)-dependent choleresis: these responses were attenuated by blocking HO or by donating H(2)S. Livers of heterozygous CBS knockout mice neither down-regulated H(2)S nor exhibited the choleresis while overproducing CO. In the mouse model of estradiol-induced cholestasis, CO overproduction by inducing HO-1 significantly improved the bile output through stimulating HCO(3) (-) excretion; such a choleretic response did not occur in the knockout mice. CONCLUSION Results collected from metabolome analyses suggested that CBS serves as a CO-sensitive modulator of H(2)S to support biliary excretion, shedding light on a putative role of the enzyme for stress-elicited adaptive response against bile-dependent detoxification processes.
Collapse
Affiliation(s)
- Tsunehiro Shintani
- Department of Biochemistry and Integrative Medical Biology, Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic? Can J Physiol Pharmacol 2008; 86:577-99. [PMID: 18758507 DOI: 10.1139/y08-066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen substantial developments in our understanding of the physiology, pathology, and pharmacology of heme oxygenases (HO), to the point that investigators in the field are beginning to contemplate therapies based on administration of HO agonists or HO inhibitors. A significant amount of our current knowledge is based on the judicious application of metalloporphyrin inhibitors of HO, despite their limitations of selectivity. Recently, imidazole-based compounds have been identified as potent and more selective HO inhibitors. This 'next generation' of HO inhibitors offers a number of desirable characteristics, including isozyme selectivity, negligible effects on HO protein expression, and physicochemical properties favourable for in vivo distribution. Some of the applications of HO inhibitors that have been suggested are treatment of hyperbilirubinemia, neurodegenerative disorders, certain types of cancer, and bacterial and fungal infections. In this review, we address various approaches to altering HO activity with a focus on the potential applications of second-generation inhibitors of HO.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON Canada
| | | | | |
Collapse
|
110
|
Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 2008; 674:109-15. [PMID: 18996220 DOI: 10.1016/j.mrgentox.2008.09.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 12/11/2022]
Abstract
Epidemiological evidence has associated exposure to arsenic (As) in drinking water with an increased incidence of human cancers in the skin, bladder, liver, kidney and lung. Sodium arsenite mimics the effects of estradiol and induces cell proliferation in the estrogen responsive breast cancer cell line MCF-7. Therefore, our aim was to further explore the ability of sodium arsenite to induce MCF-7 epithelial breast cell proliferation and some of its underlying mechanisms by studying ROS production, c-Myc and HO-1 protein levels, 8-OHdG formation and NF-kappaB activation. Low arsenite concentrations (0.5-5 microM) induced ROS production and ROS-related depolarization of the mitochondrial membrane suggesting that mitochondria played an important role in the oxidative effects of As. ROS-mediated DNA damage as measured by the presence of 8-OHdG DNA-adducts in their nuclei, IkappaB phosphorylation, NF-kappaB activation and increases in c-Myc and HO-1 protein levels were also observed, suggesting that these factors play a relevant role in the arsenite induced MCF-7 cell recruitment into the S-phase of the cell cycle and cell proliferation observed. In conclusion, arsenite activates several pathways involved in MCF-7 cell proliferation suggesting that arsenite exposure may pose a risk for breast cancer in human exposed populations notwithstanding that most studies to date have not yet implicated this metalloid as a cofactor in the etiology of this disease.
