101
|
Keverne EB. Mammalian viviparity: a complex niche in the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:138-44. [PMID: 24569636 DOI: 10.1038/hdy.2014.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022] Open
Abstract
Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal-foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Cambridge, UK
| |
Collapse
|
102
|
Motani R, Jiang DY, Tintori A, Rieppel O, Chen GB. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils. PLoS One 2014; 9:e88640. [PMID: 24533127 PMCID: PMC3922983 DOI: 10.1371/journal.pone.0088640] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022] Open
Abstract
Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.
Collapse
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States of America
| | - Da-yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, Department of Geology and Geological Museum, Peking University, Beijing, People's Republic of China ; State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences), Nanjing, Jiangsu Province, People's Republic of China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli, Milano, Italy
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, Illinois, United States of America
| | - Guan-bao Chen
- Department of Research, Anhui Geological Museum, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
103
|
Frésard L, Leroux S, Servin B, Gourichon D, Dehais P, Cristobal MS, Marsaud N, Vignoles F, Bed'hom B, Coville JL, Hormozdiari F, Beaumont C, Zerjal T, Vignal A, Morisson M, Lagarrigue S, Pitel F. Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Res 2014; 42:3768-82. [PMID: 24452801 PMCID: PMC3973300 DOI: 10.1093/nar/gkt1390] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, UMR444 Laboratoire de Génétique Cellulaire, Castanet-Tolosan F-31326, France, ENVT, UMR444 Laboratoire de Génétique Cellulaire, Toulouse F-31076, France, INRA, PEAT Pôle d'Expérimentation Avicole de Tours, Nouzilly F- 37380, France, INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan F-31326, France, INRA, GeT-PlaGe Genotoul, Castanet-Tolosan F-31326, France, INRA, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, AgroParisTech, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, Department of Computer Sciences, University of California, Los Angeles, CA 90095, USA, INRA, UR83 Recherche Avicoles, Nouzilly F- 37380, France and Agrocampus Ouest, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Animal Genetics Laboratory, Rennes F-35000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Daughtry B, Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl Med 2014; 3:290-8. [PMID: 24443005 DOI: 10.5966/sctm.2013-0127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient's immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies.
Collapse
Affiliation(s)
- Brittany Daughtry
- Departments of Cell and Developmental Biology and Molecular and Medical Genetics, and Program in Molecular and Cellular Biosciences, School of Medicine, and Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, and Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
105
|
Genome-wide gene expression effects of sex chromosome imprinting in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:1-10. [PMID: 24318925 PMCID: PMC3887524 DOI: 10.1534/g3.113.008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment.
Collapse
|
106
|
Fulneček J, Kovařík A. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 2014; 15:2. [PMID: 24393618 PMCID: PMC3890580 DOI: 10.1186/1471-2156-15-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/10/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. RESULTS Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. CONCLUSIONS We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.
Collapse
Affiliation(s)
- Jaroslav Fulneček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno CZ-612 65, Czech Republic
| |
Collapse
|
107
|
Ohnishi T, Sekine D, Kinoshita T. Genomic Imprinting in Plants. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:1-25. [DOI: 10.1016/b978-0-12-800222-3.00001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
108
|
Genomic Imprinting - der Kampf der Geschlechter auf molekularer Ebene. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
109
|
Power ML, Schulkin J. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Appl Transl Genom 2013; 2:55-63. [PMID: 27896056 PMCID: PMC5121250 DOI: 10.1016/j.atg.2013.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/06/2023]
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm for understanding metabolic diseases of modern humans. Vulnerability to disease is linked to perturbations in development during critical time periods in fetal and neonatal life. These perturbations are caused by environmental signals, often generated or transduced by the mother. The regulation of mammalian development depends to a large extent on maternal biochemical signals to her offspring. We argue that this adaptation is ancient, and originated with the evolution of lactation. Lactation evolved earlier than live birth and before the extensive placental development of modern eutherian mammals. Milk contains a host of signaling molecules including nutrients, immunoglobulins, growth factors and metabolic hormones. As evidenced by marsupials, lactation originally served to supply the biochemical factors for growth and development for what is essentially a fetus to a weanling transitioning to independent existence. In placental mammals maternal signaling in earliest life is accomplished through the maternal-placental-fetal connection, with more of development shifted to in utero life. However, significant development occurs postpartum, supported by milk. Mothers of all taxa provide biochemical signals to their offspring, but for non-mammalian mothers the time window is short. Developing mammals receive maternal biochemical signals over an extended period. These signals serve to guide normal development, but also can vary in response to environmental conditions. The ancient adaptation of lactation resulted in a lineage (mammals) in which maternal regulation of offspring development evolved to a heightened degree, with the ability to modify development at multiple time points. Modern metabolic diseases may arise due to a mismatch between maternal regulation and eventual circumstances of the offspring, and due to a large proportion of mothers that exceed past evolutionary norms in body fat and pregnancy weight gain such that maternal signals may no longer be within the adaptive range.
Collapse
Affiliation(s)
- Michael L. Power
- Research Department, American College of Obstetricians and Gynecologists, Washington, DC, United States
- Smithsonian Conservation Biology Institute, Conservation Ecology Center, Washington, DC, United States
| | - Jay Schulkin
- Research Department, American College of Obstetricians and Gynecologists, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| |
Collapse
|
110
|
Doridot L, Miralles F, Barbaux S, Vaiman D. Trophoblasts, invasion, and microRNA. Front Genet 2013; 4:248. [PMID: 24312123 PMCID: PMC3836020 DOI: 10.3389/fgene.2013.00248] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently become essential actors in various fields of physiology and medicine, especially as easily accessible circulating biomarkers, or as modulators of cell differentiation. To this respect, terminal differentiation of trophoblasts (the characteristic cells of the placenta in Therian mammals) into syncytiotrophoblast, villous trophoblast, or extravillous trophoblast constitutes a good example of such a choice, where miRNAs have recently been shown to play an important role. The aim of this review is to provide a snapshot of what is known today in placentation mechanisms that are mediated by miRNA, under the angles of materno–fetal immune dialog regulation, trophoblast differentiation, and angiogenesis at the materno–fetal interface. Also, two aspects of regulation of these issues will be highlighted: the part played by oxygen concentration and the specific function of imprinted genes in the developing placenta.
