101
|
Karalyan ZA, Djaghatspanyan NG, Gasparyan MH, Hakobyan LA, Abroyan LO, Ter-Pogossyan ZR, Zakaryan HS, Karalova EM. Properties of cells with increased resistance to some picornaviruses. Microb Pathog 2011; 50:243-51. [PMID: 21296651 DOI: 10.1016/j.micpath.2011.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 04/13/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
Abstract
The resistance to picornaviral infection cells of susceptible lines has similar changes in the phenotype. They have decreased number of nucleoli and increased percentage of euploidy. Also the percentage of euploid cells those were resistant to the picornaviral infection increased in all highly transformed cultures. In resistant cells of all cultures has been found reduction of DNA. RNA amount also decreased both in nucleus and in cytoplasm. All these data correlated with the increased euploidy of the resistant population. The resistant cells had a less transformed phenotype, and decreased proliferative activity. Decreased nucleolar status became apparent by reduction of absolute and relative nucleolar indices. Consequently the reduction of viral titer (viral titters reduction) in resistant cells could be the direct result of diminished activity of the RNA synthesis machinery. It is important to note that the cells lose resistance while another type of virus, even from the same family, infects the culture once.
Collapse
Affiliation(s)
- Z A Karalyan
- Institute of Molecular Biology, Laboratory of Cell Biology, Hasratyan 7, 0014 Yerevan, Armenia.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Enter the kill zone: initiation of death signaling during virus entry. Virology 2011; 411:316-24. [PMID: 21262519 PMCID: PMC7126532 DOI: 10.1016/j.virol.2010.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/14/2010] [Accepted: 12/22/2010] [Indexed: 12/28/2022]
Abstract
Infection of host cells by a variety of viruses results in programmed cell death or apoptosis. In many cases, early events in virus replication that occur prior to synthesis of viral proteins and replication of viral genomes directly or indirectly activate signaling pathways that culminate in cell death. Using examples of viruses for which prodeath signaling is better defined, this review will describe how cell entry steps including virus attachment to receptors, virus uncoating in endosomes, and events that occur following membrane penetration lead to apoptosis. The relevance and physiologic consequences of early induction of prodeath signaling to viral pathogenesis also will be discussed.
Collapse
|
103
|
Noguera PA, Bruno DW. Liver involvement in post-smolt Atlantic salmon, Salmo salar L., infected with infectious pancreatic necrosis virus (IPNV): a retrospective histopathological study. JOURNAL OF FISH DISEASES 2010; 33:819-832. [PMID: 20854352 DOI: 10.1111/j.1365-2761.2010.01193.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Histological changes associated with infectious pancreatic necrosis virus (IPNV) infection have historically been described for the pancreas and gut, but any involvement of the liver was poorly acknowledged or described. The aims of this study were to find robust evidence that the reported increase in liver pathology in Atlantic salmon post-smolts in natural outbreaks was effectively related to IPNV infection and retrospectively to report when such a shift in the involvement of the liver had taken place, supported by a histopathological description for a differential diagnosis. The study reports new findings concerning the dynamics of liver pathology development, with apoptosis, demonstrated by histological and immunological techniques, described as the most relevant and particular feature. Immunohistochemical examination of affected liver suggests apoptosis is not only the result of the virus infection itself but triggered through the action of the host's innate immune response. Liver involvement contributes to the nature of infection and becomes an important factor in the disease process. Additionally, it was established that the increase in infectious pancreatic necrosis prevalence is correlated with a new distinct pattern of outbreak distribution throughout the year. The role of smolt category (i.e. S1, S1/2 or S0), hence timing of seawater transfer as a strong correlating factor, is discussed.
Collapse
Affiliation(s)
- P A Noguera
- Marine Scotland, Marine Laboratory, Aberdeen, Scotland.
| | | |
Collapse
|
104
|
Leu JH, Chen LL, Lin YR, Kou GH, Lo CF. Molecular mechanism of the interactions between white spot syndrome virus anti-apoptosis protein AAP-1 (WSSV449) and shrimp effector caspase. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1068-1074. [PMID: 20546774 DOI: 10.1016/j.dci.2010.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 05/29/2023]
Abstract
AAP-1 (WSSV449), an anti-apoptosis protein encoded by white spot syndrome virus (WSSV), blocked apoptosis in insect cells (SF9) induced by Penaeus monodon effector caspase (Pm caspase). Here, to characterize in detail the anti-Pm caspase activity of AAP-1, both proteins were expressed and purified from Escherichia coli and their interactions were assayed in vitro. We found that although AAP-1 could inhibit Pm caspase activity, the inhibition was not as efficient as that of baculovirus anti-apoptosis protein P35. We further confirmed the binding and cleavage of AAP-1 by Pm caspase, and detected three AAP-1 cleavage products. Mutational analysis and protein N-terminal sequencing revealed that whereas both Asp233 and Asp272 residues of AAP-1 are involved in binding and cleavage by Pm caspase, only the Asp272 is involved in Pm caspase inhibition. Asp233, on the other hand, negatively regulates AAP-1's anti-Pm caspase activity. Lastly, AAP-1 homotypically interacts with each other both in vitro and in insect cells.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
105
|
Apoptosis of hepatitis B virus-infected hepatocytes prevents release of infectious virus. J Virol 2010; 84:11994-2001. [PMID: 20719950 DOI: 10.1128/jvi.00653-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis of infected cells is critically involved in antiviral defense. Apoptosis, however, may also support the release and spread of viruses. Although the elimination of infected hepatocytes is required to combat hepatitis B virus (HBV) infection, it is still unknown which consequences hepatocyte apoptosis has for the virus and whether or not it is advantageous to the virus. To study this, we designed a cell culture model consisting of both HBV-producing cell lines and primary human hepatocytes serving as an infection model. We showed that the release of mature, enveloped virions was 80% to 90% reduced 24 h after the induction of apoptosis in HBV-replicating hepatoma cells or HBV-infected hepatocytes. Importantly, HBV particles released from apoptotic hepatocytes were immature and nonenveloped and proved not to be infectious. We found an inverse correlation between the strength of an apoptotic stimulus and the infectivity of the virus particles released: the more potent the apoptotic stimulus, the higher the ratio of nonenveloped capsids to virions and the lower their infectivity. Furthermore, we demonstrated that HBV replication and, particularly, the expression of the HBx protein transcribed from the viral genome during replication do not sensitize cells to apoptosis. Our data clearly reject the hypothesis that the apoptosis of infected hepatocytes facilitates the propagation of HBV. Rather, these data indicate that HBV needs to prevent the apoptosis of its host hepatocyte to ensure the release of infectious progeny and, thus, virus spread in the liver.
Collapse
|
106
|
Silva-Frade C, Gameiro R, Martins A, Cardoso TC. Apoptotic and developmental effects of bovine Herpesvirus type-5 infection on in vitro-produced bovine embryos. Theriogenology 2010; 74:1296-303. [PMID: 20688374 DOI: 10.1016/j.theriogenology.2010.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/26/2022]
Abstract
Bovine Herpesvirus type-5 (BoHV-5), which is potentially neuropathogenic, was recently described to be related with reproductive disorders in cows. The objective was to elucidate mechanisms involved in propagation of BoHV-5 in embryonic cells. For this purpose, bovine embryos produced in vitro were assayed for apoptotic markers after experimental infection of oocytes, in vitro fertilization, and development. Host DNA fragmentation was detected with a TUNEL assay, expression of annexin-V was measured with indirect immunofluorescence, and viral DNA was detected with in situ hybridization. Infective BoHV-5 virus was recovered from embryos derived from exposed oocytes after two consecutive passages on Madin-Darby bovine kidney (MDBK) cells. The viral DNA corresponding to US9 gene, localized between nucleotides 126243 to 126493, was detected in situ and amplified. There was no significant difference between the ratio of TUNEL stained nuclei and total cells in good quality blastocysts (0.87 ± 0.05, mean ± SD), but there were differences (P < 0.05) between infected (0.18 ± 0.05) and uninfected blastocysts (0.73 ± 0.07). The Annexin-V label was more intense in uninfected embryos (0.79 ± 0.04; P < 0.05). The quality of infected and uninfected embryos was considered equal, with no significant effect on embryonic development. In conclusion, we inferred that BoHV-5 infected bovine oocytes, replicated, and suppressed some apoptotic pathways, without significantly affecting embryonic development.