Collapse
|
111
|
Lin CW, Shen SC, Hou WC, Yang LY, Chen YC. Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol Cancer Ther 2008; 7:1195-206. [PMID: 18483307 DOI: 10.1158/1535-7163.mct-07-2199] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we investigated the antitumor effects of the invasiveness and migration of heme oxygenase 1 (HO-1) in human breast carcinoma cells. 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced matrix metalloproteinase-9 (MMP-9) enzyme activity and gene expression at both protein and mRNA levels were examined in human breast carcinoma cells (MCF-7 and MDA-MB-231), and the addition of the MMP-9 inhibitor, SB3CT, significantly suppressed TPA-induced invasion and migration according to the in vitro Transwell assay. Elevation of HO-1 gene expression by ferric protoporphyrin IX inhibited TPA-induced invasion of MCF-7 cells, which was blocked by adding the heme oxygenase inhibitor, tin protoporphyrin IX, or transfection of cells with HO-1 short hairpin RNA. MCF-7 cells overexpressing HO-1 (MCF-7/HO-1) were established in the present study, and TPA-induced MMP-9 gene expression, tumor invasion, and colony formation were significantly reduced in MCF-7/HO-1 cells, compared with those in Neo-transfected cells. Activation of protein kinase Calpha/extracellular signal-regulated kinases/AP-1 with stimulation of reactive oxygen species production was involved in TPA-induced invasion of MCF-7 cells, which was attenuated by HO-1 protein induced by ferric protoporphyrin IX or transfection of HO-1 expression vectors. Additionally, the addition of carbon monoxide, but not ferric ions, biliverdin, or bilirubin, inhibited TPA-induced invasion through suppressing MMP-9, extracellular signal-regulated kinases, and AP-1 activation stimulated by TPA. The beneficial role of HO-1 in blocking tumor invasion was first identified in this study.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Graduate Institute of Pharmacy, School of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
112
|
Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice. BMC Cancer 2008; 8:197. [PMID: 18620555 PMCID: PMC2478682 DOI: 10.1186/1471-2407-8-197] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 07/11/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HO-1 participates in the degradation of heme. Its products can exert unique cytoprotective effects. Numerous tumors express high levels of HO-1 indicating that this enzyme might be a potential therapeutic target. In this study we decided to evaluate potential cytostatic/cytotoxic effects of zinc protoporphyrin IX (Zn(II)PPIX), a selective HO-1 inhibitor and to evaluate its antitumor activity in combination with chemotherapeutics. METHODS Cytostatic/cytotoxic effects of Zn(II)PPIX were evaluated with crystal violet staining and clonogenic assay. Western blotting was used for the evaluation of protein expression. Flow cytometry was used to evaluate the influence of Zn(II)PPIX on the induction of apoptosis and generation of reactive oxygen species. Knock-down of HO-1 expression was achieved with siRNA. Antitumor effects of Zn(II)PPIX alone or in combination with chemotherapeutics were measured in transplantation tumor models. RESULTS Zn(II)PPIX induced significant accumulation of reactive oxygen species in tumor cells. This effect was partly reversed by administration of exogenous bilirubin. Moreover, Zn(II)PPIX exerted potent cytostatic/cytotoxic effects against human and murine tumor cell lines. Despite a significant time and dose-dependent decrease in cyclin D expression in Zn(II)PPIX-treated cells no accumulation of tumor cells in G1 phase of the cell cycle was observed. However, incubation of C-26 cells with Zn(II)PPIX increased the percentage of cells in sub-G1 phase of the cells cycle. Flow cytometry studies with propidium iodide and annexin V staining as well as detection of cleaved caspase 3 by Western blotting revealed that Zn(II)PPIX can induce apoptosis of tumor cells. B16F10 melanoma cells overexpressing HO-1 and transplanted into syngeneic mice were resistant to either Zn(II)PPIX or antitumor effects of cisplatin. Zn(II)PPIX was unable to potentiate antitumor effects of 5-fluorouracil, cisplatin or doxorubicin in three different tumor models, but significantly potentiated toxicity of 5-FU and cisplatin. CONCLUSION Inhibition of HO-1 exerts antitumor effects but should not be used to potentiate antitumor effects of cancer chemotherapeutics unless procedures of selective tumor targeting of HO-1 inhibitors are developed.
