101
|
Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics 2019; 16:134-143. [PMID: 30194614 PMCID: PMC6361050 DOI: 10.1007/s13311-018-0660-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Loss of vision alters the day to day life of blind individuals and may impose a significant burden on their family and the economy. Cortical visual prosthetics have been shown to have the potential of restoring a useful degree of vision via stimulation of primary visual cortex. Due to current advances in electrode design and wireless power and data transmission, development of these prosthetics has gained momentum in the past few years and multiple sites around the world are currently developing and testing their designs. In this review, we briefly outline the visual prosthetic approaches and describe the history of cortical visual prosthetics. Next, we focus on the state of the art of cortical visual prosthesis by briefly explaining the design of current devices that are either under development or in the clinical testing phase. Lastly, we shed light on the challenges of each design and provide some potential solutions.
Collapse
Affiliation(s)
- Soroush Niketeghad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
102
|
Golden JR, Erickson-Davis C, Cottaris NP, Parthasarathy N, Rieke F, Brainard DH, Wandell BA, Chichilnisky EJ. Simulation of visual perception and learning with a retinal prosthesis. J Neural Eng 2018; 16:025003. [PMID: 30523985 DOI: 10.1088/1741-2552/aaf270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The nature of artificial vision with a retinal prosthesis, and the degree to which the brain can adapt to the unnatural input from such a device, are poorly understood. Therefore, the development of current and future devices may be aided by theory and simulations that help to infer and understand what prosthesis patients see. APPROACH A biologically-informed, extensible computational framework is presented here to predict visual perception and the potential effect of learning with a subretinal prosthesis. The framework relies on optimal linear reconstruction of the stimulus from retinal responses to infer the visual information available to the patient. A simulation of the physiological optics of the eye and light responses of the major retinal neurons was used to calculate the optimal linear transformation for reconstructing natural images from retinal activity. The result was then used to reconstruct the visual stimulus during the artificial activation expected from a subretinal prosthesis in a degenerated retina, as a proxy for inferred visual perception. MAIN RESULTS Several simple observations reveal the potential utility of such a simulation framework. The inferred perception obtained with prosthesis activation was substantially degraded compared to the inferred perception obtained with normal retinal responses, as expected given the limited resolution and lack of cell type specificity of the prosthesis. Consistent with clinical findings and the importance of cell type specificity, reconstruction using only ON cells, and not OFF cells, was substantially more accurate. Finally, when reconstruction was re-optimized for prosthesis stimulation, simulating the greatest potential for learning by the patient, the accuracy of inferred perception was much closer to that of healthy vision. SIGNIFICANCE The reconstruction approach thus provides a more complete method for exploring the potential for treating blindness with retinal prostheses than has been available previously. It may also be useful for interpreting patient data in clinical trials, and for improving prosthesis design.
Collapse
|
103
|
Haq W, Dietter J, Zrenner E. Electrical activation of degenerated photoreceptors in blind mouse retina elicited network-mediated responses in different types of ganglion cells. Sci Rep 2018; 8:16998. [PMID: 30451928 PMCID: PMC6243018 DOI: 10.1038/s41598-018-35296-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/02/2018] [Indexed: 01/21/2023] Open
Abstract
Electrical (e-) stimulation is explored in schemes to rescue the vision of blind people, e.g. those affected by Retinitis Pigmentosa (RP). We e-activated subretinally the surviving degenerated photoreceptors (d-Phrs) of the rd1 mouse (RP model) and evoked visual responses in the blind retina. The e-stimulation was applied with a single platinum/iridium electrode. The d-Phrs (calcium-imaging) and ganglion cells (GC) activity (MEA-recording) were recorded in simultaneous multilayer recordings. The findings of this study confirm that the d-Phrs responded to e-stimulation and modulated the retinal network-activity. The application of blockers revealed that the synaptic interactions were dependent on voltage-gated calcium channels and mediated by the transmitters glutamate and GABA. Moreover, the gap junctions coupled networks promoted the lateral-spread of the e-evoked activity in the outer (~60 µm) and inner (~120 µm) retina. The activated GCs were identified as subtypes of the ON, OFF and ON-OFF classes. In conclusion, d-Phrs are the ideal interface partners for implants to elicit enhanced visual responses at higher temporal and spatial resolution. Furthermore, the retina's intact circuity at the onset of complete blindness makes it a tempting target when considering the implantation of implants into young patients to provide a seamless transition from blinding to chip-aided vision.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076, Tübingen, Germany.
| | - Johannes Dietter
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076, Tübingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076, Tübingen, Germany
| |
Collapse
|
104
|
Loeb GE. Neural Prosthetics:A Review of Empirical vs. Systems Engineering Strategies. Appl Bionics Biomech 2018; 2018:1435030. [PMID: 30532801 PMCID: PMC6247642 DOI: 10.1155/2018/1435030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/28/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Implantable electrical interfaces with the nervous system were first enabled by cardiac pacemaker technology over 50 years ago and have since diverged into almost all of the physiological functions controlled by the nervous system. There have been a few major clinical and commercial successes, many contentious claims, and some outright failures. These tend to be reviewed within each clinical subspecialty, obscuring the many commonalities of neural control, biophysics, interface materials, electronic technologies, and medical device regulation that they share. This review cites a selection of foundational and recent journal articles and reviews for all major applications of neural prosthetic interfaces in clinical use, trials, or development. The hard-won knowledge and experience across all of these fields can now be amalgamated and distilled into more systematic processes for development of clinical products instead of the often empirical (trial and error) approaches to date. These include a frank assessment of a specific clinical problem, the state of its underlying science, the identification of feasible targets, the availability of suitable technologies, and the path to regulatory and reimbursement approval. Increasing commercial interest and investment facilitates this systematic approach, but it also motivates projects and products whose claims are dubious.
Collapse
Affiliation(s)
- Gerald E. Loeb
- Professor of Biomedical Engineering, University of Southern California, 1042 Downey Way (DRB-B11) Los Angeles, CA 90089, USA
| |
Collapse
|
105
|
Improvement in reading performance through training with simulated thalamic visual prostheses. Sci Rep 2018; 8:16310. [PMID: 30397211 PMCID: PMC6218498 DOI: 10.1038/s41598-018-31435-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Simulations of artificial vision are used to provide the researcher an opportunity to explore different aspects of visual prosthesis device design by observing subject performance on various tasks viewed through the simulation. Such studies typically use normal, sighted subjects to measure performance at a given point in time. Relatively few studies examine performance changes longitudinally to quantitatively assess the benefits from a training plan that would be akin to post-implantation rehabilitation. Here, we had six normal, sighted subjects use a standard reading task with daily practice over eight weeks to understand the effects of an intensive training schedule on adaptation to artificial sight. Subjects read 40 MNREAD-style sentences per session, with a new set each session, that were presented at five font sizes (logMAR 1.0–1.4) and through three center-weighted phosphene patterns (2,000, 1,000, 500 phosphenes). We found that subjects improved their reading accuracy across sessions, and that the training lead to an increase of reading speed that was equivalent to a doubling of available phosphenes. Most importantly, the hardest condition, while initially illegible, supported functional reading after training. Consistent with experience-driven neuroplastic changes, gaps in the training schedule lead to transient decreases in reading speed, but, surprisingly, not reading accuracy. Our findings contribute to our larger project of developing a thalamic visual prosthesis and to post-implant rehabilitation strategies.
Collapse
|
106
|
Rathbun DL, Ghorbani N, Shabani H, Zrenner E, Hosseinzadeh Z. Spike-triggered average electrical stimuli as input filters for bionic vision—a perspective. J Neural Eng 2018; 15:063002. [DOI: 10.1088/1741-2552/aae493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
107
|
McKone E, Robbins RA, He X, Barnes N. Caricaturing faces to improve identity recognition in low vision simulations: How effective is current-generation automatic assignment of landmark points? PLoS One 2018; 13:e0204361. [PMID: 30286112 PMCID: PMC6171855 DOI: 10.1371/journal.pone.0204361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Previous behavioural studies demonstrate that face caricaturing can provide an effective image enhancement method for improving poor face identity perception in low vision simulations (e.g., age-related macular degeneration, bionic eye). To translate caricaturing usefully to patients, assignment of the multiple face landmark points needed to produce the caricatures needs to be fully automatised. Recent development in computer science allows automatic face landmark detection of 68 points in real time and in multiple viewpoints. However, previous demonstrations of the behavioural effectiveness of caricaturing have used higher-precision caricatures with 147 landmark points per face, assigned by hand. Here, we test the effectiveness of the auto-assigned 68-point caricatures. We also compare this to the hand-assigned 147-point caricatures. METHOD We assessed human perception of how different in identity pairs of faces appear, when veridical (uncaricatured), caricatured with 68-points, and caricatured with 147-points. Across two experiments, we tested two types of low-vision images: a simulation of blur, as experienced in macular degeneration (testing two blur levels); and a simulation of the phosphenised images seen in prosthetic vision (at three resolutions). RESULTS The 68-point caricatures produced significant improvements in identity discrimination relative to veridical. They were approximately 50% as effective as the 147-point caricatures. CONCLUSION Realistic translation to patients (e.g., via real time caricaturing with the enhanced signal sent to smart glasses or visual prosthetic) is approaching feasibility. For maximum effectiveness software needs to be able to assign landmark points tracing out all details of feature and face shape, to produce high-precision caricatures.