Collapse
Affiliation(s)
- C Silva-Frade
- Laboratory of Animal Virology, UNESP - University of São Paulo State, College of Veterinary Medicine, São Paulo, 16050-680, Brazil
| | | | | | | |
Collapse
|
107
|
Gutzeit C, Raftery MJ, Peiser M, Tischer KB, Ulrich M, Eberhardt M, Stockfleth E, Giese T, Sauerbrei A, Morita CT, Schönrich G. Identification of an important immunological difference between virulent varicella-zoster virus and its avirulent vaccine: viral disruption of dendritic cell instruction. THE JOURNAL OF IMMUNOLOGY 2010; 185:488-97. [PMID: 20525895 DOI: 10.4049/jimmunol.0902817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Virulent varicella-zoster virus (VZV) can spread in immunocompetent humans, resulting in symptoms mostly of the skin. In contrast, vaccine Oka (V-Oka), the attenuated VZV vaccine strain, only rarely causes clinical reactions. The mechanisms underlying these pathogenetic differences are unclear. In this study, we comparatively analyzed the ability of virulent VZV and V-Oka to modulate instruction of dendritic cells (DCs) by innate signals. DCs isolated from normal human skin were susceptible to infection with VZV and V-Oka. Moreover, inflammatory DCs, which play a crucial role in the stimulation of Th1 immune responses, accumulated in herpes zoster lesions. Infection of inflammatory DCs generated in vitro with virulent VZV or V-Oka resulted in upregulation of CD1c. Upon coculture with CD1c-restricted innate cells, DCs developed a mature phenotype whether infected with virulent VZV or V-Oka. Intriguingly, a striking difference was detected on the functional level. The release of IFN-gamma and IL-12, the signature cytokines of Th1 responses, was enhanced by V-Oka but blocked by virulent VZV. V-Oka and virulent VZV efficiently synergized with CD40L, eliminating the possibility that CD40 signaling was a target of VZV-associated immune evasion. Instead, virulent VZV selectively interfered with signaling through TLR2, which is known to sense VZV. Thus, virulent VZV subverts Th1-promoting instruction of human DCs by blocking TLR2-mediated innate signals that prime IL-12 production by DCs. Taken together, our results demonstrate a novel immune-evasion mechanism of virulent VZV that has been lost during the attenuation process leading to the VZV vaccine strain.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Institute of Virology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Toplu N, Oğuzoğlu TÇ, Epikmen ET, Aydoğan A. Neuropathologic Study of Border Disease Virus in Naturally Infected Fetal and Neonatal Small Ruminants and Its Association With Apoptosis. Vet Pathol 2010; 48:576-83. [DOI: 10.1177/0300985810371309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study describes the pathologic changes and cellular apoptosis in the central nervous system (CNS) of fetal and neonatal small ruminants infected with border disease virus (BDV), as demonstrated by immunohistochemistry and in situ hybridization. Abortions of ewes and goats were observed, as were births of lambs and kids with poor survival rates and nervous signs. Lesions included cerebellar hypoplasia, porencephaly, hydranencephaly, and nonsuppurative meningoencephalomyelitis with hypomyelinogenesis. Viral antigens and RNA were present in neuropil, glial, and neuronal cells, especially in periventricular areas, cerebellum, and brainstem. TUNEL positivity and labeling of anti-bax and anti-caspases 3, 8, and 9 were detected in BDV-infected CNSs, especially in glial and neuronal cells. The double immunostaining and TUNEL assay revealed that in BDV-infected animals, not only were BDV-infected glial and neuronal cells undergoing apoptosis, but so were uninfected cells in close vicinity of BDV-infected cells. The expression of activated caspases 3, 8, 9; bax; and TUNEL in glial and neuronal cells of the infected fetal and neonatal kids were significantly ( P < .05) higher than those of the infected fetal and neonatal lambs. Yet, the expression of bcl-2 in the CNSs of the infected fetal and neonatal lambs was higher ( P < .05) in neuronal and glial cells than in those of the infected fetal and neonatal kids. The results suggest that cell death in the BDV-infected CNS is induced by intrinsic and extrinsic cascades of apoptotic pathways.
Collapse
Affiliation(s)
- N. Toplu
- Department of Pathology, Faculty of Veterinary Medicine, University of Adnan Menderes, Isikli, Aydin, Turkey
| | | | | | | |
Collapse
|
109
|
Chen S, Cheng A, Wang M, Zhu D, Jia R, Luo Q, Cui H, Zhou Y, Wang Y, Xu Z, Chen Z, Chen X, Wang X. Histopathology, immunohistochemistry, in situ apoptosis, and ultrastructure characterization of the digestive and lymphoid organs of new type gosling viral enteritis virus experimentally infected gosling. Poult Sci 2010; 89:668-80. [DOI: 10.3382/ps.2009-00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
110
|
Mubin M, Amin I, Amrao L, Briddon RW, Mansoor S. The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. MOLECULAR PLANT PATHOLOGY 2010; 11:245-54. [PMID: 20447273 PMCID: PMC6640282 DOI: 10.1111/j.1364-3703.2009.00601.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A functional analysis of the V2 protein of two monopartite begomoviruses, Papaya leaf curl virus (PaLCuV) and Cotton leaf curl Kokhran virus (CLCuKoV), has been performed. Expression of the V2 gene from a Potato virus X (PVX) vector resulted in severe leaf curling followed by a hypersensitive response (HR) in Nicotiana benthamiana and N. tabacum, demonstrating that the V2 protein is a pathogenicity determinant and a target of host defence responses. Agroinfiltration of a PVX vector expressing the V2 protein resulted in cell death in the infiltrated area. Subsequently, a systemic HR developed that was associated with the long-distance spread of the virus and led to the death of the plant. V2 amino acid sequences encompassing a conserved putative protein kinase C (PKC) phosphorylation motif were shown to be essential for the elicitation of cell death. In co-inoculation experiments, the transient expression of the C2 protein of PaLCuV or Cotton leaf curl Multan virus under the control of the Cauliflower mosaic virus 35S promoter inhibited the HR induced by V2 in the agroinfiltrated area. These findings demonstrate that the V2 protein of monopartite begomoviruses is a pathogenicity determinant and induces an HR that can be suppressed by the C2 protein. The induction and suppression of HR have been demonstrated previously in bipartite begomoviruses and our results extend this to monopartite begomoviruses.