Collapse
|
113
|
Abstract
Abstract
In human monocytes, tumor necrosis factor (TNF) induces a proinflammatory response. In NF-κB–inhibited monocytes, TNF stimulates cell death/apoptosis. In the present study, we analyzed the response of acute myeloid leukemia (AML) cells to TNF stimulation in conjunction with NF-κB inhibition. In all AML-derived cells tested, NF-κB–inhibited cells were resistant to TNF-induced apoptosis. Further investigation revealed that the cytoprotective gene heme oxygenase-1 (HO-1) was induced in NF-κB–inhibited AML cells in response to TNF stimulation, and HO-1 was responsible for the resistance of AML cells to the cytotoxic actions of TNF. Moreover, after transfection with HO-1 siRNA, the resistance to TNF-induced cell death signals of AML cells was removed. The HO-1 promoter region contains antioxidant-response elements that can bind the transcription factor NF-E2–related factor 2 (Nrf2). We further demonstrated that Nrf2 was activated by TNF under NF-κB–inhibited conditions, to play the major role in up-regulating HO-1 expression and ultimately the fate of AML cells. These results demonstrate a novel mechanism by which TNF-induced cell death is inhibited in AML cells through the induction of HO-1, via Nrf2 activation.
Collapse
|
114
|
Gbelcová H, Lenícek M, Zelenka J, Knejzlík Z, Dvoráková G, Zadinová M, Poucková P, Kudla M, Balaz P, Ruml T, Vítek L. Differences in antitumor effects of various statins on human pancreatic cancer. Int J Cancer 2008; 122:1214-21. [PMID: 18027870 DOI: 10.1002/ijc.23242] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Statins are widely used for the treatment of hypercholesterolemia. However, their inhibitory action on HMG-CoA reductase also results in the depletion of intermediate biosynthetic products, which importantly contribute to cell proliferation. The aim of the present study was to compare the effects of the individual commercially available statins on experimental pancreatic cancer. The in vitro effects of individual statins (pravastatin, atorvastatin, simvastatin, lovastatin, cerivastatin, rosuvastatin and fluvastatin) on the viability of human pancreatic cancer were evaluated in CAPAN-2, BxPc-3 and MiaPaCa-2 cell lines. The in vivo experiments were performed on nude mice xenotransplanted with CAPAN-2 cells. The mice received oral treatments either with a placebo, or with the statins mentioned earlier in a daily dose corresponding to a hypocholesterolemic dose in humans. The effect of these statins on the intracellular Ras protein, trafficking in MiaPaCa-2 transfected cells, was also investigated. Substantial differences in the tumor-suppressive effects of all statins were detected in both in vitro and in vivo experiments. While simvastatin exerted the highest tumor-suppressive effects in vitro, rosuvastatin (p = 0.002), cerivastatin (p = 0.002) and fluvastatin (p = 0.009) were the most potent compounds in an animal model. All statins (except pravastatin) inhibited intracellular Ras protein translocation. In summary, substantial tumor-suppressive effects of various statins on the progression of experimental pancreatic adenocarcinoma were demonstrated, with marked differences among individual statins. These results support greatly the potential of statins for the chemoadjuvant treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Helena Gbelcová
- Department of Biochemistry and Microbiology and Center for Applied Genomics, Institute of Chemical Technology, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Hill M, Tanguy-Royer S, Royer P, Chauveau C, Asghar K, Tesson L, Lavainne F, Rémy S, Brion R, Hubert FX, Heslan M, Rimbert M, Berthelot L, Moffett JR, Josien R, Grégoire M, Anegon I. IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol 2007; 37:3054-62. [PMID: 17948274 DOI: 10.1002/eji.200636704] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that human monocyte-derived dendritic cells (DC) express indoleamine 2,3-dioxygenase (IDO), as well as several other enzymes of the kynurenine pathway at the mRNA level upon maturation. The tolerogenic mechanisms of this pathway remain unclear. Here we show that LPS-treated DC metabolize tryptophan as far as quinolinate. We found that IDO contributes to LPS and TNF-alpha + poly(I:C)-induced DC maturation since IDO inhibition using two different inhibitors impairs DC maturation. IDO knock-down using short-hairpin RNA also led to diminished LPS-induced maturation. In line with these results, the tryptophan-derived catabolites 3-hydroxyanthranilic acid and 3-hydroxykynurenine increased maturation of LPS-treated DC. Concerning the molecular mechanisms of this effect, IDO acts as an intermediate pathway in LPS-induced production of reactive oxygen species and NF-kappaB activation, two processes that lead to DC maturation. Finally, we show that mature DC expand CD4(+)CD25(high) regulatory T cells in an IDO-dependent manner. In conclusion, we show that IDO constitutes an intermediate pathway in DC maturation leading to expansion of CD4(+)CD25(high) regulatory T cells.