Collapse
Affiliation(s)
- Elinor McKone
- Research School of Psychology, and ARC Centre of Excellence in Cognition and its Disorders, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rachel A. Robbins
- Research School of Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xuming He
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
- Bionic Vision Australia, Carlton, Victoria, Australia
| |
Collapse
|
108
|
Fried SI. Network-mediated responses of ON ganglion cells to electric stimulation become less consistent across trials during retinal degeneration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:2114-2117. [PMID: 29060314 DOI: 10.1109/embc.2017.8037271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microelectronic retinal prostheses are being developed to restore sight in individuals blinded by outer retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. Unfortunately, the quality of vision restored by these devices is still limited. To improve the quality of elicited vision, our group studies the responses of retinal neurons to electric stimulation. Our previous work showed that responses mediated through the retinal network are reproducible with high temporal precision, even for spikes that occur >100 ms after stimulus onset. Because they arise through the network, it is important to understand whether such reliability changes in the degenerate retina. Here, we examined response variability at several different stages of degeneration: postnatal day 14 (P14), P18, P31 and P60 in a well-established mouse model of degeneration (rd10). Spiking responses of ON alpha RGCs were recorded multiple times to an identical electric stimulus. We found that the trial-to-trial variability increased over the course of retinal degeneration. This finding may help to explain the reported variability in the quality of elicited vision across subjects using these devices.
Collapse
|
109
|
Soto-Breceda A, Kameneva T, Meffin H, Maturana M, Ibbotson MR. Irregularly timed electrical pulses reduce adaptation of retinal ganglion cells. J Neural Eng 2018; 15:056017. [PMID: 30021932 DOI: 10.1088/1741-2552/aad46e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Retinal prostheses aim to provide visual percepts to blind people affected by diseases caused by photoreceptor degeneration. One of the main challenges presented by current devices is neural adaptation in the retina, which is believed to be the cause of fading-an effect where artificially produced percepts disappear over a short period of time, despite continuous stimulation of the retina. We aim to understand the neural adaptation generated in retinal ganglion cells (RGCs) during electrical stimulation. APPROACH Current visual prostheses use electrical pulses with fixed frequencies and amplitudes modulated over hundreds of milliseconds to stimulate the retina. However, in nature, neuronal spiking occurs with stochastic timing, hence the information received naturally from other neurons by RGCs is irregularly timed. We used a single epiretinal electrode to stimulate and compare rat RGC responses to stimulus trains of biphasic pulses delivered at regular and random inter-pulse intervals (IPI), the latter taken from an exponential distribution. MAIN RESULTS Our observations suggest that stimulation with random IPIs result in lower adaptation rates than stimulation with constant IPIs at frequencies of 50 Hz and 200 Hz. We also found a high proportion of lower amplitude action potentials, or spikelets. The spikelets were more prominent at high stimulation frequencies (50 Hz and 200 Hz) and were less susceptible to adaptation, but it was not clear if they propagated along the axon. SIGNIFICANCE Using random IPI stimulation in retinal prostheses reduces the decay of RGCs and this could potentially reduce fading of electrically induced visual perception.
Collapse
Affiliation(s)
- A Soto-Breceda
- National Vision Research Institute, Australian College of Optometry, Melbourne, Australia. Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia. CSIRO, Data 61, Melbourne, Australia
| | | | | | | | | |
Collapse
|
110
|
Lee JI, Im M. Non-rectangular waveforms are more charge-efficient than rectangular one in eliciting network-mediated responses of ON type retinal ganglion cells. J Neural Eng 2018; 15:055004. [PMID: 30018183 DOI: 10.1088/1741-2552/aad416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE For individuals blinded by outer retinal degenerative diseases, retinal prostheses would be a promising option to restore sight. Unfortunately, however, the best performance of existing devices is still far removed from normal vision. One possible reason for the shortcoming is thought to be suboptimal stimulation conditions such as the waveform shape of electric stimulus. In this study, we explored the effects of varying waveforms on network-mediated responses arising in retinal ganglion cells (RGCs). APPROACH We used a cell-attached patch clamp technique to record RGC spiking activities in the isolated mouse retina. ON alpha RGCs were targeted by soma size and their light responses to stationary spot flashes. Spiking in targeted RGCs was measured in response to an epiretinally-delivered cathodal current pulse in four waveforms: rectangular, center triangular, increasing and decreasing ramp shapes. Each waveform was tested at three durations (20, 10, and 5 ms) with adjusted amplitude for a range of total charges (50-400 nC). MAIN RESULTS ON alpha RGCs always generated two bursts of spikes in responses to all stimuli conditions we tested. However, at a given charge, effects of differing waveforms were distinct in the two bursts. For the first burst, the increasing ramp was most effective among the four waveforms (p < 0.05 for all pairwise comparisons with other waveforms). For example, in responses arising from 20 ms-long stimuli, the increasing ramp evoked ~44% more spikes on average than the rectangular shape which is the typical choice of neural stimulation. Also, the rectangular stimulus evoked the weakest response in the delayed burst arising from pulses of every duration. For instance, 20 ms-long stimuli in the three non-rectangular waveforms showed ~23% or more increment in spike counts compared to response arising from the rectangular one; but there was no statistical difference in response magnitudes across the non-rectangular waveforms. SIGNIFICANCE Although the rectangular waveform has been primarily used in retinal prostheses our results indicate that rectangular stimulus is not optimal for network-mediated responses of ON alpha RGCs. Instead, non-rectangular waveforms evoke stronger responses at a given charge, indicating higher charge-efficiency. Therefore, non-rectangular waveforms are expected to enhance clinical efficacy of retinal prostheses.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, United States of America. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States of America
| | | |
Collapse
|
111
|
Bareket L, Barriga-Rivera A, Zapf MP, Lovell NH, Suaning GJ. Progress in artificial vision through suprachoroidal retinal implants. J Neural Eng 2018; 14:045002. [PMID: 28541930 DOI: 10.1088/1741-2552/aa6cbb] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal implants have proven their ability to restore visual sensation to people with degenerative retinopathy, characterized by photoreceptor cell death and the retina's inability to sense light. Retinal bionics operate by electrically stimulating the surviving neurons in the retina, thus triggering the transfer of visual sensory information to the brain. Suprachoroidal implants were first investigated in Australia in the 1950s. In this approach, the neuromodulation hardware is positioned between the sclera and the choroid, thus providing significant surgical and safety benefits for patients, with the potential to maintain residual vision combined with the artificial input from the device. Here we review the latest advances and state of the art devices for suprachoroidal prostheses, highlight future technologies and discuss challenges and perspectives towards improved rehabilitation of vision.
Collapse
Affiliation(s)
- Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
112
|
Abstract
Vision begins when the eye's optical system-the cornea, iris, and crystalline lens-projects an image onto the retina, the thin and nearly transparent sheet of neural tissue that lines the back of the eye (see figure 1). Photoreceptors located at the back of the retina transduce incident photons into neural signals that are relayed to the brain. Those signals form the basis for visual perception. In humans, cone photoreceptors, which number about 6 million, dominate the central region of the visual field and are responsible for color and high-resolution day vision. Rod photoreceptors, which number about 120 million, dominate the periphery and mediate night vision.
Collapse
|
113
|
Erhardt JB, Fuhrer E, Gruschke OG, Leupold J, Wapler MC, Hennig J, Stieglitz T, Korvink JG. Should patients with brain implants undergo MRI? J Neural Eng 2018. [DOI: 10.1088/1741-2552/aab4e4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
114
|
Eshraghian JK, Baek S, Kim JH, Iannella N, Cho K, Goo YS, Iu HHC, Kang SM, Eshraghian K. Formulation and Implementation of Nonlinear Integral Equations to Model Neural Dynamics Within the Vertebrate Retina. Int J Neural Syst 2018; 28:1850004. [PMID: 29631506 DOI: 10.1142/s0129065718500041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Existing computational models of the retina often compromise between the biophysical accuracy and a hardware-adaptable methodology of implementation. When compared to the current modes of vision restoration, algorithmic models often contain a greater correlation between stimuli and the affected neural network, but lack physical hardware practicality. Thus, if the present processing methods are adapted to complement very-large-scale circuit design techniques, it is anticipated that it will engender a more feasible approach to the physical construction of the artificial retina. The computational model presented in this research serves to provide a fast and accurate predictive model of the retina, a deeper understanding of neural responses to visual stimulation, and an architecture that can realistically be transformed into a hardware device. Traditionally, implicit (or semi-implicit) ordinary differential equations (OES) have been used for optimal speed and accuracy. We present a novel approach that requires the effective integration of different dynamical time scales within a unified framework of neural responses, where the rod, cone, amacrine, bipolar, and ganglion cells correspond to the implemented pathways. Furthermore, we show that adopting numerical integration can both accelerate retinal pathway simulations by more than 50% when compared with traditional ODE solvers in some cases, and prove to be a more realizable solution for the hardware implementation of predictive retinal models.