Collapse
Affiliation(s)
- Muhammad Mubin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
111
|
Badawi H, Ahmed H, Aboul Fadl L, Helmi A, Fam N, Diab M, Ismail A, Badawi A, Saber M. Herpes simplex virus type-2 in Egyptian patients with bladder cancer or cystitis. APMIS 2010; 118:37-44. [PMID: 20041869 DOI: 10.1111/j.1600-0463.2009.02556.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was designed to investigate the prevalence of herpes simplex virus type-2 (HSV-2) in Egyptian patients with bladder cancer or cystitis and to evaluate the performance of different diagnostic HSV-2 assays. The study included 50 patients: 27 with bladder cancer (group I), 23 with cystitis (group II) and 20 subjects as controls (group III). HSV-2 DNA was detected using polymerase chain reaction (PCR) on bladder tissue and buffy coat cells (BCC). Electron microscopic studies (EMS) on BCC and ELISAs for IgM, IgG and specific glycoprotein G-2 (gG-2) IgG were performed. HSV-2 DNA was detected by PCR on bladder tissue biopsies in 29.6% and 21.7% of group I and II respectively and it was also detected by PCR on BCC in 22.2% and 21.7% of group I and II respectively. EMS revealed HSV like particles in 16.6% of cases. IgG, specific gG-2 IgG and IgM were detected in 30%, 16% and 6% of cases respectively. The different assays were evaluated in relation to PCR on bladder tissue biopsies. The gG-2-based ELISA and EMS on BCC were found to be highly specific (97.3% and 100% respectively), with similar low sensitivity of approximately 54%. PCR on BCC was the most sensitive assay. The association of HSV-2 with bladder cancer is suggested especially in schistosomal patients.
Collapse
Affiliation(s)
- Hala Badawi
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Deruelle MJ, De Corte N, Englebienne J, Nauwynck HJ, Favoreel HW. Pseudorabies virus US3-mediated inhibition of apoptosis does not affect infectious virus production. J Gen Virol 2010; 91:1127-32. [PMID: 20053819 DOI: 10.1099/vir.0.015297-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preventing apoptosis during the early stages of infection of a host cell is generally thought to result in a higher yield of progeny virus. The US3 protein kinase of pseudorabies virus (PRV) and herpes simplex virus (HSV) is able to protect infected cells from apoptosis, which may be one of the reasons why both US3null PRV and US3null HSV replicate to lower virus titres in several cell types. However, such potential correlation between the higher amount of apoptosis in US3null virus-infected cells and the lower virus titres of US3null virus has not been investigated directly. In the current study, we found that a broad-spectrum caspase-inhibitor efficiently inhibited apoptosis in swine testicle and human laryngeal epidermoid carcinoma cells infected with US3null or wild-type (WT) PRV. However, inhibition of apoptosis did not affect US3null or WT PRV extracellular or cell-associated virus titres, nor did it restore the small plaque phenotype of US3null PRV.
Collapse
Affiliation(s)
- Matthias J Deruelle
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
113
|
Feng CY, Rise ML. Characterization and expression analyses of anti-apoptotic Bcl-2-like genes NR-13, Mcl-1, Bcl-X1, and Bcl-X2 in Atlantic cod (Gadus morhua). Mol Immunol 2010; 47:763-84. [DOI: 10.1016/j.molimm.2009.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 12/16/2022]
|
114
|
Chiou PP, Chen YC, Lai YS. Caspase-dependent induction of apoptosis in barramundi, Lates calcarifer (Bloch), muscle cells by grouper iridovirus. JOURNAL OF FISH DISEASES 2009; 32:997-1005. [PMID: 19602096 DOI: 10.1111/j.1365-2761.2009.01083.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We recently reported that grouper iridovirus (GIV) can induce apoptosis in barramundi, Lates calcarifer, muscle (BM) and swim bladder (BSB) cell lines. In this paper, we further characterize the molecular mechanism underlying apoptotic death in BM cells triggered by GIV. DNA-laddering and apoptotic cells were observed in BM cells infected with UV-irradiated or untreated GIV but was absent in cells infected with heat-inactivated GIV, indicating the involvement of viral protein in the apoptosis event. In GIV-infected BM cells, the conversion of procaspase-3 to caspase-3 was evident and the level of caspase-8 and -9 increased as early as 30 min post-infection. When treated with a pancaspase inhibitor, the GIV-induced apoptosis event was abolished. These observations indicate that GIV-induced apoptosis is caspase-dependent, and that both the external and internal routes in the caspase-dependent pathway are likely involved in the apoptosis process.
Collapse
Affiliation(s)
- P P Chiou
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaosi, Taiwan
| | | | | |
Collapse
|
115
|
Pagarete A, Allen MJ, Wilson WH, Kimmance SA, de Vargas C. Host-virus shift of the sphingolipid pathway along anEmiliania huxleyibloom: survival of the fattest. Environ Microbiol 2009; 11:2840-8. [PMID: 19638172 DOI: 10.1111/j.1462-2920.2009.02006.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- António Pagarete
- UPMC Univ. Paris 06, UMR 7144, Equipe EPPO: Evolution du Plancton et PaléoOcéans, Station Biologique de Roscoff, 29682 Roscoff, France
| | | | | | | | | |
Collapse
|
116
|
Sánchez‐Vizcaíno JM, Martínez‐López B, Martínez‐Avilés M, Martins C, Boinas F, Vialc L, Michaud V, Jori F, Etter E, Albina E, Roger F. Scientific review on African Swine Fever. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Carlos Martins
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Fernando Boinas
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Laurence Vialc
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Vincent Michaud
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Ferran Jori
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Eric Etter
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Emmanuel Albina
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - François Roger
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| |
Collapse
|
117
|
De Martino L, Marfé G, Longo M, Fiorito F, Montagnaro S, Iovane V, Decaro N, Pagnini U. Bid cleavage, cytochrome c release and caspase activation in canine coronavirus-induced apoptosis. Vet Microbiol 2009; 141:36-45. [PMID: 19781871 PMCID: PMC7117139 DOI: 10.1016/j.vetmic.2009.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/06/2009] [Accepted: 09/04/2009] [Indexed: 10/26/2022]
Abstract
A previous study demonstrated that infection of a canine fibrosarcoma cell line (A-72 cells) by canine coronavirus (CCoV) resulted in apoptosis (Ruggieri et al., 2007). In this study, we investigated the cell death processes during infection and the underlying mechanisms. We found that CCoV-II triggers apoptosis in A-72 cells by activating initiator (caspase-8 and -9) and executioner (caspase-3 and -6) caspases. The proteolytic cleavage of poly(ADP-ribose) polymerases (PARPs) confirmed the activation of executioner caspases. Furthermore, CCoV-II infection resulted in truncated bid (tbid) translocation from the cytosolic to the mitochondrial fraction, the cytochrome c release from mitochondria, and alterations in the pro- and anti-apoptotic proteins of bcl-2 family. Our data indicated that, in this experimental model, both intrinsic and extrinsic pathways are involved. In addition, we demonstrated that the inhibition of apoptosis by caspase inhibitors did not affect CCoV replication, suggesting that apoptosis does not play a role in facilitating viral release.
Collapse
Affiliation(s)
- Luisa De Martino
- Department of Pathology and Animal Health, Infectious Diseases, Faculty of Veterinary Medicine, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Furman LM, Maaty WS, Petersen LK, Ettayebi K, Hardy ME, Bothner B. Cysteine protease activation and apoptosis in Murine norovirus infection. Virol J 2009; 6:139. [PMID: 19744337 PMCID: PMC2753316 DOI: 10.1186/1743-422x-6-139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 09/10/2009] [Indexed: 02/16/2023] Open
Abstract
Background Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells involved a novel apoptotic pathway involving survivin. Results Using a different set of approaches, the up-regulation of caspases, DNA condensation/fragmentation, and membrane blebbing, all of which are markers of apoptosis, were confirmed. Live cell imaging and activity-based protein profiling showed that activation of caspase-like proteases occurred within two hours of infection, followed by morphological changes to the cells. MNV infection in the presence of caspase inhibitors proceeded via a distinct pathway of rapid cellular necrosis and reduced viral production. Affinity purification of activity-based protein profiling targets and identification by peptide mass fingerprinting showed that the cysteine protease cathepsin B was activated early in infection, establishing this protein as an upstream activator of the intrinsic apoptotic pathway. Conclusion This work adds cathepsin B to the noncanonical programmed cell death induced by MNV, and provides data suggesting that the virus may induce apoptosis to expand the window of time for viral replication. This work also highlights the significant power of activity-based protein profiling in the study of viral pathogenesis.