Collapse
|
116
|
Abstract
Heme oxygenase-1 (HO-1) catalyzes the oxidation of heme to biologically active products: carbon monoxide (CO), biliverdin, and ferrous iron. It participates in maintaining cellular homeostasis and plays an important protective role in the tissues by reducing oxidative injury, attenuating the inflammatory response, inhibiting cell apoptosis, and regulating cell proliferation. HO-1 is also an important proangiogenic mediator. Most studies have focused on the role of HO-1 in cardiovascular diseases, in which its significant, beneficial activity is well recognized. A growing body of evidence indicates, however, that HO-1 activation may play a role in carcinogenesis and can potently influence the growth and metastasis of tumors. HO-1 is very often upregulated in tumor tissues, and its expression is further increased in response to therapies. Although the exact effect can be tissue specific, HO-1 can be regarded as an enzyme facilitating tumor progression. Accordingly, inhibition of HO-1 can be suggested as a potential therapeutic approach sensitizing tumors to radiation, chemotherapy, or photodynamic therapy.
Collapse
Affiliation(s)
- Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
117
|
Sacca P, Meiss R, Casas G, Mazza O, Calvo JC, Navone N, Vazquez E. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer 2007; 97:1683-9. [PMID: 18026199 PMCID: PMC2360287 DOI: 10.1038/sj.bjc.6604081] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The role of oxidative stress in prostate cancer has been increasingly recognised. Acute and chronic inflammations generate reactive oxygen species that result in damage to cellular structures. Haeme oxygenase-1 (HO-1) has cytoprotective effects against oxidative damage. We hypothesise that modulation of HO-1 expression may be involved in the process of prostate carcinogenesis and prostate cancer progression. We thus studied HO-1 expression and localisation in 85 samples of organ-confined primary prostate cancer obtained via radical prostatectomy (Gleason grades 4–9) and in 39 specimens of benign prostatic hyperplasia (BPH). We assessed HO-1 expression by immunohistochemical staining. No significant difference was observed in the cytoplasmic positive reactivity among tumours (84%), non-neoplastic surrounding parenchyma (89%), or BPH samples (87%) (P=0.53). Haeme oxygenase-1 immunostaining was detected in the nuclei of prostate cancer cells in 55 of 85 (65%) patients but less often in non-neoplastic surrounding parenchyma (30 of 85, 35%) or in BPH (9 of 39, 23%) (P<0.0001). Immunocytochemical and western blot analysis showed HO-1 only in the cytoplasmic compartment of PC3 and LNCaP prostate cancer cell lines. Treatment with hemin, a well-known specific inducer of HO-1, led to clear nuclear localisation of HO-1 in both cell lines and highly induced HO-1 expression in both cellular compartments. These findings have demonstrated, for the first time, that HO-1 expression and nuclear localisation can define a new subgroup of prostate cancer primary tumours and that the modulation of HO-1 expression and its nuclear translocation could represent new avenues for therapy.