Collapse
Affiliation(s)
- Jason K Eshraghian
- 1 School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, Australia
| | - Seungbum Baek
- 2 College of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Jun-Ho Kim
- 2 College of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kyoungrok Cho
- 2 College of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Yong Sook Goo
- 4 Department of Physiology, School of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Herbert H C Iu
- 1 School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, Australia
| | - Sung-Mo Kang
- 5 Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | | |
Collapse
|
115
|
Optimization of Visual Information Presentation for Visual Prosthesis. Int J Biomed Imaging 2018; 2018:3198342. [PMID: 29731769 PMCID: PMC5872628 DOI: 10.1155/2018/3198342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.
Collapse
|
116
|
Alexander RG, Macknik SL, Martinez-Conde S. Microsaccade Characteristics in Neurological and Ophthalmic Disease. Front Neurol 2018; 9:144. [PMID: 29593642 PMCID: PMC5859063 DOI: 10.3389/fneur.2018.00144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/27/2018] [Indexed: 12/01/2022] Open
Abstract
Microsaccade research has recently reached a critical mass of studies that allows, for the first time, a comprehensive review of how microsaccadic dynamics change in neurological and ophthalmic disease. We discuss the various pathological conditions that affect microsaccades, their impact on microsaccadic and other fixational eye movement dynamics, and the incipient studies that point to microsaccadic features as potential indicators of differential and early diagnoses of multiple clinical conditions, from movement disorders to attention-deficit hyperactivity disorder to amblyopia. We propose that the objective assessment of fixational eye movement parameters may help refine differential diagnostics in neurological disease and assist in the evaluation of ongoing therapy regimes. In addition, determining the effects of ophthalmic disease on fixational eye movement features may help evaluate visual impairment in an objective manner, particularly in young patients or those experiencing communication difficulties.
Collapse
Affiliation(s)
- Robert G Alexander
- State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States
| | - Stephen L Macknik
- State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States
| | - Susana Martinez-Conde
- State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
117
|
Benfenati F, Lanzani G. New technologies for developing second generation retinal prostheses. Lab Anim (NY) 2018; 47:71-75. [PMID: 29483694 DOI: 10.1038/s41684-018-0003-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
Abstract
Inherited or age-dependent retinal dystrophies such as Retinitis pigmentosa (RP) and macular degeneration (MD) are among the most prevalent causes of blindness. Despite enormous efforts, no established pharmacological treatment to prevent or cure photoreceptor degeneration has been identified. Given the relative survival of the inner retina, attempts have been made to restore vision with optogenetics or with retinal neuroprostheses to allow light-dependent stimulation of the inner retinal network. While microelectrode and photovoltaic devices based on inorganic technologies have been proposed and in many cases implanted in RP patients, a new generation of prosthetics based on organic molecules, such as organic photoswitches and conjugated polymers, is demonstrating an unexpected potential for visual rescue and intimate interactions with functioning tissue. Organic devices are starting a new era of tissue electronics, in which light-sensitive molecules and live tissues integrate and tightly interact, producing a new ecosystem of organic prosthetics and intelligent biotic/abiotic interfaces. In addition to the retina, the applications of these interfaces might be extended in the future to other biomedical fields.
Collapse
Affiliation(s)
- Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
118
|
Im M, Werginz P, Fried SI. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type. J Neural Eng 2018; 15:036010. [PMID: 29415876 DOI: 10.1088/1741-2552/aaadc1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. APPROACH We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. MAIN RESULTS We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. SIGNIFICANCE The stimulation rates preferred by subjects during clinical trials are similar to the rates that maximize the ON/OFF response ratio in in vitro testing (Im and Fried 2016a J. Neural Eng. 13 025002). Here, we determine the stimulus duration that produces the strongest bias towards ON responses and speculate that it will further enhance clinical effectiveness.
Collapse
Affiliation(s)
- Maesoon Im
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, United States of America. Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, United States of America. Department of Electrical and Computer Engineering, Wayne State University College of Engineering, 5050 Anthony Wayne Drive, Detroit, MI 48202, United States of America. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, United States of America
| | | | | |
Collapse
|
119
|
Kuehlewein L, Kitiratschky V, Gosheva M, Edwards TL, MacLaren RE, Groppe M, Kusnyerik A, Soare C, Jackson TL, Sun CH, Chee C, Sachs H, Stingl K, Wilhelm B, Gekeler F, Bartz-Schmidt KU, Zrenner E, Stingl K. Optical Coherence Tomography in Patients With the Subretinal Implant Retina Implant Alpha IMS. Ophthalmic Surg Lasers Imaging Retina 2018; 48:993-999. [PMID: 29253302 DOI: 10.3928/23258160-20171130-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to assess changes in retinal structure and thickness after subretinal implantation of the Retina Implant Alpha IMS (Retina Implant AG, Reutlingen, Germany). PATIENTS AND METHODS Spectral-domain optical coherence tomography (SD-OCT) imaging was performed to assess the structure and thickness of the retina anterior to the microphotodiode array preoperatively, within 6 weeks and 6 months ± 1 month after implantation. Thickness measurements were performed using the distance tool of the built-in software. Three thickness measurements were performed in each of the four quadrants of the retina on the microchip within 6 weeks and 6 months ± 1 month after implantation. RESULTS The mean ± standard deviation change in retinal thickness from within 6 weeks to 6 months ± 1 month after implantation in all four quadrants combined was 24 μm ± 68 μm. None of the tested variables (location, time, or their interaction) had a statistically significant effect on the mean retinal thickness (P = .961, P = .131, and P = .182, respectively; n = 19). CONCLUSION The authors report on qualitative and quantitative findings in retinal structure in 27 patients after subretinal implantation of the Retina Implant Alpha IMS using OCT technology. No significant changes of retinal thickness could be observed in a period of 6 months after surgery. With more patients receiving subretinal implants and with advanced OCT technology, the data set will be extended to study possible changes in retinal structure in finer detail. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:993-999.].
Collapse
|
120
|
Weiland JD, Walston ST, Humayun MS. Electrical Stimulation of the Retina to Produce Artificial Vision. Annu Rev Vis Sci 2018; 2:273-294. [PMID: 28532361 DOI: 10.1146/annurev-vision-111815-114425] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal prostheses aim to restore vision to blind individuals suffering from retinal diseases such as retinitis pigmentosa and age-related macular degeneration. These devices function by electrically stimulating surviving retinal neurons, whose activation is interpreted by the brain as a visual percept. Many prostheses are currently under development. They are categorized as epiretinal, subretinal, and suprachoroidal prostheses on the basis of the placement of the stimulating microelectrode array. Each can activate ganglion cells through direct or indirect stimulation. The response of retinal neurons to these modes of stimulation are discussed in detail and are placed in context of the visual percept they are likely to evoke. This article further reviews challenges faced by retinal prosthesis and discusses potential solutions to address them.
Collapse
Affiliation(s)
- James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007; .,USC Roski Eye Institute, University of Southern California, Los Angeles, California 90033.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90033
| | - Steven T Walston
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007;
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007; .,USC Roski Eye Institute, University of Southern California, Los Angeles, California 90033.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
121
|
Zhao Y, Geng X, Li Q, Jiang G, Gu Y, Lv X. Recognition of a Virtual Maze Scene Using Simulated Prosthetic Vision. Artif Organs 2017; 42:560-568. [PMID: 29266315 DOI: 10.1111/aor.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022]
Abstract
A real-time psychological physics experimental platform was built to aid in discovering the best real-time image processing strategy for the limited number of electrodes, and in providing the most useful prosthetic implant visual information. A number of maze pathfinder tasks were performed at low resolution to simulate use by blind individuals in performing daily visual activities. In this study, simple (5 rows × 5 columns), medium (8 × 8), and complex (11 × 11) maze models were created in 3DMAX. The models were constructed by using Unity to build virtual scenes for real-time pixel processing, including binarization, color inversion, and matching to templates with three different resolutions (16 × 16, 24 × 24, 32 × 32). Subjects completed maze pathfinding tasks using 45° and 60° views of the labyrinth at the 32 × 32 resolution to determine the optimal viewing angle. The time required to find the maze entrance and complete the maze were analyzed along with the rate of maze completion (accuracy) at various resolutions. In the first experiment, the average time required to find the entrance and the average maze pathfinding duration were significantly longer at 60°. Therefore, the 45° view provided the best perspective. In the second experiment, the angle was fixed to 45°. As the maze difficulty increased, the average time needed to find the maze entrance decreased, but the average time required to complete the maze increased. When the difficulty of the maze was fixed, the time required to find the maze entrance and solve the maze decreased when the resolution increased. The accuracy with which the maze path was identified increased as well. The average maze pathfinding time at 24 × 24 was significantly less than at 16 × 16. A similar trend was observed when the average maze pathfinding times at 32 × 32 and 24 × 24 were compared. At 32 × 32, the average pathfinding accuracy was 100%. This indicates that 32 × 32 is an effective resolution for maze pathfinding.
