101
|
Messner P, Steiner K, Zarschler K, Schäffer C. S-layer nanoglycobiology of bacteria. Carbohydr Res 2008; 343:1934-51. [PMID: 18336801 DOI: 10.1016/j.carres.2007.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/05/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Cell surface layers (S-layers) are common structures of the bacterial cell envelope with a lattice-like appearance that are formed by a self-assembly process. Frequently, the constituting S-layer proteins are modified with covalently linked glycan chains facing the extracellular environment. S-layer glycoproteins from organisms of the Bacillaceae family possess long, O-glycosidically linked glycans that are composed of a great variety of sugar constituents. The observed variations already exceed the display found in eukaryotic glycoproteins. Recent investigations of the S-layer protein glycosylation process at the molecular level, which has lagged behind the structural studies due to the lack of suitable molecular tools, indicated that the S-layer glycoprotein glycan biosynthesis pathway utilizes different modules of the well-known biosynthesis routes of lipopolysaccharide O-antigens. The genetic information for S-layer glycan biosynthesis is usually present in S-layer glycosylation (slg) gene clusters acting in concert with housekeeping genes. To account for the nanometer-scale cell surface display feature of bacterial S-layer glycosylation, we have coined the neologism 'nanoglycobiology'. It includes structural and biochemical aspects of S-layer glycans as well as molecular data on the machinery underlying the glycosylation event. A key aspect for the full potency of S-layer nanoglycobiology is the unique self-assembly feature of the S-layer protein matrix. Being aware that in many cases the glycan structures associated with a protein are the key to protein function, S-layer protein glycosylation will add a new and valuable component to an 'S-layer based molecular construction kit'. In our long-term research strategy, S-layer nanoglycobiology shall converge with other functional glycosylation systems to produce 'functional' S-layer neoglycoproteins for diverse applications in the fields of nanobiotechnology and vaccine technology. Recent advances in the field of S-layer nanoglycobiology have made our overall strategy a tangible aim of the near future.
Collapse
Affiliation(s)
- Paul Messner
- Universität für Bodenkultur Wien, Zentrum für NanoBiotechnologie A-1180 Wien, Gregor-Mendel-Strasse 33, Austria.
| | | | | | | |
Collapse
|
102
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|
103
|
Engelhardt H. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 2007; 160:115-24. [PMID: 17889557 DOI: 10.1016/j.jsb.2007.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/29/2007] [Accepted: 08/02/2007] [Indexed: 11/28/2022]
Abstract
Surface protein or glycoprotein layers (S-layers) are common structures of the prokaryotic cell envelope. They are either associated with the peptidoglycan or outer membrane of bacteria, and constitute the only cell wall component of many archaea. Despite their occurrence in most of the phylogenetic branches of microorganisms, the functional significance of S-layers is assumed to be specific for genera or groups of organisms in the same environment rather than common to all prokaryotes. Functional aspects have usually been investigated with isolated S-layer sheets or proteins, which disregards the interactions between S-layers and the underlying cell envelope components. This study discusses the synergistic effects in cell envelope assemblies, the hypothetical role of S-layers for cell shape formation, and the existence of a common function in view of new insights.