Collapse
Affiliation(s)
- P Sacca
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | |
Collapse
|
118
|
Laumonier T, Yang S, Konig S, Chauveau C, Anegon I, Hoffmeyer P, Menetrey J. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Mol Ther 2007; 16:404-10. [PMID: 18026170 DOI: 10.1038/sj.mt.6300354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell therapy for Duchenne muscular dystrophy and other muscle diseases is limited by a massive early cell death following injections. In this study, we explored the potential benefit of heme oxygenase-1 (HO-1) expression in the survival of porcine myogenic precursor cells (MPCs) transplanted in pig skeletal muscle. Increased HO-1 expression was assessed either by transient hyperthermia or by HO-1 lentiviral infection. One day after the thermic shock, we observed a fourfold and a threefold increase in HSP70/72 and HO-1 levels, respectively. This treatment protected 30% of cells from staurosporine-induced apoptosis in vitro. When porcine MPC were heat-shocked prior to grafting, we improved cell survival by threefold at 5 days after autologous transplantation (26.3 +/- 5.5% surviving cells). After HO-1 lentiviral transduction, almost 60% of cells expressed the transgene and kept their myogenic properties to proliferate and fuse in vitro. Apoptosis of HO-1 transduced cells was reduced by 50% in vitro after staurosporine induction. Finally, a fivefold enhancement in cell survival was observed after transplantation of HO-1-group (47.5 +/- 9.1% surviving cells) as compared to the nls-LacZ-group or control group. These results identify HO-1 as a protective gene against early MPC death post-transplantation.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopaedic Surgery, University Hospital of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
119
|
Nitric Oxide and Indoleamine 2,3-Dioxygenase Mediate CTLA4Ig-Induced Survival in Heart Allografts in Rats. Transplantation 2007; 84:1060-3. [DOI: 10.1097/01.tp.0000285293.75911.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Boschetto P, Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, Marian E, Querzoli P, Pedriali M, Murer B, De Rosa E, Fabbri LM, Mapp CE. Decreased heme-oxygenase (HO)-1 in the macrophages of non-small cell lung cancer. Lung Cancer 2007; 59:192-7. [PMID: 17900753 DOI: 10.1016/j.lungcan.2007.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/06/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS) are important in the initiation and promotion of cells to neoplastic growth. Heme-oxygenase (HO)-1, the inducible form of heme-oxygenase, is a cytoprotective enzyme that plays a central role in the defence against oxidative stress and is implicated in the protection of lung tissue against exogenous oxidant exposure. We investigated whether the expression of HO-1 would be decreased in lung tumour as compared with tumour-free adjacent lung tissues. HO-1 expression was quantified by immunohistochemistry in tumour macrophages, in macrophages of tumour-free lung and in tumour cells of surgical specimens collected from 53 individuals with surgically resectable non-small cell lung cancer (NSCLC). The expression of HO-1 was decreased in tumour as compared with tumour-free lung macrophages. No correlations were observed between the expression of HO-1 and both the clinicopathological characteristics and the overall survival of the examined subjects. In conclusion, our data show that macrophages of non-small cell lung cancer exhibit impaired anti-oxidant defence mechanisms, likely mediated by HO-1. Conversely, HO-1 expression does not seem to be associated with lung tumour progression and prognosis.
Collapse
Affiliation(s)
- Piera Boschetto
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Popov A, Schultze JL. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med (Berl) 2007; 86:145-60. [PMID: 17876564 DOI: 10.1007/s00109-007-0262-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/19/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
Immune evasion and T cell tolerance induction have been associated both with malignant disease and chronic infection. In recent years, increasing evidence has been accumulated that antigen-presenting cells such as dendritic cells (DC) play a major role in immune regulation. They are not only involved in the induction of immunity but also can inhibit immune responses. Interesting parallels for major molecular mechanisms involved in turning DC from stimulatory to regulatory cells have been uncovered between malignant disease and chronic infection. Apparently, not only inhibitory cytokines such as IL-10 seem to play a role, but also metabolic mechanisms dysregulating tryptophan metabolism, thereby, leading to inhibition of T cells and pathogens. We focus here on recent findings establishing the tryptophan catabolizing enzyme indoleamine-pyrrole 2,3 dioxygenase (IDO) as a central feature of DC with regulatory function both in cancer and chronic infection. Induction of enzymatically active IDO can be triggered by various soluble and membrane-bound factors, and in general, require interferon (IFN) signaling. In addition, based on the most recently established link between tumor necrosis factor alpha (TNFalpha), prostaglandin E2 and IDO, a new model of regulation of IDO in context of cancer and infection is proposed. In light of the increasing use of anti-TNFalpha drugs, these findings are also of great interest to the clinician scientist.