Collapse
Affiliation(s)
- Linnzi M Furman
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, USA.
| | | | | | | | | | | |
Collapse
|
119
|
Functional analysis of the Autographa californica nucleopolyhedrovirus IAP1 and IAP2. ACTA ACUST UNITED AC 2009; 52:761-70. [PMID: 19727595 DOI: 10.1007/s11427-009-0105-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/22/2008] [Indexed: 10/20/2022]
Abstract
The Autographa californica nucleopolyhedrovirus (AcMNPV) contains three apoptosis suppressor genes: p35, iap1 and iap2. AcMNPV P35 functions as a pancaspase inhibitor, but the function of IAP1 and IAP2 has not been entirely resolved. In this paper, we analyze the function of IAP1 and IAP2 in detail. AcMNPV with p35-deletion inhibited the apoptosis of BTI-Tn-5B1-4 (Tn-Hi5) cells induced by a Helicoverpa armigera single nucleocapsid NPV (HearNPV) infection and rescued the replication of HearNPV and BV production in these cells. Transient-expression experiments indicated that both IAP1 and IAP2 suppress apoptosis of Tn-Hi5 cells during HearNPV infection. Recombinant HearNPVs expressing AcMNPV iap1, iap2 and p35, respectively, not only prevented apoptosis but also allowed HearNPV to replicate in Tn-Hi5 cells. However, the iap1, iap2 and p35 genes when expressed in HearNPV were unable to rescue BV production. These results indicate that both AcMNPV iap1 and iap2 function independently as apoptosis inhibitors of and are potential host range factors.
Collapse
|
120
|
Longo M, Fiorito F, Marfè G, Montagnaro S, Pisanelli G, De Martino L, Iovane G, Pagnini U. Analysis of apoptosis induced by Caprine Herpesvirus 1 in vitro. Virus Res 2009; 145:227-35. [PMID: 19619589 DOI: 10.1016/j.virusres.2009.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
It is known that Caprine Herpesvirus 1 (CpHV-1) causes apoptosis in mitogen-stimulated as well as not stimulated caprine peripheral blood mononuclear cells (PBMC). Initial experiments in Madin Darby bovine kidney (MDBK) cells revealed that CpHV-1 infection induced apoptotic features like chromatin condensation and DNA laddering. Thus, to characterize in more detail this apoptotic process, activation of caspase-8, -9 and -3 in MDBK cells CpHV-1 infected was investigated and demonstrated. In addition, CpHV-1 infection resulted in disruption of mitochondrial membrane potential, cytochrome c release and alterations in the pro- and anti-apoptotic proteins of Bcl-2 family. Proteolytic cleavage of poly(ADP-ribose) polymerases (PARP), confirming the activation of downstream caspases, was also observed. Our data indicated that a "cross-talk" between the death-receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway occurred in CpHV-1-induced apoptosis in vitro.
Collapse
Affiliation(s)
- M Longo
- Department of Pathology and Animal Health, Infectious Diseases, Faculty of Veterinary Medicine, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
121
|
The hepatitis C virus core protein contains a BH3 domain that regulates apoptosis through specific interaction with human Mcl-1. J Virol 2009; 83:9993-10006. [PMID: 19605477 DOI: 10.1128/jvi.00509-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) core protein is known to modulate apoptosis and contribute to viral replication and pathogenesis. In this study, we have identified a Bcl-2 homology 3 (BH3) domain in the core protein that is essential for its proapoptotic property. Coimmunoprecipitation experiments showed that the core protein interacts specifically with the human myeloid cell factor 1 (Mcl-1), a prosurvival member of the Bcl-2 family, but not with other prosurvival members (Bcl-X(L) and Bcl-w). Moreover, the overexpression of Mcl-1 protects against core-induced apoptosis. By using peptide mimetics, core was found to release cytochrome c from isolated mitochondria when complemented with Bad. Thus, core is a bona fide BH3-only protein having properties similar to those of Noxa, a BH3-only member of the Bcl-2 family that binds preferentially to Mcl-1. There are three critical hydrophobic residues in the BH3 domain of the core protein, and they are essential for the proapoptotic property of the core protein. Furthermore, the genotype 1b core protein is more effective than the genotype 2a core protein in inducing apoptosis due to a single-amino-acid difference at one of these hydrophobic residues (residue 119). Replacing this residue in the J6/JFH-1 infectious clone (genotype 2a) with the corresponding amino acid in the genotype 1b core protein produced a mutant virus, J6/JFH-1(V119L), which induced significantly higher levels of apoptosis in the infected cells than the parental J6/JFH-1 virus. Furthermore, the core protein of J6/JFH-1(V119L), but not that of J6/JFH-1, interacted with Mcl-1 in virus-infected cells. Taken together, the core protein is a novel BH3-only viral homologue that contributes to the induction of apoptosis during HCV infection.
Collapse
|
122
|
Schiøtz BL, Baekkevold ES, Poulsen LC, Mjaaland S, Gjøen T. Analysis of host- and strain-dependent cell death responses during infectious salmon anemia virus infection in vitro. Virol J 2009; 6:91. [PMID: 19566966 PMCID: PMC2715388 DOI: 10.1186/1743-422x-6-91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 07/01/2009] [Indexed: 12/20/2022] Open
Abstract
Background Infectious salmon anemia virus (ISAV) is an aquatic orthomyxovirus and the causative agent of infectious salmon anemia (ISA), a disease of great importance in the Atlantic salmon farming industry. In vitro, ISAV infection causes cytophatic effect (CPE) in cell lines from Atlantic salmon, leading to rounding and finally detachment of the cells from the substratum. In this study, we investigated the mode of cell death during in vitro ISAV infection in different Atlantic salmon cell lines, using four ISAV strains causing different mortality in vivo. Results The results show that caspase 3/7 activity increased during the course of infection in ASK and SHK-1 cells, infected cells showed increased surface expression of phosphatidylserine and increased PI uptake, compared to mock infected cells; and morphological alterations of the mitochondria were observed. Expression analysis of immune relevant genes revealed no correlation between in vivo mortality and expression, but good correlation in expression of interferon genes. Conclusion Results from this study indicate that there is both strain and cell type dependent differences in the virus-host interaction during ISAV infection. This is important to bear in mind when extrapolating in vitro findings to the in vivo situation.
Collapse
Affiliation(s)
- Berit L Schiøtz
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
123
|
Nasirudeen AMA, Liu DX. Gene expression profiling by microarray analysis reveals an important role for caspase-1 in dengue virus-induced p53-mediated apoptosis. J Med Virol 2009; 81:1069-81. [PMID: 19382257 DOI: 10.1002/jmv.21486] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently, a dengue virus-induced apoptosis p53- and mitochondria-mediated were reported in human and animal cells. To understand further the underlying mechanisms, a p53-deficient cell line, H1299, and a p53-knockin cell line, H273, were infected with dengue type 1 virus and the cellular gene expression profiles at the mRNA level were analyzed by affymetrix array analysis. The results showed 183 genes with at least twofold increase at mRNA expression level in dengue virus-infected cells. Among the 183 genes, 68 genes were up-regulated in both H1299 and H273 cells and 78 genes were found to be up-regulated in only H273 cells. Eleven selected genes, mainly involved in IFN-pathway, cell cycle, signal transduction, and ubiquitin-proteasome pathways were confirmed using qualitative and quantitative PCR. Interestingly, an approximately 32-fold increase in caspase-1 expression was observed in the p53-knockin cell line, H273. Gene silencing of caspase-1 or inhibition of caspase-1 activity led to reduction in dengue virus-induced apoptosis with minimal effect on virus replication.