Collapse
Affiliation(s)
- Ludivine Doridot
- Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Descartes Paris, France
| | | | | | | |
Collapse
|
111
|
Jurkowska RZ, Jeltsch A. Genomic Imprinting-The Struggle of the Genders at the Molecular Level. Angew Chem Int Ed Engl 2013; 52:13524-36. [DOI: 10.1002/anie.201307005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 11/10/2022]
|
112
|
Holman L, Kokko H. The evolution of genomic imprinting: costs, benefits and long-term consequences. Biol Rev Camb Philos Soc 2013; 89:568-87. [DOI: 10.1111/brv.12069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 09/15/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Luke Holman
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution & Genetics; Research School of Biology, Australian National University; Daley Road, Canberra Australian Capital Territory 0200 Australia
| | - Hanna Kokko
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution & Genetics; Research School of Biology, Australian National University; Daley Road, Canberra Australian Capital Territory 0200 Australia
| |
Collapse
|
113
|
Faisal M, Kim H, Kim J. Sexual differences of imprinted genes' expression levels. Gene 2013; 533:434-8. [PMID: 24125951 DOI: 10.1016/j.gene.2013.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/11/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation.
Collapse
Affiliation(s)
- Mohammad Faisal
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
114
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
115
|
Montiel JF, Kaune H, Maliqueo M. Maternal-fetal unit interactions and eutherian neocortical development and evolution. Front Neuroanat 2013; 7:22. [PMID: 23882189 PMCID: PMC3715729 DOI: 10.3389/fnana.2013.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/25/2013] [Indexed: 11/25/2022] Open
Abstract
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal-fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by "non-classical" endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict.
Collapse
Affiliation(s)
- Juan F. Montiel
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego PortalesSantiago, Chile.
| | - Heidy Kaune
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego PortalesSantiago, Chile.
- Nuffield Department of Obstetrics and Gynaecology, University of OxfordOxford, UK.
| | - Manuel Maliqueo
- Laboratorio de Endocrinología y Metabolismo, Departamento de Medicina Occidente, Facultad de Medicina, Universidad de ChileSantiago, Chile.
| |
Collapse
|
116
|
Abstract
The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.
Collapse
|
117
|
Ashbrook DG, Hager R. Empirical testing of hypotheses about the evolution of genomic imprinting in mammals. Front Neuroanat 2013; 7:6. [PMID: 23641202 PMCID: PMC3639422 DOI: 10.3389/fnana.2013.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023] Open
Abstract
The close interaction between mother and offspring in mammals is thought to contribute to the evolution of genomic imprinting or parent-of-origin dependent gene expression. Empirical tests of theories about the evolution of imprinting have been scant for several reasons. Models make different assumptions about the traits affected by imprinted genes and the scenarios in which imprinting is predicted to have been selected for. Thus, competing hypotheses cannot readily be tested against each other. Further, it is far from clear how predictions about expression patterns of genes with specific phenotypic effects can be tested given current methodology of assaying gene expression levels, be it in the brain or in other tissues. We first set out a scenario for testing competing hypotheses and delineate the different assumptions and predictions of models. We then outline how predictions may be tested using mouse models such as intercrosses or recombinant inbred (RI) systems that can be phenotyped for traits relevant to imprinting theories. Further, we briefly discuss different molecular approaches that may be used in conjunction with experiments to ascertain expression patterns of imprinted genes and thus the testing of predictions.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|
118
|
Ishino F, Shinkai Y, Whitelaw E. Mammalian epigenetics in biology and medicine. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120386. [PMID: 23166404 DOI: 10.1098/rstb.2012.0386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
119
|
Kohda T, Ishino F. Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120353. [PMID: 23166403 PMCID: PMC3539368 DOI: 10.1098/rstb.2012.0353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early stage of mammalian development from fertilization to implantation is a period when global and differential changes in the epigenetic landscape occur in paternally and maternally derived genomes, respectively. The sperm and egg DNA methylation profiles are very different from each other, and just after fertilization, only the paternally derived genome is subjected to genome-wide hydroxylation of 5-methylcytosine, resulting in an epigenetic asymmetry in parentally derived genomes. Although most of these differences are not present by the blastocyst stage, presumably due to passive demethylation, the maintenance of genomic imprinting memory and X chromosome inactivation in this stage are of critical importance for post-implantation development. Zygotic gene activation from paternally or maternally derived genomes also starts around the two-cell stage, presumably in a different manner in each of them. It is during this period that embryo manipulation, including assisted reproductive technology, is normally performed; so it is critically important to determine whether embryo manipulation procedures increase developmental risks by disturbing subsequent gene expression during the embryonic and/or neonatal development stages. In this review, we discuss the effects of various embryo manipulation procedures applied at the fertilization stage in relation to the epigenetic asymmetry in pre-implantation development. In particular, we focus on the effects of intracytoplasmic sperm injection that can result in long-lasting transcriptome disturbances, at least in mice.
Collapse
Affiliation(s)
- Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | |
Collapse
|