Collapse
Affiliation(s)
- Ying Zhao
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiulin Geng
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Qi Li
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Guangqi Jiang
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yu Gu
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.,School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xiaoqi Lv
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.,School of Computer Engineering and Science, Shanghai University, Shanghai, China
| |
Collapse
|
122
|
Rountree CM, Troy JB, Saggere L. Methodology for Biomimetic Chemical Neuromodulation of Rat Retinas with the Neurotransmitter Glutamate In Vitro. J Vis Exp 2017. [PMID: 29286422 DOI: 10.3791/56645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Photoreceptor degenerative diseases cause irreparable blindness through the progressive loss of photoreceptor cells in the retina. Retinal prostheses are an emerging treatment for photoreceptor degenerative diseases that seek to restore vision by artificially stimulating the surviving retinal neurons in the hope of eliciting comprehensible visual perception in patients. Current retinal prostheses have demonstrated success in restoring limited vision to patients using an array of electrodes to electrically stimulate the retina but face substantial physical barriers in restoring high acuity, natural vision to patients. Chemical neurostimulation using native neurotransmitters is a biomimetic alternative to electrical stimulation and could bypass the fundamental limitations associated with retinal prostheses using electrical neurostimulation. Specifically, chemical neurostimulation has the potential to restore more natural vision with comparable or better visual acuities to patients by injecting very small quantities of neurotransmitters, the same natural agents of communication used by retinal chemical synapses, at much finer resolution than current electrical prostheses. However, as a relatively unexplored stimulation paradigm, there is no established protocol for achieving chemical stimulation of the retina in vitro. The purpose of this work is to provide a detailed framework for accomplishing chemical stimulation of the retina for investigators who wish to study the potential of chemical neuromodulation of the retina or similar neural tissues in vitro. In this work, we describe the experimental setup and methodology for eliciting retinal ganglion cell (RGC) spike responses similar to visual light responses in wild-type and photoreceptor-degenerated wholemount rat retinas by injecting controlled volumes of the neurotransmitter glutamate into the subretinal space using glass micropipettes and a custom multiport microfluidic device. This methodology and protocol are general enough to be adapted for neuromodulation using other neurotransmitters or even other neural tissues.
Collapse
Affiliation(s)
- Corey M Rountree
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago;
| |
Collapse
|
123
|
Li H, Han T, Wang J, Lu Z, Cao X, Chen Y, Li L, Zhou C, Chai X. A real-time image optimization strategy based on global saliency detection for artificial retinal prostheses. Inf Sci (N Y) 2017. [DOI: 10.1016/j.ins.2017.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
124
|
Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. Ophthalmology 2017; 125:432-443. [PMID: 29110946 PMCID: PMC5818267 DOI: 10.1016/j.ophtha.2017.09.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose To report the initial efficacy results of the Retina Implant Alpha AMS (Retina Implant AG, Reutlingen, Germany) for partial restoration of vision in end-stage retinitis pigmentosa (RP). Design Prospective, single-arm, investigator-sponsored interventional clinical trial. Within-participant control comprising residual vision with the retinal implant switched ON versus OFF in the implanted eye. Participants The Retina Implant Alpha AMS was implanted into the worse-seeing eye of 6 participants with end-stage RP and no useful perception of light vision. Eligibility criteria included previous normal vision for ≥12 years and no significant ocular or systemic comorbidity. Methods Vision assessments were scheduled at 1, 2, 3, 6, 9, and 12 months postimplantation. They comprised tabletop object recognition tasks, a self-assessment mobility questionnaire, and screen-based tests including Basic Light and Motion (BaLM), grating acuity, and greyscale contrast discrimination. A full-field stimulus test (FST) was also performed. Main Outcome Measures Improvement in activities of daily living, recognition tasks, and assessments of light perception with the implant ON compared with OFF. Results All 6 participants underwent successful implantation. Light perception and temporal resolution with the implant ON were achieved in all participants. Light localization was achieved with the implant ON in all but 1 participant (P4) in whom the chip was not functioning optimally because of a combination of iatrogenic intraoperative implant damage and incorrect implantation. Implant ON correct grating detections (which were at chance level with implant OFF) were recorded in the other 5 participants, ranging from 0.1 to 3.33 cycles/degree on 1 occasion. The ability to locate high-contrast tabletop objects not seen with the implant OFF was partially restored with the implant ON in all but 1 participant (P4). There were 2 incidents of conjunctival erosion and 1 inferotemporal macula-on retinal detachment, which were successfully repaired, and 2 incidents of inadvertent damage to the implant during surgery (P3 and P4). Conclusions The Alpha AMS subretinal implant improved visual performance in 5 of 6 participants and has exhibited ongoing function for up to 24 months. Although implantation surgery remains challenging, new developments such as OCT microscope guidance added refinements to the surgical technique.
Collapse
|
125
|
Ho E, Smith R, Goetz G, Lei X, Galambos L, Kamins TI, Harris J, Mathieson K, Palanker D, Sher A. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation. J Neurophysiol 2017; 119:389-400. [PMID: 29046428 DOI: 10.1152/jn.00872.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We demonstrate modulation of the retinal ganglion cells (RGC) activity using complex spatiotemporal stimuli delivered via subretinal photovoltaic implant at 20 Hz in healthy and in degenerate retina. RGCs exhibit fast and localized ON and OFF network-mediated responses, with antagonistic center-surround organization of their receptive fields.
Collapse
Affiliation(s)
- Elton Ho
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California
| | - Richard Smith
- Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California
| | - Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California
| | - Xin Lei
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Theodore I Kamins
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - James Harris
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Keith Mathieson
- Institute of Photonics, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California.,Department of Ophthalmology, Stanford University , Stanford, California
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California
| |
Collapse
|
126
|
De Silva SR, Barnard AR, Hughes S, Tam SKE, Martin C, Singh MS, Barnea-Cramer AO, McClements ME, During MJ, Peirson SN, Hankins MW, MacLaren RE. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy. Proc Natl Acad Sci U S A 2017; 114:11211-11216. [PMID: 28973921 PMCID: PMC5651734 DOI: 10.1073/pnas.1701589114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optogenetic strategies to restore vision in patients who are blind from end-stage retinal degenerations aim to render remaining retinal cells light sensitive once photoreceptors are lost. Here, we assessed long-term functional outcomes following subretinal delivery of the human melanopsin gene (OPN4) in the rd1 mouse model of retinal degeneration using an adeno-associated viral vector. Ectopic expression of OPN4 using a ubiquitous promoter resulted in cellular depolarization and ganglion cell action potential firing. Restoration of the pupil light reflex, behavioral light avoidance, and the ability to perform a task requiring basic image recognition were restored up to 13 mo following injection. These data suggest that melanopsin gene therapy via a subretinal route may be a viable and stable therapeutic option for the treatment of end-stage retinal degeneration in humans.