Collapse
Affiliation(s)
- Alexey Popov
- Molecular Tumor Biology and Tumor Immunology, Clinic I for Internal Medicine, Cologne, Germany
| | | |
Collapse
|
122
|
Chabannes D, Hill M, Merieau E, Rossignol J, Brion R, Soulillou JP, Anegon I, Cuturi MC. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 2007; 110:3691-4. [PMID: 17684157 DOI: 10.1182/blood-2007-02-075481] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) display immunomodulatory properties mediated by various factors, including inducible nitric oxide synthase (iNOS). Since heme oxygenase-1 (HO-1) is a potent immunosuppressive enzyme, we tested the hypothesis that HO-1 could mediate the immunosuppressive effects of MSCs. We generated adult rat MSCs that inhibited T-cell proliferation in vitro. These MSCs expressed both HO-1 and iNOS. In vitro, whereas neither HO-1 nor iNOS inhibition alone could interfere with the immunosuppressive properties of rat MSCs, simultaneous inhibition of both enzymes restored T-cell proliferation. In vivo, injection of MSCs significantly delayed heart allograft rejection, and inhibition of either HO-1 or iNOS totally reversed the protective activity of MSCs, inducing rejection. Adult human MSCs also expressed HO-1; in these cells, HO-1 inhibition was sufficient to completely block their immunosuppressive capacity. In conclusion, we show, for the first time, that HO-1 mediates the immunosuppressive properties of rat and human MSCs.
Collapse
Affiliation(s)
- Dominique Chabannes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U643, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Becker JC, Fukui H, Imai Y, Sekikawa A, Kimura T, Yamagishi H, Yoshitake N, Pohle T, Domschke W, Fujimori T. Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol 2007; 42:852-8. [PMID: 17558910 DOI: 10.1080/00365520701192383] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Heme oxygenase-1 (HO-1) has emerged as a crucial mediator of mucosal defense in the gastrointestinal tract. Its metabolic pathway products, biliverdin/bilirubin and carbon monoxide, can reduce oxidative stress and inflammation, and promote resistance to apoptosis. The role of HO-1 in gastrointestinal malignancies, however, remains to be elucidated. The purpose of this study was to analyze HO-1 expression in human colon adenoma and cancer samples. MATERIAL AND METHODS Fifty-five paraffin-embedded surgical specimens of colorectal cancer and 19 colonic adenoma samples were stained immunhistochemically for HO-1 expression using an anti-HO-1 monoclonal antibody. HO-1 expression was evaluated independently by two different investigators and subsequently correlated to clinical data and patients' life expectancy. RESULTS Focal HO-1 expression could be documented in 41.8% (23/55) of patients with colorectal cancer. HO-1 expression in colonic adenoma was detectable in 36.8% (7/19) of cases. The rate of lymphatic tumor invasion was significantly lower in colorectal cancer samples expressing HO-1 (p=0.048). Additionally, fewer lymph node metastases were found in colorectal cancer samples with HO-1 expression, but these differences did not reach statistical significance. Mean observation period was 65.87+/-3.96 months. Kaplan-Meier analysis showed a significantly better survival for colorectal cancer patients with colonic HO-1 expression (p=0.018). CONCLUSIONS This study demonstrates that colonic HO-1 may be a prognostic marker of colorectal-cancer outcome.