Collapse
Affiliation(s)
- Harald Engelhardt
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
104
|
Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6300-8. [PMID: 17602646 DOI: 10.1021/jf070094x] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present article reports the antimicrobial efficacy of four monoterpenes (thymol, carvacrol, p-cymene, and gamma-terpinene) against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Escherichia coli. For a better understanding of their mechanism of action, the damage caused by these four monoterpenes on biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein (CF) from large unilamellar vesicles (LUVs) with different lipidic composition (phosphatidylcholine, PC, phosphatidylcholine/phosphatidylserine, PC/PS, 9:1; phosphatidylcholine/stearylamine, PC/SA, 9:1). Furthermore, the interaction of these terpenes with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry (DSC) technique. Finally, the results were related also with the relative lipophilicity and water solubility of the compounds examined. We observed that thymol is considerably more toxic against S. aureus than the other three terpenes, while carvacrol and p-cymene are the most inhibitory against E. coli. Thymol and carvacrol, but not gamma-terpinene and p-cymene, caused a concentration-dependent CF leakage from all kinds of LUVs employed; in particular, thymol was more effective on PC and PC/SA LUVS than on PC/PS vesicles, while carvacrol challenge evoked a CF leakage from PC/PS LUVs similar to that induced from PC/SA LUVs, and lower than that measured with PC vesicles. Concerning DSC experiments, these four terpenes caused a decrease in Tm and (especially carvacrol and p-cymene) DeltaH values, very likely acting as substitutional impurities. Taken together, our findings lead us to speculate that the antimicrobial effect of thymol, carvacrol, p-cymene, and gamma-terpinene may result, partially at least, from a gross perturbation of the lipidic fraction of the plasmic membrane of the microorganism. In addition to being related to the physicochemical characteristics of the compounds (such as lipophilicity and water solubility), this effect seems to be dependent on the lipidic composition and net surface charge of the microbic membranes. Furthermore, the compounds might cross the cell membranes, thus penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Contrada Annunziata, 98168 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Albiger B, Dahlberg S, Henriques-Normark B, Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J Intern Med 2007; 261:511-28. [PMID: 17547708 DOI: 10.1111/j.1365-2796.2007.01821.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate immunity plays a critical role in host protection against pathogens and it relies amongst others on pattern recognition receptors such as the Toll-like receptors (TLRs) and the nucleotide-binding oligomerization domains proteins (NOD-like receptors, NLRs) to alert the immune system of the presence of invading bacteria. Since their recent discovery less than a decade ago, both TLRs and NLRs have been shown to be crucial in host protection against microbial infections but also in homeostasis of the colonizing microflora. They recognize specific microbial ligands and with the use of distinct adaptor molecules, they activate different signalling pathways that in turns trigger subsequent inflammatory and immune responses that allows a immediate response towards bacterial infections and the initiation of the long-lasting adaptive immunity. In this review, we will focus on the role of the TLRs against bacterial infections in humans in contrast to mice that have been used extensively in experimental models of infections and discuss their role in controlling normal flora or nonpathogenic bacteria. We also highlight how bacteria can evade recognition by TLRs.
Collapse
Affiliation(s)
- B Albiger
- Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
106
|
Davis ML, Thoden JB, Holden HM. The x-ray structure of dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase. J Biol Chem 2007; 282:19227-36. [PMID: 17459872 DOI: 10.1074/jbc.m702529200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repeating unit of the glycan chain in the S-layer of the bacterium Aneurinibacillus thermoaerophilus L420-91(T) is composed of four alpha-d-rhamnose molecules and two 3-acetamido-3,6-dideoxy-alpha-d-galactose moieties (abbreviated as Fucp3NAc). Formation of the glycan layer requires nucleotide-activated sugars as the donor molecules. Whereas the enzymes involved in the synthesis of GDP-rhamnose have been well characterized, less is known regarding the structures and enzymatic mechanisms of the enzymes required for the production of dTDP-Fucp3NAc. One of the enzymes involved in the biosynthesis of dTDP-Fucp3NAc is a 3,4-ketoisomerase, hereafter referred to as FdtA. Here we describe the first three-dimensional structure of this sugar isomerase complexed with dTDP and solved to 1.5 A resolution. The FdtA dimer assumes an almost jellyfish-like appearance with the sole alpha-helices representing the tentacles. Formation of the FdtA dimer represents a classical example of domain swapping whereby beta-strands 2 and 3 from one subunit form part of a beta-sheet in the second subunit. The active site architecture of FdtA is characterized by a cluster of three histidine residues, two of which, His(49) and His(51), appear to be strictly conserved in the amino acid sequences deposited to date. Site-directed mutagenesis experiments, enzymatic assays, and x-ray crystallographic analyses suggest that His(49) functions as an active site base.