Collapse
Affiliation(s)
- Samantha R De Silva
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Shu K E Tam
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Chris Martin
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, United Kingdom
| | - Mandeep S Singh
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Alona O Barnea-Cramer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | | | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom;
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, National Institute for Health Research Biomedical Research Centre, Oxford OX3 9DU, United Kingdom;
- Moorfields Eye Hospital, National Institute for Health Research Biomedical Research Centre, London EC1V 2PD, United Kingdom
| |
Collapse
|
127
|
Zhao Y, Geng X, Li Q, Jiang G, Gu Y, Lv X. Recognition of a Virtual Scene via Simulated Prosthetic Vision. Front Bioeng Biotechnol 2017; 5:58. [PMID: 29067286 PMCID: PMC5641342 DOI: 10.3389/fbioe.2017.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022] Open
Abstract
In order to effectively aid the blind with optimal low-resolution vision and visual recovery training, pathfinding and recognition tests were performed using a simulated visual prosthetic scene. Simple and complex virtual scenes were built using 3DMAX and Unity, and pixelated to three different resolutions (32 × 32, 64 × 64, and 128 × 128) for real-time pixel processing. Twenty subjects were recruited to complete the pathfinding and object recognition tasks within the scene. The recognition accuracy and time required were recorded and analyzed after the trials. In the simple simulated prosthetic vision (SPV) scene, when the resolution was increased from 32 × 32 to 48 × 48, the object recognition time decreased from 92.19 ± 6.97 to 43.05 ± 6.08 s, and the recognition accuracy increased from 51.22 ± 8.53 to 85.52 ± 4.93%. Furthermore, the number of collisions decreased from 10.00 ± 2.31 to 3.00 ± 0.68. When the resolution was increased from 48 × 48 to 64 × 64, the object recognition time further decreased from 43.05 ± 6.08 to 19.46 ± 3.71 s, the recognition accuracy increased from 85.52 ± 4.93 to 96.89 ± 2.06%, and the number of collisions decreased from 3.00 ± 0.68 to 1.00 ± 0.29. In complex scenes, the time required to recognize the room type decreased from 115.00 ± 23.02 to 68.25 ± 17.23 s, and object recognition accuracy increased from 65.69 ± 9.61 to 80.42 ± 7.70% when the resolution increased from 48 × 48 to 64 × 64. When the resolution increased from 64 × 64 to 128 × 128, the time required to recognize the room type decreased from 68.25 ± 17.23 to 44.88 ± 9.94 s, and object recognition accuracy increased from 80.42 ± 7.71 to 85.69 ± 7.39%. Therefore, one can conclude that there are correlations between pathfinding and recognition. When the resolution increased, the time required for recognition decreased, the recognition accuracy increased, and the number of collisions decreased. Although the subjects could partially complete the recognition task at a resolution of 32 × 32, the recognition time was too long and recognition accuracy was not good enough to identify simple scenes. Complex scenes required a resolution of at least 48 × 48 for complete recognition. In addition, increasing the resolution shortened the time required to identify the type of room, and improved the recognition accuracy.
Collapse
Affiliation(s)
- Ying Zhao
- School of Information Engineering, University of Science and Technology, Baotou, China
| | - Xiulin Geng
- School of Information Engineering, University of Science and Technology, Baotou, China
| | - Qi Li
- School of Information Engineering, University of Science and Technology, Baotou, China
| | - Guangqi Jiang
- School of Information Engineering, University of Science and Technology, Baotou, China
| | - Yu Gu
- School of Information Engineering, University of Science and Technology, Baotou, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xiaoqi Lv
- School of Information Engineering, University of Science and Technology, Baotou, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| |
Collapse
|
128
|
Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (Lond) 2017; 31:1383-1398. [PMID: 28548648 PMCID: PMC5639190 DOI: 10.1038/eye.2017.65] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Retinitis pigmentosa and age-related macular degeneration are two significant causes of severe visual dysfunction. In both, the retinal photoreceptors degenerate, preventing successful conversion of light into electrical energy that is interpreted in the visual cortex as visual function. Artificial vision or visual function began over two centuries ago with the idea of creating artificial light pulses, or phosphenes, through cortical stimulation. The pursuit is now on to improve artificial visual function. Two retinal implants appear the most likely to succeed in the future having undergone multicentre human trials: the Argus II electronic epiretinal device (Second Sight Medical Products, CA, USA) and Alpha-IMS electronic subretinal device (Retina Implant AG, Germany). The trial results to date are encouraging with visual improvement and acceptable safety profiles reported for both devices. At present, the visual function generated by either device does not offer high enough resolution or acuity for a patient to regain a fully functional life. Despite this, both devices not only have the potential, but have actually improved the vision-related quality of life in a significant number of patients implanted. With this in mind, the economic argument is clear. Provided device-life is long enough, its cost should be acceptable for the obtained improvement in the quality of life. The aim of this Review Article is to assist those readers that may be considering offering any of these devices as a treatment for blindness in Retinitis Pigmentosa.
Collapse
Affiliation(s)
- J O Mills
- Manchester Royal Eye Hospital, Manchester, UK
- Manchester Vision Regeneration (MVR) Lab at Manchester Royal Eye Hospital, NIHR/ Wellcome Trust Manchester CRF, Manchester Royal Eye Hospital, Manchester, UK
| | - A Jalil
- Manchester Royal Eye Hospital, Manchester, UK
- Manchester Vision Regeneration (MVR) Lab at Manchester Royal Eye Hospital, NIHR/ Wellcome Trust Manchester CRF, Manchester Royal Eye Hospital, Manchester, UK
| | - P E Stanga
- Manchester Royal Eye Hospital, Manchester, UK
- Manchester Vision Regeneration (MVR) Lab at Manchester Royal Eye Hospital, NIHR/ Wellcome Trust Manchester CRF, Manchester Royal Eye Hospital, Manchester, UK
- Manchester Academic Health Science Centre and Centre for Ophthalmology and Vision Research, Institute of Human Development, University of Manchester, Manchester, UK
| |
Collapse
|
129
|
Daschner R, Greppmaier U, Kokelmann M, Rudorf S, Rudorf R, Schleehauf S, Wrobel WG. Laboratory and clinical reliability of conformally coated subretinal implants. Biomed Microdevices 2017; 19:7. [PMID: 28124761 PMCID: PMC5269461 DOI: 10.1007/s10544-017-0147-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite recent developments and new treatments in ophthalmology there is nothing available to cure retinal degenerations like Retinitis Pigmentosa (RP) yet. One of the most advanced approaches to treat people that have gone blind due to RP is to replace the function of the degenerated photoreceptors by a microelectronic neuroprosthetic device. Basically, this subretinal active implant transforms the incoming light into electric pulses to stimulate the remaining cells of the retina. The functional time of such devices is a crucial aspect. In this paper the laboratory and clinical reliability of the two active subretinal implants Alpha IMS and Alpha AMS is presented. Based on clinical data the median operating life of the Alpha AMS is estimated to be 3.3 years with a one-sided lower 75 % confidence level of 2.0 years. This data shows a significant improvement of the device lifetime compared to the previous device Alpha IMS which shows a median lifetime of 0.6 years with a lower confidence bound (75 %) of 0.5 years. The results are in good agreement with laboratory data from accelerated aging tests of the implant components, showing an estimated median lifetime for Alpha IMS components of 0.7 years compared to the improved lifetime of Alpha AMS of 4.7 years.
Collapse
Affiliation(s)
- Renate Daschner
- Retina Implant AG, Gerhard-Kindler-Strasse 8, 72770, Reutlingen, Germany.
| | - Udo Greppmaier
- Retina Implant AG, Gerhard-Kindler-Strasse 8, 72770, Reutlingen, Germany
| | - Martin Kokelmann
- Retina Implant AG, Gerhard-Kindler-Strasse 8, 72770, Reutlingen, Germany
| | - Sandra Rudorf
- Retina Implant AG, Gerhard-Kindler-Strasse 8, 72770, Reutlingen, Germany
| | - Ralf Rudorf
- Retina Implant AG, Gerhard-Kindler-Strasse 8, 72770, Reutlingen, Germany
| | | | - Walter G Wrobel
- Retina Implant AG, Gerhard-Kindler-Strasse 8, 72770, Reutlingen, Germany
| |
Collapse
|
130
|
Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, Gekeler F, Greppmaier U, Kiel K, Koitschev A, Kühlewein L, MacLaren RE, Ramsden JD, Roider J, Rothermel A, Sachs H, Schröder GS, Tode J, Troelenberg N, Zrenner E. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front Neurosci 2017; 11:445. [PMID: 28878616 PMCID: PMC5572402 DOI: 10.3389/fnins.2017.00445] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose: We assessed the safety and efficacy of a technically advanced subretinal electronic implant, RETINA IMPLANT Alpha AMS, in end stage retinal degeneration in an interim analysis of two ongoing prospective clinical trials. The purpose of this article is to describe the interim functional results (efficacy). Methods: The subretinal visual prosthesis RETINA IMPLANT Alpha AMS (Retina Implant AG, Reutlingen, Germany) was implanted in 15 blind patients with hereditary retinal degenerations at four study sites with a follow-up period of 12 months (www.clinicaltrials.gov NCT01024803 and NCT02720640). Functional outcome measures included (1) screen-based standardized 2- or 4-alternative forced-choice (AFC) tests of light perception, light localization, grating detection (basic grating acuity (BaGA) test), and Landolt C-rings; (2) gray level discrimination; (3) performance during activities of daily living (ADL-table tasks). Results: Implant-mediated light perception was observed in 13/15 patients. During the observation period implant mediated localization of visual targets was possible in 13/15 patients. Correct grating detection was achieved for spatial frequencies of 0.1 cpd (cycles per degree) in 4/15; 0.33 cpd in 3/15; 0.66 cpd in 2/15; 1.0 cpd in 2/15 and 3.3 cpd in 1/15 patients. In two patients visual acuity (VA) assessed with Landolt C- rings was 20/546 and 20/1111. Of 6 possible gray levels on average 4.6 ± 0.8 (mean ± SD, n = 10) were discerned. Improvements (power ON vs. OFF) of ADL table tasks were measured in 13/15 patients. Overall, results were stable during the observation period. Serious adverse events (SAEs) were reported in 4 patients: 2 movements of the implant, readjusted in a second surgery; 4 conjunctival erosion/dehiscence, successfully treated; 1 pain event around the coil, successfully treated; 1 partial reduction of silicone oil tamponade leading to distorted vision (silicon oil successfully refilled). The majority of adverse events (AEs) were transient and mostly of mild to moderate intensity. Conclusions: Psychophysical and subjective data show that RETINA IMPLANT Alpha AMS is reliable, well tolerated and can restore limited visual functions in blind patients with degenerations of the outer retina. Compared with the previous implant Alpha IMS, longevity of the new implant Alpha AMS has been considerably improved. Alpha AMS has meanwhile been certified as a commercially available medical device, reimbursed in Germany by the public health system.