Collapse
Affiliation(s)
- A M A Nasirudeen
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | | |
Collapse
|
124
|
Martínez I, Lombardía L, Herranz C, García-Barreno B, Domínguez O, Melero JA. Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type. Virology 2009; 388:31-41. [PMID: 19345972 DOI: 10.1016/j.virol.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/05/2008] [Accepted: 03/10/2009] [Indexed: 01/20/2023]
Abstract
HEp-2 cells that survived a lytic infection with Human Respiratory Syncytial Virus (HRSV) were grown to obtain a persistently infected culture that produced relatively high amounts of virus (10(6)-10(7) pfu/ml) for more than twenty passages. The cells in this culture were heterogeneous with regard to the expression of viral antigens, ranging from high to undetectable levels. However, all cell clones derived from the persistent culture did not produce infectious virus or viral antigens and grew more slowly than the original uninfected HEp-2 cells. When these "cured" cell clones were infected with wild-type HRSV, delayed virus production and reduction in the number and size of syncytia were observed compared to lytically infected HEp-2 cells. Most significantly, differences in gene expression between persistently and lytically infected cultures were also observed, including genes that encode for cytokines, chemokines and other gene products that either promote cell survival or inhibit apoptosis. These results highlight the significantly different responses of the same cell type to HRSV infection depending on the outcome of such infection, i.e., lytic versus persistent.
Collapse
Affiliation(s)
- Isidoro Martínez
- Unidad de Interacción Virus-Célula, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
125
|
Smith EE, Malik HS. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions. Genome Res 2009; 19:850-8. [PMID: 19299565 DOI: 10.1101/gr.085647.108] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.
Collapse
Affiliation(s)
- Eric E Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
126
|
Petukhova G, Naikhin A, Chirkova T, Donina S, Korenkov D, Rudenko L. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated reassortant influenza vaccine (LAIV) utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. Vaccine 2009; 27:2580-7. [PMID: 19428864 DOI: 10.1016/j.vaccine.2009.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 01/31/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
The first and most significant barrier against influenza infection is the mucosal-associated lymphoid tissue of the upper airways and rodent nasopharyngeal-associated lymphoid tissue (NALT) is considered equivalent to the lymphoid tissue of human Valdryer's ring. This study is the first attempt to analyze and compare local and systemic cellular and antibody immune responses in NALT and spleen in a mouse model of experimental influenza infection and intranasal vaccination with LAIV (live attenuated reassortant influenza vaccine). It was shown that the vaccine strain completely inherited the ability to induce high-grade local antibody responses (secretory IgA+IgG+IgM), local cellular lymphoproliferative activity, CD4(+), CD8(+) and CD19(+) lymphocyte and cytokine production responses from the virulent parental strain but it had less capacity to stimulate production of serum IgG, accumulation of CD8(+) cells and IFN-gamma production in the spleen. Primary non-complicated influenza infection and primary vaccination were accompanied by a short-term (24h) increase in the levels of lymphocyte apoptosis in both NALT and spleen. However, experimental data indicated that vaccination with LAIV and uncomplicated forms of influenza infection did not influence immune system apoptosis following a secondary immune response.
Collapse
Affiliation(s)
- Galina Petukhova
- Department of Virology, Institute of Experimental Medicine RAMS, Acad. Pavlov Street 12, Saint-Petersburg 197379, Russia.
| | | | | | | | | | | |
Collapse
|
127
|
Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the central nervous systems of newborn-infected rats. J Virol 2009; 83:4297-307. [PMID: 19211764 DOI: 10.1128/jvi.02321-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic member of the order Mononegavirales with noncytolytic replication and obligatory persistence in cultured cells and animals. Here we show that the accessory protein X of BDV represents the first mitochondrion-localized protein of an RNA virus that inhibits rather than promotes apoptosis induction. Rat C6 astroglioma cells persistently infected with wild-type BDV were significantly more resistant to death receptor-dependent and -independent apoptotic stimuli than uninfected cells or cells infected with a BDV mutant expressing reduced amounts of X. Confocal microscopy demonstrated that X colocalizes with mitochondria and expression of X from plasmid DNA rendered human 293T and mouse L929 cells resistant to apoptosis induction. A recombinant virus encoding a mutant X protein unable to associate with mitochondria (BDV-X(A6A7)) failed to block apoptosis in C6 cells. Furthermore, Lewis rats neonatally infected with BDV-X(A6A7) developed severe neurological symptoms and died around day 30 postinfection, whereas all animals infected with wild-type BDV remained healthy and became persistently infected. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining revealed a significant increase in the number of apoptotic cells in the brain of BDV-X(A6A7)-infected animals, whereas the numbers of CD3(+) T lymphocytes were comparable to those detected in animals infected with wild-type BDV. Our data thus indicate that inhibition of apoptosis by X promotes noncytolytic viral persistence and is required for the survival of cells in the central nervous system of BDV-infected animals.
Collapse
|
128
|
Ravindra PV, Tiwari AK, Ratta B, Chaturvedi U, Palia SK, Chauhan RS. Newcastle disease virus-induced cytopathic effect in infected cells is caused by apoptosis. Virus Res 2009; 141:13-20. [PMID: 19152817 DOI: 10.1016/j.virusres.2008.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
The velogenic Newcastle disease virus (NDV) causes highly infectious and economically significant Newcastle disease (ND) in birds of various species. In cell culture NDV induces cytopathic effect (CPE) characterized by rounding, vacuolation, syncytia formation and cell death. Aside from cell to cell fusion caused by the F and HN glycoprotein of the virus molecular events leading to cell death are not known. In the current study, NDV-infected Vero cells, at 48 h p.i., showed nuclear condensation, cytoplasm blebbing, DNA fragmentation, and phosphatidylserine translocation to the cell surface. In addition, virus-infected cells demonstrated decreased DNA content and an increased Bax to Bcl-2 ratio, p53 level and caspase 3, 8, 9 expression compared to mock-infected cells. Based on these results, it was concluded that CPE in NDV-infected cells was caused by to the induction of apoptosis with the involvement of p53 and the Bax, dependent apoptotic pathways.
Collapse
Affiliation(s)
- P V Ravindra
- Molecular Biology Laboratory, Division of Animal Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122 UP, India.
| | | | | | | | | | | |
Collapse
|
129
|
Wang H, Blair CD, Olson KE, Clem RJ. Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. J Gen Virol 2009; 89:2651-2661. [PMID: 18931060 DOI: 10.1099/vir.0.2008/005314-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.