Collapse
Affiliation(s)
- Melissa L Davis
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
107
|
Tul’skaya EM, Shashkov AS, Senchenkova SN, Akimov VN, Bueva OV, Stupar OS, Evtushenko LI. Anionic polymers of the cell wall of Streptomyces sp. VKM Ac-2534. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007. [DOI: 10.1134/s1068162007020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
Tulskaya EM, Shashkov AS, Buyeva OV, Evtushenko LI. Anionic carbohydrate-containing cell wall polymers of Streptomyces melanosporofaciens and related species. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707010067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
109
|
Ryzhkov PM, Ostermann K, Rödel G. Isolation, gene structure, and comparative analysis of the S-layer gene sslA of Sporosarcina ureae ATCC 13881. Genetica 2007; 131:255-65. [PMID: 17242964 DOI: 10.1007/s10709-006-9135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 12/15/2006] [Indexed: 11/27/2022]
Abstract
The surface (S)-layer of Sporosarcina ureae strain ATCC 13881, a periodic ordered structure with p4 square type symmetry, was recently reported to be an excellent biotemplate for the formation of highly ordered metal clusters. The S-layer is formed by self-assembly of a single subunit, the 116 kDa SslA protein. Here we report on the isolation and sequence analysis of the sslA gene. The protein sequence reveals a high degree of similarity to the sequences of other S-layer proteins that form self-assembly lattices with the p4 square type symmetry, especially to those of Bacillus sphaericus. Two conserved surface layer homology (SLH) domains in the extreme aminoterminal portion are likely to mediate attachment of the protein to secondary cell wall polymers. A central HisXXXHis motif and a cysteine residue in the carboxyl-terminal part of the protein, both extremely rare in S-layer proteins, may contribute to the high affinity for metal ions. The strong bias in the codon usage may explain that heterologous expression of SslA in E. coli is not very intense. With respect to the regulatory region we notice several features that are also present in other S-layer genes. The distance between the -35/-10 region and the ATG initiation codon is unusually long, and a 41 bp palindromic sequence is present in the immediate vicinity of the -35/-10 region.
Collapse
Affiliation(s)
- Pavel M Ryzhkov
- Institut für Genetik, Technische Universität Dresden, Helmholtzstr. 10, 01062 Dresden, Germany.
| | | | | |
Collapse
|
110
|
Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B. S-Layers as a basic building block in a molecular construction kit. FEBS J 2006; 274:323-34. [PMID: 17181542 DOI: 10.1111/j.1742-4658.2006.05606.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystalline arrays of protein or glycoprotein subunits forming surface layers (S-layers) are the most common outermost envelope components of prokaryotic organisms (archaea and bacteria). The wealth of information on the structure, chemistry, genetics, morphogenesis, and function of S-layers has revealed a broad application potential. As S-layers are periodic structures, they exhibit identical physicochemical properties for each molecular unit down to the subnanometer level and possess pores of identical size and morphology. Many applications of S-layers in nanobiotechnology depend on the ability of isolated subunits to recrystallize into monomolecular lattices in suspension or on suitable surfaces and interfaces. S-Layer lattices can be exploited as scaffolding and patterning elements for generating more complex supramolecular assemblies and structures, as required for life and nonlife science applications.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | | | | | | | |
Collapse
|
111
|
Chromium(V) complexes generated in Arthrobacter oxydans by simulation analysis of EPR spectra. J Inorg Biochem 2006; 100:1827-33. [DOI: 10.1016/j.jinorgbio.2006.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/13/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
|
112
|
Buist G, Ridder ANJA, Kok J, Kuipers OP. Different subcellular locations of secretome components of Gram-positive bacteria. Microbiology (Reading) 2006; 152:2867-2874. [PMID: 17005968 DOI: 10.1099/mic.0.29113-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-positive bacteria contain different types of secretion systems for the transport of proteins into or across the cytoplasmic membrane. Recent studies on subcellular localization of specific components of these secretion systems and their substrates have shown that they can be present at various locations in the cell. The translocons of the general Sec secretion system in the rod-shaped bacteriumBacillus subtilishave been shown to localize in spirals along the cytoplasmic membrane, whereas the translocons in the coccoidStreptococcus pyogenesare located in a microdomain near the septum. In both bacteria the Sec translocons appear to be located near the sites of cell wall synthesis. The Tat secretion system, which is used for the transport of folded proteins, probably localizes in the cytoplasmic membrane and at the cell poles ofB. subtilis. InLactococcus lactisthe ABC transporter dedicated to the transport of a small antimicrobial peptide is distributed throughout the membrane. Possible mechanisms for maintaining the localization of these secretion machineries involve their interaction with proteins of the cytoskeleton or components of the cell wall synthesis machinery, or the presence of lipid subdomains surrounding the transport systems.