Collapse
Affiliation(s)
- Katarina Stingl
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany
| | | | | | - Dorothea Besch
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany
| | - Charles L Cottriall
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - Thomas L Edwards
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - Florian Gekeler
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany.,Department of Ophthalmology, Katharinenhospital, Klinikum StuttgartStuttgart, Germany
| | | | - Katja Kiel
- Städtisches Klinikum Dresden Friedrichstadt, University Teaching HospitalDresden, Germany
| | - Assen Koitschev
- Division Pediatric Otorhinolaryngology and Otology - Olgahospital, Department of Otorhinolaryngology, Klinikum StuttgartStuttgart, Germany
| | - Laura Kühlewein
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - James D Ramsden
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - Johann Roider
- Department of Ophthalmology, University of KielKiel, Germany
| | | | - Helmut Sachs
- Städtisches Klinikum Dresden Friedrichstadt, University Teaching HospitalDresden, Germany
| | | | - Jan Tode
- Department of Ophthalmology, University of KielKiel, Germany
| | | | - Eberhart Zrenner
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of TuebingenTuebingen, Germany
| |
Collapse
|
131
|
Irons JL, Gradden T, Zhang A, He X, Barnes N, Scott AF, McKone E. Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing. Vision Res 2017; 137:61-79. [PMID: 28688907 DOI: 10.1016/j.visres.2017.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/15/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
The visual prosthesis (or "bionic eye") has become a reality but provides a low resolution view of the world. Simulating prosthetic vision in normal-vision observers, previous studies report good face recognition ability using tasks that allow recognition to be achieved on the basis of information that survives low resolution well, including basic category (sex, age) and extra-face information (hairstyle, glasses). Here, we test within-category individuation for face-only information (e.g., distinguishing between multiple Caucasian young men with hair covered). Under these conditions, recognition was poor (although above chance) even for a simulated 40×40 array with all phosphene elements assumed functional, a resolution above the upper end of current-generation prosthetic implants. This indicates that a significant challenge is to develop methods to improve face identity recognition. Inspired by "bionic ear" improvements achieved by altering signal input to match high-level perceptual (speech) requirements, we test a high-level perceptual enhancement of face images, namely face caricaturing (exaggerating identity information away from an average face). Results show caricaturing improved identity recognition in memory and/or perception (degree by which two faces look dissimilar) down to a resolution of 32×32 with 30% phosphene dropout. Findings imply caricaturing may offer benefits for patients at resolutions realistic for some current-generation or in-development implants.
Collapse
Affiliation(s)
- Jessica L Irons
- Research School of Psychology, Australian National University, Australia; ARC Centre for Cognition and Its Disorders, Australian National University, Australia.
| | - Tamara Gradden
- Research School of Psychology, Australian National University, Australia
| | - Angel Zhang
- Research School of Psychology, Australian National University, Australia
| | - Xuming He
- National Information and Communication Technology Australia (NICTA), Australia; College of Engineering and Computer Science, Australian National University, Australia; Data61, CSIRO, Australia
| | - Nick Barnes
- National Information and Communication Technology Australia (NICTA), Australia; College of Engineering and Computer Science, Australian National University, Australia; Bionic Vision Australia, Australia; Data61, CSIRO, Australia
| | - Adele F Scott
- National Information and Communication Technology Australia (NICTA), Australia; Bionic Vision Australia, Australia; Data61, CSIRO, Australia
| | - Elinor McKone
- Research School of Psychology, Australian National University, Australia; ARC Centre for Cognition and Its Disorders, Australian National University, Australia.
| |
Collapse
|
132
|
Optogenetik als mögliche Therapie bei degenerativen Netzhauterkrankungen. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Zusammenfassung
Bei neurodegenerativen Erkrankungen der Netzhaut sind die lichtempfindlichen Zellen, die Photorezeptoren, oft als Erstes betroffen. Die Optogenetik ist ein vielversprechender Ansatz, die Netzhaut wieder lichtempfindlich zu machen und dadurch das Sehvermögen wiederherzustellen. Bei der Optogenetik werden lichtempfindliche Proteine über gentechnische Methoden in die Netzhaut eingebracht; die Aktivität der Zielzellen wird durch diese Behandlung durch Licht beeinflussbar. Dieser Einfluss kann die direkte lichtinduzierte Änderung des Membranpotenzials sein (sowohl hemmend als auch erregend) oder die lichtinduzierte Aktivierung intrazellulärer Signalkaskaden. Dies hat zur Folge, dass das Zielgewebe, die Netzhaut, wieder auf Licht reagiert. Diese Übersicht beschreibt die Prinzipien der Optogenetik und den gegenwärtigen Stand im Hinblick auf ihre Anwendung zur Behandlung von Blindheit.
Collapse
|
133
|
Beyeler M, Rokem A, Boynton GM, Fine I. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng 2017; 14:051003. [PMID: 28612755 DOI: 10.1088/1741-2552/aa795e] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 'bionic eye'-so long a dream of the future-is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.
Collapse
Affiliation(s)
- Michael Beyeler
- Department of Psychology, University of Washington, Seattle, WA, United States of America. Institute for Neuroengineering, University of Washington, Seattle, WA, United States of America. eScience Institute, University of Washington, Seattle, WA, United States of America
| | | | | | | |
Collapse
|
134
|
Maya-Vetencourt JF, Ghezzi D, Antognazza MR, Colombo E, Mete M, Feyen P, Desii A, Buschiazzo A, Di Paolo M, Di Marco S, Ticconi F, Emionite L, Shmal D, Marini C, Donelli I, Freddi G, Maccarone R, Bisti S, Sambuceti G, Pertile G, Lanzani G, Benfenati F. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. NATURE MATERIALS 2017; 16:681-689. [PMID: 28250420 PMCID: PMC5446789 DOI: 10.1038/nmat4874] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/31/2017] [Indexed: 05/17/2023]
Abstract
The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.
Collapse
Affiliation(s)
| | - Diego Ghezzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maurizio Mete
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Negrar, Italy
| | - Paul Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Desii
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Ambra Buschiazzo
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Mattia Di Paolo
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Stefano Di Marco
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Flavia Ticconi
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Laura Emionite
- Animal Facility, National Institute Cancer Research, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Dmytro Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Cecilia Marini
- Institute of Molecular Bio-imaging and Physiology (IBFM), CNR, Milan (GE section), Italy
| | | | | | - Rita Maccarone
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Silvia Bisti
- Department of Biotechnology and Applied Clinical Science, University of L’Aquila, Italy
| | - Gianmario Sambuceti
- Department of Health Science, Nuclear Medicine, University of Genoa, Genoa, Italy
| | - Grazia Pertile
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Negrar, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
135
|
Grosberg LE, Ganesan K, Goetz GA, Madugula SS, Bhaskhar N, Fan V, Li P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. J Neurophysiol 2017; 118:1457-1471. [PMID: 28566464 DOI: 10.1152/jn.00750.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Epiretinal prostheses for treating blindness activate axon bundles, causing large, arc-shaped visual percepts that limit the quality of artificial vision. Improving the function of epiretinal prostheses therefore requires understanding and avoiding axon bundle activation. This study introduces a method to detect axon bundle activation on the basis of its electrical signature and uses the method to test whether epiretinal stimulation can directly elicit spikes in individual retinal ganglion cells without activating nearby axon bundles. Combined electrical stimulation and recording from isolated primate retina were performed using a custom multielectrode system (512 electrodes, 10-μm diameter, 60-μm pitch). Axon bundle signals were identified by their bidirectional propagation, speed, and increasing amplitude as a function of stimulation current. The threshold for bundle activation varied across electrodes and retinas, and was in the same range as the threshold for activating retinal ganglion cells near their somas. In the peripheral retina, 45% of electrodes that activated individual ganglion cells (17% of all electrodes) did so without activating bundles. This permitted selective activation of 21% of recorded ganglion cells (7% of expected ganglion cells) over the array. In one recording in the central retina, 75% of electrodes that activated individual ganglion cells (16% of all electrodes) did so without activating bundles. The ability to selectively activate a subset of retinal ganglion cells without axon bundles suggests a possible novel architecture for future epiretinal prostheses.NEW & NOTEWORTHY Large-scale multielectrode recording and stimulation were used to test how selectively retinal ganglion cells can be electrically activated without activating axon bundles. A novel method was developed to identify axon activation on the basis of its unique electrical signature and was used to find that a subset of ganglion cells can be activated at single-cell, single-spike resolution without producing bundle activity in peripheral and central retina. These findings have implications for the development of advanced retinal prostheses.