Collapse
Affiliation(s)
- Jan C Becker
- Department of Medicine B, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Guillonneau C, Hill M, Hubert FX, Chiffoleau E, Hervé C, Li XL, Heslan M, Usal C, Tesson L, Ménoret S, Saoudi A, Le Mauff B, Josien R, Cuturi MC, Anegon I. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117:1096-106. [PMID: 17404623 PMCID: PMC1839240 DOI: 10.1172/jci28801] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 01/16/2007] [Indexed: 12/12/2022] Open
Abstract
Treatment with CD40Ig results in indefinite allograft survival in a complete MHC-mismatched heart allograft model in the rat. Here we show that serial second, third, and fourth adoptive transfers of total splenocytes from CD40Ig-treated recipients into secondary recipients led to indefinite donor-specific allograft acceptance. Purification of splenocyte subpopulations from CD40Ig-treated recipients demonstrated that only the adoptively transferred CD8(+)CD45RC(low) subset resulted in donor-specific long-term survival, whereas CD8(+)CD45RC(low) T cells from naive animals did not. Accepted grafts displayed increased indoleamine 2,3-dioxygenase (IDO) expression restricted in the graft to ECs. Coculture of donor ECs with CD8(+)CD45RC(low) T cells purified from CD40Ig-treated animals resulted in donor-specific IDO expression dependent on IFN-gamma. Neutralization of IFN-gamma or IDO triggered acute allograft rejection in both CD40Ig-treated and adoptively transferred recipients. This study demonstrates for what we believe to be the first time that interference in CD40-CD40 ligand (CD40-CD40L) interactions induces allospecific CD8(+) Tregs that maintain allograft survival. CD8(+)CD45RC(low) T cells act through IFN-gamma production, which in turn induces IDO expression by graft ECs. Thus, donor alloantigen-specific CD8(+) Tregs may promote local graft immune privilege through IDO expression.
Collapse
Affiliation(s)
- Carole Guillonneau
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Marcelo Hill
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - François-Xavier Hubert
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Elise Chiffoleau
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Caroline Hervé
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Xian-Liang Li
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Michèle Heslan
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Claire Usal
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Laurent Tesson
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Séverine Ménoret
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Abdelhadi Saoudi
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Brigitte Le Mauff
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Régis Josien
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Maria Cristina Cuturi
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| | - Ignacio Anegon
- INSERM U643, Centre Hopitalier Universitaire de Nantes, Institut de Transplantation et de Recherche en Transplantation (ITERT), and Université de Nantes, Faculté de Médecine, Nantes, France.
INSERM U563, Département Immunologie, Toulouse, France
| |
Collapse
|
125
|
Was H, Cichon T, Smolarczyk R, Rudnicka D, Stopa M, Chevalier C, Leger JJ, Lackowska B, Grochot A, Bojkowska K, Ratajska A, Kieda C, Szala S, Dulak J, Jozkowicz A. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:2181-98. [PMID: 17148680 PMCID: PMC1762485 DOI: 10.2353/ajpath.2006.051365] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2006] [Indexed: 11/20/2022]
Abstract
Heme oxygenase-1 (HO-1), a cytoprotective enzyme, can be induced in tumors in response to anti-cancer therapies. We investigated the role of HO-1 in B16(F10), S91, and Sk-mel188 melanoma cells. Overexpression of HO-1 after transduction with adenoviral vectors increased cell proliferation, resistance to oxidative stress generated by H2O2, and angiogenic potential as determined by induction of endothelial cell divisions. Likewise, cells stably transfected with HO-1 cDNA (B16-HO-1) showed higher proliferation, stress resistance, and angiogenic activity than the wild-type line (B16-WT). HO-1 overexpression in tumors significantly shortened survival of mice after subcutaneous injection of cancer cells (38 and 22 days for B16-WT and B16-HO-1, respectively; P=0.017). This also resulted in development of more packed tumors, with more melanoma cells, and reduced inflammatory edemas. Mice injected with B16-HO-1 had lower levels of tumor necrosis factor and higher serum concentrations of its soluble receptor tumor necrosis factor-RI, whereas tumors overexpressing HO-1 displayed augmented vascularization and stronger production of vascular endothelial growth factor. Finally, B16-HO-1 cells injected intravenously formed more metastases in lungs. Thus, HO-1 overexpression increased viability, proliferation, and angiogenic potential of melanoma cells, augmented metastasis, and decreased survival of tumor-bearing mice, suggesting that induction of HO-1 may be detrimental in anti-cancer therapy of melanoma.