Collapse
Affiliation(s)
- Hua Wang
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carol D Blair
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken E Olson
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Rollie J Clem
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
130
|
Crystal structures of two coronavirus ADP-ribose-1''-monophosphatases and their complexes with ADP-Ribose: a systematic structural analysis of the viral ADRP domain. J Virol 2009; 83:1083-92. [PMID: 18987156 PMCID: PMC2612350 DOI: 10.1128/jvi.01862-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The coronaviruses are a large family of plus-strand RNA viruses that cause a wide variety of diseases both in humans and in other organisms. The coronaviruses are composed of three main lineages and have a complex organization of nonstructural proteins (nsp's). In the coronavirus, nsp3 resides a domain with the macroH2A-like fold and ADP-ribose-1"-monophosphatase (ADRP) activity, which is proposed to play a regulatory role in the replication process. However, the significance of this domain for the coronaviruses is still poorly understood due to the lack of structural information from different lineages. We have determined the crystal structures of two viral ADRP domains, from the group I human coronavirus 229E and the group III avian infectious bronchitis virus, as well as their respective complexes with ADP-ribose. The structures were individually solved to elucidate the structural similarities and differences of the ADRP domains among various coronavirus species. The active-site residues responsible for mediating ADRP activity were found to be highly conserved in terms of both sequence alignment and structural superposition, whereas the substrate binding pocket exhibited variations in structure but not in sequence. Together with data from a previous analysis of the ADRP domain from the group II severe acute respiratory syndrome coronavirus and from other related functional studies of ADRP domains, a systematic structural analysis of the coronavirus ADRP domains was realized for the first time to provide a structural basis for the function of this domain in the coronavirus replication process.
Collapse
|
131
|
Bovine viral diarrhea virus infection affects the expression of proteins related to professional antigen presentation in bovine monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:14-22. [PMID: 18930168 DOI: 10.1016/j.bbapap.2008.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/22/2022]
Abstract
The complete annotation of the cattle genome allows reliable protein identification by tandem mass spectrometry (MS(2)) and greatly facilitates proteomics. Previously, we reported that differential detergent fractionation (DDF) analysis of bovine monocytes reveals proteins related to antigen pattern recognition, uptake and presentation to immunocompetent lymphocytes. Here we have identified 47 bovine proteins, involved in immune function of professional antigen-presenting cells (APC) that have been significantly altered after cytopathic (cp) Bovine Viral Diarrhea Virus (BVDV) infection. In particular, proteins related to immune responses such as cell adhesion, apoptosis, antigen uptake, processing and presentation, acute phase response proteins, MHC class I- and II-related proteins and other molecules involved in immune function of professional antigen presentation have been significantly altered after BVDV infection. Our data suggest that cp BVDV, while promoting monocyte activation and differentiation, is inhibiting their antigen presentation to immunocompetent T cells, thus resulting in the uncontrolled inflammation mediated by activated macrophages, enhanced viral spread, and impaired anti-viral defense mechanisms in the host.
Collapse
|
132
|
Involvement of gD/HVEM interaction in NF-kB-dependent inhibition of apoptosis by HSV-1 gD. Biochem Pharmacol 2008; 76:1522-32. [PMID: 18723002 DOI: 10.1016/j.bcp.2008.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022]
Abstract
In the present paper, we aimed to verify whether the interaction of the glycoprotein D (gD) of herpes simplex 1 (HSV-1) with the HSV-1 receptor HVEM is involved in NF-kappaB-dependent protection against apoptosis by gD. To this purpose, first we utilized MAbs that interfere with gD/HVEM interaction and U937 cells that naturally express human HVEM on their surface. Pre-incubation with these MAbs, but not with a control antibody, partially reverted the protection of infectious HSV-1 towards anti-Fas induced apoptosis in U937 cells. Similarly, pre-incubation of UV-inactivated HSV-1 (UV-HSV-1) or recombinant gD with the same MAbs, significantly reduced the inhibition of Fas-mediated apoptosis by UV-HSV-1 or gD, respectively, in U937 cells. Moreover, coculture with stable transfectants expressing at surface level wild type gD protected U937 cells against Fas-induced apoptosis, while coculture with transfectants expressing a mutated form of gD, incapable to bind HVEM, did not protect. Finally, UV-HSV-1 protected against staurosporine-induced apoptosis in U937 cells as well as in the CHO transfectants expressing human HVEM on their surface, but not in the control CHO transfectants, which did not express HVEM. These results suggest that signaling triggered by binding of gD to HVEM could represent an additional mechanism of evasion from premature apoptotic death exerted by HSV-1-gD in HVEM-expressing cells, disclosing new opportunities of cell death manipulation by using gD preparations.
Collapse
|
133
|
Yu Q, Lin T, Feng G, Yang K, Pang Y. Functional analysis of the putative antiapoptotic genes, p49 and iap4, of Spodoptera litura nucleopolyhedrovirus with RNAi. J Gen Virol 2008; 89:1873-1880. [DOI: 10.1099/vir.0.2008/001008-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A homology search of a public database revealed that Spodoptera litura nucleopolyhedrovirus (SpltNPV) possesses two putative, antiapoptotic genes, p49 and inhibitor of apoptosis 4 (iap4), but their function has not been investigated in its native host cells. In the present study, we used RNA interference (RNAi) to silence the expression of Splt-iap4 and Splt-p49, independently or together, to determine their roles during the SpltNPV life cycle. RT-PCR analysis and Western blot analysis showed the target gene expression had been knocked out in the SpltNPV-infected SpLi-221 cells after treatment with Splt-p49 or Splt-iap4 double-stranded RNA (dsRNA), respectively, confirming that the two genes were effectively silenced. In SpltNPV-infected cells treated with Splt-p49 dsRNA, apoptosis was observed beginning at 14 h, and almost all cells had undergone apoptosis by 48 h. In contrast, budded virus production and polyhedra formation progressed normally in infected cells treated with Splt-iap4 dsRNA. Cell viability analysis showed that Splt-IAP4 had no synergistic effect on the inhibition of apoptosis of SpLi-221 cells induced by SpltNPV infection. Interestingly, after Splt-iap4 dsRNA treatment, cells did not congregate like those infected with SpltNPV in the early infection phase, implying an unknown role of baculovirus iap4. Our results determine that Splt-p49 is necessary to prevent apoptosis; however, Splt-iap4 has no antiapoptotic function during SpltNPV infection.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Tiehao Lin
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Guozhong Feng
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yi Pang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
134
|
The interaction between human papillomavirus type 16 and FADD is mediated by a novel E6 binding domain. J Virol 2008; 82:9600-14. [PMID: 18632871 DOI: 10.1128/jvi.00538-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk strains of human papillomavirus, such as types 16 and 18, have been etiologically linked to cervical cancer. Most cervical cancer tissues are positive for both the E6 and E7 oncoproteins, since it is their cooperation that results in successful transformation and immortalization of infected cells. We have reported that E6 binds to tumor necrosis factor receptor 1 and to Fas-associated death domain (FADD) and, in doing so, prevents E6-expressing cells from responding to apoptotic stimuli. The binding site of E6 to FADD localizes to the first 23 amino acids of FADD and has now been further characterized by the use of deletion and site-directed mutants of FADD in pull-down and functional assays. The results from these experiments revealed that mutations of serine 16, serine 18, and leucine 20 obstruct FADD binding to E6, suggesting that these residues are part of the E6 binding domain on FADD. Because FADD does not contain the two previously identified E6 binding motifs, the LxxphiLsh motif, and the PDZ motif, a novel binding domain for E6 has been identified on FADD. Furthermore, peptides that correspond to this region can block E6/FADD binding in vitro and can resensitize E6-expressing cells to apoptotic stimuli in vivo. These results demonstrate the existence of a novel E6 binding domain.