Collapse
Affiliation(s)
- Lauren E Grosberg
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California;
| | - Karthik Ganesan
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - Georges A Goetz
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Sasidhar S Madugula
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Nandita Bhaskhar
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - Victoria Fan
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Peter Li
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; and
| | - Wladyslaw Dabrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; and
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California
| | - Subhasish Mitra
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - E J Chichilnisky
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| |
Collapse
|
136
|
Abstract
Photonic crystals (PhCs) efficiently manipulate photons at the nanoscale. Applying these crystals to biological tissue that has been subjected to large deformation and humid environments can lead to fascinating bioapplications such as in vivo biosensors and artificial ocular prostheses. These applications require that these PhCs have mechanical durability, deformability, and biocompatibility. Herein, we introduce a deformable and conformal silk hydrogel inverse opal (SHIO); the photonic lattice of this 3D PhC can be deformed by mechanical strain. This SHIO is prepared by the UV cross-linking of a liquid stilbene/silk solution, to give a transparent and elastic hydrogel. The pseudophotonic band gap (pseudo-PBG) of this material can be stably tuned by deformation of the photonic lattice (stretching, bending, and compressing). Proof-of-concept experiments demonstrate that the SHIO can be applied as an ocular prosthesis for better vision, such as that provided by the tapeta lucida of nocturnal or deep-sea animals.
Collapse
|
137
|
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. PROGRESS IN BRAIN RESEARCH 2017; 231:191-223. [PMID: 28554397 DOI: 10.1016/bs.pbr.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration and inherited retinal degenerations represent the leading causes of blindness in industrialized countries. Despite different initiating causes, they share a common final pathophysiology, the loss of the light sensitive photoreceptors. Replacement by transplantation may offer a potential treatment strategy for both patient populations. The last decade has seen remarkable progress in our ability to generate retinal cell types, including photoreceptors, from a variety of murine and human pluripotent stem cell sources. Driven in large part by the requirement for renewable cell sources, stem cells have emerged not only as a promising source of replacement photoreceptors but also to provide in vitro systems with which to study retinal development and disease processes and to test therapeutic agents.
Collapse
Affiliation(s)
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
138
|
Agarwal K, Jegadeesan R, Guo YX, Thakor NV. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev Biomed Eng 2017; 10:136-161. [PMID: 28328511 DOI: 10.1109/rbme.2017.2683520] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.
Collapse
|
139
|
Cheng DL, Greenberg PB, Borton DA. Advances in Retinal Prosthetic Research: A Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives. Curr Eye Res 2017; 42:334-347. [PMID: 28362177 DOI: 10.1080/02713683.2016.1270326] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To date, reviews of retinal prostheses have focused primarily on devices undergoing human trials in the Western Hemisphere and fail to capture significant advances in materials and engineering research in countries such as Japan and Korea, as well as projects in early stages of development. To address these gaps, this systematic review examines worldwide advances in retinal prosthetic research, evaluates engineering characteristics and clinical progress of contemporary device initiatives, and identifies potential directions for future research in the field of retinal prosthetics. METHODS A literature search using PubMed, Google Scholar, and IEEExplore was conducted following the PRISMA Guidelines for Systematic Review. Inclusion criteria were peer-reviewed papers demonstrating progress in human or animal trials and papers discussing the prosthetic engineering design. For each initiative, a description of the device, its engineering considerations, and recent clinical results were provided. RESULTS Ten prosthetic initiatives met our inclusion criteria and were organized by stimulation location. Of these initiatives, four have recently completed human trials, three are undergoing multi- or single-center human trials, and three are undergoing preclinical animal testing. Only the Argus II (FDA 2013, CE 2011) has obtained FDA approval for use in the United States; the Alpha-IMS (CE 2013) has achieved the highest visual acuity using a Landolt-C test to date and is the only device presently undergoing a multicenter clinical trial. CONCLUSION Several distinct approaches to retinal stimulation have been successful in eliciting visual precepts in animals and/or humans. However, many clinical needs are still not met and engineering challenges must be addressed before a retinal prosthesis with the capability to fully and safely restore functional vision can be realized.
Collapse
Affiliation(s)
- Derrick L Cheng
- a Alpert Medical School , Brown University , Providence , RI , USA
| | - Paul B Greenberg
- b Section of Ophthalmology , Providence VA Medical Center , Providence , RI , USA.,c Division of Ophthalmology, Alpert Medical School , Brown University , Providence , RI , USA
| | - David A Borton
- d School of Engineering , Brown University , Providence , RI , USA.,e Brown Institute for Brain Science , Brown University , Providence , RI , USA
| |
Collapse
|
140
|
Barriga-Rivera A, Guo T, Yang CY, Abed AA, Dokos S, Lovell NH, Morley JW, Suaning GJ. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis. Sci Rep 2017; 7:42682. [PMID: 28209965 PMCID: PMC5314337 DOI: 10.1038/srep42682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells.
Collapse
Affiliation(s)
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Chih-Yu Yang
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, 2753, Australia.,School of Medical Science, UNSW, Sydney, 2052, Australia
| | - Gregg J Suaning
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia.,Sydney Medical School, University of Sydney, 2000, Australia
| |
Collapse
|
141
|
Abstract
Sensory neuroprostheses for restoration of vision are a technical approach for treatment of previously untreatable blindness. These systems consist of a technical sensor such as a camera and an implanted multi-electrode array within the visual system. The image information from the sensor is processed with specially designed integrated circuits in such a way that the stimulation pulses can be determined and presented to the implanted multi-electrode matrix. Energy supply and the transfer of the stimulus pulse information is realized either via direct cable connections within the site of the implant or by telemetric inductive links. Currently, two retinal implant systems are approved in the European Union (EU) to be used in blind patients with retinitis pigmentosa. With both systems basic visual functions can be restored. The complication rate is relatively low given the complexity of the surgical procedure. Other systems are still under development but approval studies by several manufacturers and consortia are already in preparation.
Collapse
Affiliation(s)
- P Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
142
|
Rountree CM, Raghunathan A, Troy JB, Saggere L. Prototype chemical synapse chip for spatially patterned neurotransmitter stimulation of the retina ex vivo. MICROSYSTEMS & NANOENGINEERING 2017; 3:17052. [PMID: 31057878 PMCID: PMC6445002 DOI: 10.1038/micronano.2017.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/06/2017] [Accepted: 07/02/2017] [Indexed: 05/04/2023]
Abstract
Biomimetic stimulation of the retina with neurotransmitters, the natural agents of communication at chemical synapses, could be more effective than electrical stimulation for treating blindness from photoreceptor degenerative diseases. Recent studies have demonstrated the feasibility of neurotransmitter stimulation by injecting glutamate, a primary retinal neurotransmitter, into the retina at isolated single sites. Here, we demonstrate spatially patterned multisite stimulation of the retina with glutamate, offering the first experimental evidence for applicability of this strategy for translating visual patterns into afferent neural signals. To accomplish pattern stimulation, we fabricated a special microfluidic device comprising an array of independently addressable microports connected to tiny on-chip glutamate reservoirs via microchannels. The device prefilled with glutamate was interfaced with explanted rat retinas placed over a multielectrode array (MEA) with the retinal ganglion cells (RGC) contacting the electrodes and photoreceptor surface contacting the microports. By independently and simultaneously activating a subset of the microports with modulated pressure pulses, small boluses of glutamate were convectively injected at multiple sites in alphabet patterns over the photoreceptor surface. We found that the glutamate-driven RGC responses recorded through the MEA system were robust and spatially laid out in patterns strongly resembling the injection patterns. The stimulations were also highly localized with spatial resolutions comparable to or better than electrical retinal prostheses. Our findings suggest that surface stimulation of the retina with neurotransmitters in pixelated patterns of visual images is feasible and an artificial chemical synapse chip based on this approach could potentially circumvent the limitations of electrical retinal prostheses.