Collapse
Affiliation(s)
- Halina Was
- Department of Medical Biotechnology, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Folgueira MAAK, Brentani H, Katayama MLH, Patrão DFC, Carraro DM, Mourão Netto M, Barbosa EM, Caldeira JRF, Abreu APS, Lyra EC, Kaiano JHL, Mota LD, Campos AHJFM, Maciel MS, Dellamano M, Caballero OLSD, Brentani MM. Gene expression profiling of clinical stages II and III breast cancer. Braz J Med Biol Res 2006; 39:1101-13. [PMID: 16906285 DOI: 10.1590/s0100-879x2006000800013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 04/24/2006] [Indexed: 11/22/2022] Open
Abstract
Clinical stage (CS) is an established indicator of breast cancer outcome. In the present study, a cDNA microarray platform containing 692 genes was used to identify molecular differences between CSII and CSIII disease. Tumor samples were collected from patients with CSII or CSIII breast cancer, and normal breast tissue was collected from women without invasive cancer. Seventy-eight genes were deregulated in CSIII tumors and 22 in CSII tumors when compared to normal tissue, and 20 of them were differentially expressed in both CSII and CSIII tumors. In addition, 58 genes were specifically altered in CSIII and expression of 6 of them was tested by real time RT-PCR in another cohort of patients with CSII or CSIII breast cancer and in women without cancer. Among these genes, MAX, KRT15 and S100A14, but not APOBEC3G or KRT19, were differentially expressed on both CSIII and CSII tumors as compared to normal tissue. Increased HMOX1 levels were detected only in CSIII tumors and may represent a molecular marker of this stage. A clear difference in gene expression pattern occurs at the normal-to-cancer transition; however, most of the differentially expressed genes are deregulated in tumors of both CS (II and III) compared to normal breast tissue.
Collapse
Affiliation(s)
- M A A K Folgueira
- Disciplina de Oncologia, Departamento de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Thangapazham RL, Sharma A, Maheshwari RK. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS JOURNAL 2006; 8:E443-9. [PMID: 17025261 PMCID: PMC2761050 DOI: 10.1208/aapsj080352] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carcinogenesis encompasses 3 closely associated stages: initiation, progression, and promotion. Phytochemicals are nonnutritive components of plants that are currently being studied in chemoprevention of various diseases for their pleiotropic effects and nontoxicity. Cancer chemoprevention involves the use of either natural or synthetic chemicals to prevent the initiation, promotion, or progression of cancer. Curcumin is the active constituent of turmeric, which is widely used as a spice in Indian cooking. It has been shown to possess anti-inflammatory, antioxidant, and antitumor properties. Curcumin has also been shown to be beneficial in all 3 stages of carcinogenesis. Much of its beneficial effect is found to be due to its inhibition of the transcription factor nuclear factor kappa B (NF-kappaB) and subsequent inhibition of proinflammatory pathways. This review summarizes the inhibition of NF-kappaB by curcumin and describes the recently identified molecular targets of curcumin. It is hoped that continued research will lead to development of curcumin as an anticancer agent.
Collapse
Affiliation(s)
- Rajesh L. Thangapazham
- />Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
- />Birla Institute of Technology and Science, 333031 Pilani, India
| | - Anuj Sharma
- />Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
- />Birla Institute of Technology and Science, 333031 Pilani, India
| | - Radha K. Maheshwari
- />Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
| |
Collapse
|