Collapse
|
135
|
|
136
|
Jurak I, Schumacher U, Simic H, Voigt S, Brune W. Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 2008; 82:4812-22. [PMID: 18321965 PMCID: PMC2346748 DOI: 10.1128/jvi.02570-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Igor Jurak
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
137
|
Furugen M, Higa F, Hibiya K, Teruya H, Akamine M, Haranaga S, Yara S, Koide M, Tateyama M, Mori N, Fujita J. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone. Respir Res 2008; 9:39. [PMID: 18447956 PMCID: PMC2390540 DOI: 10.1186/1465-9921-9-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 05/01/2008] [Indexed: 01/11/2023] Open
Abstract
Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA) fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP)-biotin nick end labeling method (TUNEL method) and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining) and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1) protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM) did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a major virulence factor of L. pneumophila, is involved in the effects we measured in alveolar epithelial cells. Methyl prednisolone may modulate the interaction of Legionella and these cells.
Collapse
Affiliation(s)
- Makoto Furugen
- Department of Medicine and Therapeutics, Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-Town, Okinawa 903-0215, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Chen S, Cheng AC, Wang MS, Peng X. Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluorescein annexin V-FITC/PI double labeling. World J Gastroenterol 2008; 14:2174-8. [PMID: 18407590 PMCID: PMC2703841 DOI: 10.3748/wjg.14.2174] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To achieve a better understanding of the pathogenesis of new type gosling viral enteritis virus (NGVEV) and the relationship between NGVEV and host cells.
METHODS: The apoptosis of duck embryo fibroblasts (DEF) induced by NGVEV was investigated by fluorescence-activated cell sorter (FACS) and fluorescence microscope after the cells were stained with Annexin V-FITC and propidium iodide (PI).
RESULTS: By staining cells with a combination of fluorescein annexin V-FITC and PI, it is possible to distinguish and quantitatively analyze non-apoptotic cells (Annexin V-FITC negative/PI negative), early apoptotic cells (Annexin V-FITC positive/PI negative), late apoptotic/necrotic cells (Annexin V-FITC positive/PI positive) and dead cells (Annexin V-FITC negative/PI positive) through flow cytometry and fluorescence microscope. The percentage of apoptotic cells increased with the incubation time and reached a maximum at 120 h after infection, while the percentage of non-apoptotic cells decreased.
CONCLUSION: NGVEV can induce the infected DEF cells to undergo apoptosis and the apoptosis occurs prior to necrosis.
Collapse
|
139
|
Faherty CS, Maurelli AT. Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol 2008; 16:173-80. [PMID: 18353648 PMCID: PMC2746948 DOI: 10.1016/j.tim.2008.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 01/14/2023]
Abstract
The ability of bacterial pathogens to inhibit apoptosis in eukaryotic cells during infection is an emerging theme in the study of bacterial pathogenesis. Prevention of apoptosis provides a survival advantage because it enables the bacteria to replicate inside host cells. Bacterial pathogens have evolved several ways to prevent apoptosis by protecting the mitochondria and preventing cytochrome c release, by activating cell survival pathways, or by preventing caspase activation. This review summarizes the most recent work on bacterial anti-apoptotic strategies and suggests new research that is necessary to advance the field.
Collapse
Affiliation(s)
- Christina S Faherty
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
140
|
Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW. The hypersensitive response to tomato leaf curl New Delhi virus nuclear shuttle protein is inhibited by transcriptional activator protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1581-8. [PMID: 17990965 DOI: 10.1094/mpmi-20-12-1581] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hypersensitive response (HR) is a common feature of plant disease resistance reactions and a type of programmed cell death (PCD). Many pathogens are able to modulate pathways involved in cell death. In contrast to animal viruses, inhibitors of PCD activity have not been identified for plant-infecting viruses. Previously, we have reported that the nuclear shuttle protein (NSP) of Tomato leaf curl New Delhi virus (ToLCNDV) induces an HR in Nicotiana tabacum and Lycopersicon esculentum plants when expressed under the control of the Cauliflower mosaic virus 35S promoter. However, HR is not evident in plants infected with ToLCNDV, suggesting that the virus encodes a factor (or factors) that counters this response. Analysis of all ToLCNDV-encoded genes pinpointed the transcriptional activator protein (TrAP) as the factor mediating the anti-HR effect. Deletion mutagenesis showed the central region of TrAP, containing a zinc finger domain and nuclear localization signal, to be important in inhibiting the HR. These results demonstrate that TrAP counters HR-induced cell death, the first such activity identified for a plant-infecting virus.
Collapse
Affiliation(s)
- Mazhar Hussain
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
141
|
Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci U S A 2007; 104:19541-6. [PMID: 18048335 DOI: 10.1073/pnas.0707947104] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is linked to epithelial differentiation, with late viral events restricted to the uppermost stratified layers. Our studies indicated that HPV activates capases-3, -7, and -9 upon differentiation, whereas minimal activation was observed in differentiating normal keratinocytes. Activation occurred in the absence of significant levels of apoptosis, suggesting a potential role for caspases in the viral life cycle. In support of this, the addition of caspase inhibitors significantly impaired differentiation-dependent viral genome amplification. A conserved caspase cleavage motif was identified in the replication protein E1 ((46)DxxD(49)) that was targeted in vitro by both recombinant caspase-3 and caspase-7. Mutation of this site inhibited amplification of viral genomes, indicating that caspase cleavage is necessary for the productive viral life cycle. Our study demonstrates that HPV activates caspases upon differentiation to facilitate productive viral replication and represents a way by which HPV controls viral gene function in differentiating cells.
Collapse
|
142
|
Tan YJ, Lim SG, Hong W. Regulation of cell death during infection by the severe acute respiratory syndrome coronavirus and other coronaviruses. Cell Microbiol 2007; 9:2552-61. [PMID: 17714515 PMCID: PMC7162196 DOI: 10.1111/j.1462-5822.2007.01034.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 12/16/2022]
Abstract
Both apoptosis and necrosis have been observed in cells infected by various coronaviruses, suggesting that the regulation of cell death is important for viral replication and/or pathogenesis. Expeditious research on the severe acute respiratory syndrome (SARS) coronavirus, one of the latest discovered coronaviruses that infect humans, has provided valuable insights into the molecular aspects of cell-death regulation during infection. Apoptosis was observed in vitro, while both apoptosis and necrosis were observed in tissues obtained from SARS patients. Viral proteins that can regulate apoptosis have been identified, and many of these also have the abilities to interfere with cellular functions. Occurrence of cell death in host cells during infection by other coronaviruses, such as the mouse hepatitis virus and transmissible porcine gastroenteritis virus, has also being extensively studied. The diverse cellular responses to infection revealed the complex manner by which coronaviruses affect cellular homeostasis and modulate cell death. As a result of the complex interplay between virus and host, infection of different cell types by the same virus does not necessarily activate the same cell-death pathway. Continuing research will lead to a better understanding of the regulation of cell death during viral infection and the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673.
| | | | | |
Collapse
|
143
|
Huang YH, Huang XH, Gui JF, Zhang QY. Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells. Apoptosis 2007; 12:1569-77. [PMID: 17551838 DOI: 10.1007/s10495-007-0089-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fish cell line, fathead minnow (FHM) cell, was used to investigate the alteration of mitochondrial dynamics and the mechanism of apoptosis under Rana grylio virus (RGV) infection. Microscopy observations, flow-cytometry analysis and molecular marker detection revealed the apoptotic fate of the RGV-infected cells. Some typical apoptotic characteristics, such as chromatin condensation, DNA fragmentation and mitochondrial fragmentation, were observed, and significantly morphological changes of mitochondria, including size, shape, internal structure and distribution, were revealed. The mitochondria in RGV-infected cells were aggregated around the viromatrix, and the aggregation could be blocked by colchicine. Moreover, the Deltapsim collapse was induced, and caspase-9 and caspase-3 were activated in the RGV-infected cells. In addition, NF-kappaB activation and intracellular Ca(2+) increase were also detected at different times after infection. The data revealed the detailed dynamics of mitochondrion-mediated apoptosis induced by an iridovirus, and provided the first report on mitochondrial fragmentation during virus-induced apoptosis in fish cells.