Collapse
Affiliation(s)
- Corey M. Rountree
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ashwin Raghunathan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John B. Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
143
|
Ahnood A, Meffin H, Garrett DJ, Fox K, Ganesan K, Stacey A, Apollo NV, Wong YT, Lichter SG, Kentler W, Kavehei O, Greferath U, Vessey KA, Ibbotson MR, Fletcher EL, Burkitt AN, Prawer S. Diamond Devices for High Acuity Prosthetic Vision. ACTA ACUST UNITED AC 2016; 1:e1600003. [DOI: 10.1002/adbi.201600003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/27/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Arman Ahnood
- School of Physics University of Melbourne Victoria 3010 Australia
| | - Hamish Meffin
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- ARC Centre of Excellence for Integrative Brain Function Department of Optometry and Vision Science University of Melbourne Victoria 3010 Australia
| | - David J. Garrett
- School of Physics University of Melbourne Victoria 3010 Australia
| | - Kate Fox
- School of Physics University of Melbourne Victoria 3010 Australia
- School of Engineering RMIT University Melbourne 3000 Australia
| | | | - Alastair Stacey
- School of Physics University of Melbourne Victoria 3010 Australia
| | | | - Yan T. Wong
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | | | - William Kentler
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | - Omid Kavehei
- School of Engineering RMIT University Melbourne 3000 Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Michael R. Ibbotson
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- ARC Centre of Excellence for Integrative Brain Function Department of Optometry and Vision Science University of Melbourne Victoria 3010 Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Anthony N. Burkitt
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | - Steven Prawer
- School of Physics University of Melbourne Victoria 3010 Australia
| |
Collapse
|
144
|
Halupka KJ, Shivdasani MN, Cloherty SL, Grayden DB, Wong YT, Burkitt AN, Meffin H. Prediction of cortical responses to simultaneous electrical stimulation of the retina. J Neural Eng 2016; 14:016006. [DOI: 10.1088/1741-2560/14/1/016006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
145
|
Castaldi E, Cicchini GM, Cinelli L, Biagi L, Rizzo S, Morrone MC. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis. PLoS Biol 2016; 14:e1002569. [PMID: 27780207 PMCID: PMC5079588 DOI: 10.1371/journal.pbio.1002569] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.
Collapse
Affiliation(s)
- E. Castaldi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - L. Cinelli
- Azienda Ospedaliero-Universitaria Careggi, SOD Oculistica, Florence, Italy
| | - L. Biagi
- Stella Maris Scientific Institute, Pisa, Italy
| | - S. Rizzo
- Azienda Ospedaliero-Universitaria Careggi, SOD Oculistica, Florence, Italy
| | - M. C. Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Stella Maris Scientific Institute, Pisa, Italy
- * E-mail:
| |
Collapse
|
146
|
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J Neural Eng 2016; 13:061003. [PMID: 27762237 DOI: 10.1088/1741-2560/13/6/061003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.
Collapse
Affiliation(s)
- Richard A Normann
- Departments of Bioengineering and Ophthalmology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
147
|
Weitz AC, Nanduri D, Behrend MR, Gonzalez-Calle A, Greenberg RJ, Humayun MS, Chow RH, Weiland JD. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci Transl Med 2016; 7:318ra203. [PMID: 26676610 DOI: 10.1126/scitranslmed.aac4877] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retinal prosthetic implants are the only approved treatment for retinitis pigmentosa, a disease of the eye that causes blindness through gradual degeneration of photoreceptors. An array of microelectrodes triggered by input from a camera stimulates surviving retinal neurons, with each electrode acting as a pixel. Unintended stimulation of retinal ganglion cell axons causes patients to see large oblong shapes of light, rather than focal spots, making it difficult to perceive forms. To address this problem, we performed calcium imaging in isolated retinas and mapped the patterns of cells activated by different electrical stimulation protocols. We found that pulse durations two orders of magnitude longer than those typically used in existing implants stimulated inner retinal neurons while avoiding activation of ganglion cell axons, thus confining retinal responses to the site of the electrode. Multielectrode stimulation with 25-ms pulses can pattern letters on the retina corresponding to a Snellen acuity of 20/312. We validated our findings in a patient with an implanted epiretinal prosthesis by demonstrating that 25-ms pulses evoke focal spots of light.
Collapse
Affiliation(s)
- Andrew C Weitz
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Devyani Nanduri
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Behrend
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alejandra Gonzalez-Calle
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Mark S Humayun
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert H Chow
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA. Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - James D Weiland
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
148
|
Goetz GA, Palanker DV. Electronic approaches to restoration of sight. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096701. [PMID: 27502748 PMCID: PMC5031080 DOI: 10.1088/0034-4885/79/9/096701] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field.
Collapse
Affiliation(s)
- G A Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA. Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
149
|
Roux S, Matonti F, Dupont F, Hoffart L, Takerkart S, Picaud S, Pham P, Chavane F. Probing the functional impact of sub-retinal prosthesis. eLife 2016; 5. [PMID: 27549126 PMCID: PMC4995098 DOI: 10.7554/elife.12687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/07/2016] [Indexed: 11/27/2022] Open
Abstract
Retinal prostheses are promising tools for recovering visual functions in blind patients but, unfortunately, with still poor gains in visual acuity. Improving their resolution is thus a key challenge that warrants understanding its origin through appropriate animal models. Here, we provide a systematic comparison between visual and prosthetic activations of the rat primary visual cortex (V1). We established a precise V1 mapping as a functional benchmark to demonstrate that sub-retinal implants activate V1 at the appropriate position, scalable to a wide range of visual luminance, but with an aspect-ratio and an extent much larger than expected. Such distorted activation profile can be accounted for by the existence of two sources of diffusion, passive diffusion and activation of ganglion cells’ axons en passant. Reverse-engineered electrical pulses based on impedance spectroscopy is the only solution we tested that decreases the extent and aspect-ratio, providing a promising solution for clinical applications. DOI:http://dx.doi.org/10.7554/eLife.12687.001 One of the most common causes of blindness is a disorder called retinitis pigmentosa. In a healthy eye, the surface at the back of the eye – called the retina – contains cells called photoreceptors that detect light and convert it into electrical signals for the brain to process. In people with retinitis pigmentosa, these photoreceptor cells die off gradually, which leads to loss of vision. The only treatment available for retinitis pigmentosa is to have an artificial retina implanted into the eye. The artificial retina consists of an array of tiny electrodes, which take over from the damaged photoreceptors and generate electrical signals. The person with the implant perceives these electrical signals as bright flashes called “phosphenes”. However, the phosphenes are too large and imprecise to provide the person with vision that is good enough for tasks such as walking unaided or reading. To find out why artificial retinas produce such poor resolution, Roux et al. compared how a rat’s brain responds to either natural visual stimuli or activation of implanted an array of micro-electrodes. Both the micro-electrodes and the natural stimuli activated the same areas of the brain. However, the micro-electrodes produced larger and more elongated patterns of activation. This is because the electrical currents generated by the micro-electrodes diffused throughout the retinal tissue and activated other neurons besides those intended. To overcome this problem, Roux et al. tested different ways of stimulating the micro-electrodes in order to identify those that induce the desired patterns of brain activity. This approach – known as reverse engineering – did indeed improve the performance of the micro-electrode array. The next step is to extend these findings, which were obtained in healthy rats, to non-human primates or animal models of retinitis pigmentosa to better understand the condition in humans. In addition, combining the current approach with other existing techniques should further improve the vision that can be achieved with artificial retinas. DOI:http://dx.doi.org/10.7554/eLife.12687.002
Collapse
Affiliation(s)
- Sébastien Roux
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, Marseille, France
| | - Frédéric Matonti
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, Marseille, France.,Ophthalmology Department, Aix Marseille Université, Hôpital Nord,Hôpital de la Timone, Marseille, France
| | - Florent Dupont
- CEA-LETI, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Louis Hoffart
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, Marseille, France.,Ophthalmology Department, Aix Marseille Université, Hôpital Nord,Hôpital de la Timone, Marseille, France
| | - Sylvain Takerkart
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, Marseille, France
| | - Serge Picaud
- Inserm, UMRS-986, Institut de la vision, Paris, France
| | - Pascale Pham
- CEA-LETI, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
150
|
Ha S, Khraiche ML, Akinin A, Jing Y, Damle S, Kuang Y, Bauchner S, Lo YH, Freeman WR, Silva GA, Cauwenberghs G. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry. J Neural Eng 2016; 13:056008. [PMID: 27529371 DOI: 10.1088/1741-2560/13/5/056008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, we present a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link. APPROACH The hybrid optical addressability and electronic powering scheme provides separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for common voltage stimulation. MAIN RESULTS A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue. SIGNIFICANCE Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.
Collapse
Affiliation(s)
- Sohmyung Ha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093 USA. Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|