Collapse
Affiliation(s)
- You-Hua Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
144
|
Reovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency. J Virol 2007; 82:161-72. [PMID: 17959662 DOI: 10.1128/jvi.01739-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis and myocarditis in infected animals. Differences in apoptosis efficiency displayed by reovirus strains are linked to the viral mu1-encoding M2 gene segment. Studies using pharmacologic inhibitors of reovirus replication demonstrate that apoptosis induction by reovirus requires viral disassembly in cellular endosomes but not RNA synthesis. Since the mu1 protein functions to pierce endosomal membranes during this temporal window, these findings point to an important role for mu1 in activating signaling pathways that lead to apoptosis. To understand mechanisms used by mu1 to induce apoptosis, a panel of mu1 mutant viruses generated by reverse genetics was analyzed for the capacities to penetrate host cell membranes, activate proapoptotic signaling pathways, evoke cell death, and produce encephalitis in newborn mice. We found that single amino acid changes within the delta region of mu1 reduce the efficiency of membrane penetration. These mutations also diminish the capacities of reovirus to activate proapoptotic transcription factors NF-kappaB and IRF-3 and elicit apoptosis. Additionally, we observed that following intracranial inoculation, an apoptosis-deficient mu1 mutant is less virulent in newborn mice in comparison to the wild-type virus. These results indicate a critical function for the membrane penetration activity of mu1 in evoking prodeath signaling pathways that regulate reovirus pathogenesis.
Collapse
|
145
|
Chitnis NS, D'Costa SM, Paul ER, Bilimoria SL. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology 2007; 370:333-42. [PMID: 17942133 PMCID: PMC7103334 DOI: 10.1016/j.virol.2007.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 01/17/2023]
Abstract
Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIVXS; 400 μg/ml), UV-irradiated virus (CIVUV; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIVUV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIVUV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIVUV, CIVXS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions permitting early viral expression, and (iii) requires the JNK signaling pathway. This is the first report of JNK signal requirement during apoptosis induction by an insect virus.
Collapse
Affiliation(s)
- Nilesh S Chitnis
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | | | | | | |
Collapse
|
146
|
St-Louis MC, Archambault D. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation. Virology 2007; 367:147-55. [PMID: 17583760 DOI: 10.1016/j.virol.2007.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/05/2007] [Accepted: 05/21/2007] [Indexed: 11/20/2022]
Abstract
We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.
Collapse
Affiliation(s)
- Marie-Claude St-Louis
- University of Québec at Montréal, Department of Biological Sciences, Laboratory of Molecular Virology and Immunology, PO Box 8888, Succursale Centre-Ville, Montréal, Québec, Canada
| | | |
Collapse
|
147
|
Nagaleekar VK, Tiwari AK, Kataria RS, Bais MV, Ravindra PV, Kumar S. Bluetongue virus induces apoptosis in cultured mammalian cells by both caspase-dependent extrinsic and intrinsic apoptotic pathways. Arch Virol 2007; 152:1751-6. [PMID: 17530353 DOI: 10.1007/s00705-007-0988-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 04/12/2007] [Indexed: 12/26/2022]
Abstract
Bluetongue virus (BTV) causes haemorrhagic disease in sheep and induces death in cultured mammalian cells. In the present study, BTV-induced apoptotic pathways in Vero cells were elucidated. Cells infected with BTV at 0.1 m.o.i underwent DNA fragmentation and membrane blebbing within 48 h postinfection. BTV-induced apoptosis was blocked by the pan-caspase inhibitor, z-VAD-FMK. Immuno-blotting using anti-caspase-8 and -9 antibodies detected the activation of the respective caspases. Flow cytometry analyses following 3, 3' dihexyloxacarbocyanine iodide staining revealed the loss of mitochondrial membrane potential. Our study confirms the involvement of both caspase-dependent extrinsic and intrinsic pathways of apoptosis in BTV-infected cells.
Collapse
|
148
|
Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 2007; 365:435-45. [PMID: 17493653 PMCID: PMC7103336 DOI: 10.1016/j.virol.2007.04.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/04/2007] [Accepted: 04/05/2007] [Indexed: 01/01/2023]
Abstract
Manipulation of the cell cycle and induction of apoptosis are two common strategies used by many viruses to regulate their infection cycles. In cells infected with coronaviruses, cell cycle perturbation and apoptosis were observed in several reports. However, little is known about how these effects are brought out, and how manipulation of the functions of host cells would influence the replication cycle of coronavirus. In this study, we demonstrate that infection with coronavirus infectious bronchitis virus (IBV) imposed a growth-inhibitory effect on cultured cells by inducing cell cycle arrest at S and G2/M phases in both p53-null cell line H1299 and Vero cells. This cell cycle arrest was catalyzed by the modulation of various cell cycle regulatory genes and the accumulation of hypophosphorylated RB, but was independent of p53. Proteasome inhibitors, such as lactacystin and NLVS, could bypass the IBV-induced S-phase arrest by restoring the expression of corresponding cyclin/Cdk complexes. Our data also showed that cell cycle arrest at both S- and G2/M-phases was manipulated by IBV for the enhancement of viral replication. In addition, apoptosis induced by IBV at late stages of the infection cycle in cultured cells was shown to be p53-independent. This conclusion was drawn based on the observations that apoptosis occurred in both IBV-infected H1299 and Vero cells, and that IBV infection did not affect the expression of p53 in host cells.
Collapse
Affiliation(s)
- Frank Q Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
149
|
Yaiw KC, Ong KC, Chua KB, Bingham J, Wang L, Shamala D, Wong KT. Tioman virus infection in experimentally infected mouse brain and its association with apoptosis. J Virol Methods 2007; 143:140-6. [PMID: 17442409 DOI: 10.1016/j.jviromet.2007.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/26/2006] [Accepted: 03/01/2007] [Indexed: 01/03/2023]
Abstract
Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
Collapse
Affiliation(s)
- Koon Chu Yaiw
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
150
|
Filippova M, Johnson MM, Bautista M, Filippov V, Fodor N, Tungteakkhun SS, Williams K, Duerksen-Hughes PJ. The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol 2007; 81:4116-29. [PMID: 17267478 PMCID: PMC1866154 DOI: 10.1128/jvi.01924-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) has developed numerous ways to modulate host-initiated immune mechanisms. The HPV-16 E6 oncoprotein, for example, can modulate the cellular level, and consequently the activity, of procaspase 8, thus modifying the cellular response to cytokines of the tumor necrosis factor family. E6 from HPV-16, but not E6 from the low-risk types 6b and 11, alters the cellular level of procaspase 8 in a dose-dependent manner. Both the large and small (E6*) isoforms of E6, which originate by way of alternate splicing, can modulate procaspase 8 stability. Intriguingly, although both isoforms bind to procaspase 8, the large isoform accelerates the degradation of procaspase 8 while the small isoform stabilizes it. Binding leads to a change in the ability of procaspase 8 to bind either to itself or to FADD (Fas-associated death domain), with the large version of E6 able to inhibit this binding while the small isoform does not. Consistent with this model, knockdown of the large version of E6 by small interfering RNA leads to increases in the levels of procaspase 8 and its binding to both itself and FADD. Thus, these alternatively spliced isoforms can modulate both the level and the activity of procaspase 8 in opposite directions.
Collapse
Affiliation(s)
- Maria Filippova
- Department of Biochemistry and Microbiology, 11085 Campus Street, 121 Mortensen Hall, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | |
Collapse
|