Collapse
Affiliation(s)
- Girbe Buist
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Anja N J A Ridder
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
113
|
Huber C, Liu J, Egelseer EM, Moll D, Knoll W, Sleytr UB, Sára M. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:142-50. [PMID: 17193570 DOI: 10.1002/smll.200500147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Based on the S-layer protein SbpA of Bacillus sphaericus CCM 2177, an S-layer-streptavidin fusion protein was constructed. After heterologous expression, isolation of the fusion protein, and refolding, functional heterotetramers were obtained that had retained the ability to recrystallize into the square-lattice structure on plain gold chips and on gold chips precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Monolayers generated by recrystallization of heterotetramers on plain gold chips or on gold chips precoated with thiolated SCWP were exploited for the binding of biotinylated oligonucleotides (30-mers). Hybridization experiments with complementary fluorescently labeled oligonucleotides carrying one mismatch or no mismatch (both 15-mers) were performed and evaluated with surface-plasmon-field-enhanced fluorescence spectroscopy. For surfaces generated by the recrystallization of heterotetramers on SCWP-coated gold chips, a detection limit of 1.57 pM could be determined, whereas for surfaces obtained by direct recrystallization of heterotetramers on plain gold chips, a detection limit of 8.2 pM was found. Measuring the association and dissociation processes of oligonucleotides carrying no mismatch led to a dissociation constant of K(D)=6.3 x 10(-10) m, whereas for oligonucleotides carrying one mismatch a dissociation constant of K(D)=7.9 x 10(-9) m was determined. This finding was confirmed by measuring the whole Langmuir isotherm, which resulted in a dissociation constant of K(D)=2.6 x 10(-8) m.
Collapse
Affiliation(s)
- Carina Huber
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Gregor Mendel Strasse 33, 1180 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
114
|
Steindl C, Schäffer C, Smrecki V, Messner P, Müller N. The secondary cell wall polymer of Geobacillus tepidamans GS5-97T: structure of different glycoforms. Carbohydr Res 2005; 340:2290-6. [PMID: 16095578 DOI: 10.1016/j.carres.2005.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/28/2005] [Accepted: 07/12/2005] [Indexed: 11/23/2022]
Abstract
Nuclear magnetic resonance spectroscopic studies of the strain-specific secondary cell wall polymer (SCWP) of the Gram-positive, moderately thermophilic organism Geobacillus tepidamans GS5-97T reveal two glycoforms consisting of identical tetrasaccharide repeating units with different chemical modifications of the amide moieties. On the basis of sugar analyses along with 1D and 2D 1H, 13C, 15N, and 31P NMR spectroscopy at natural isotope abundance, the basic backbone structure of the SCWP was established to be [beta-D-Manp-2,3-diNAcANH2-(1-->6)-alpha-D-Glcp-(1-->4)-beta-D-Manp-2,3-diNAcANH2-(1-->3)-alpha-D-GlcpNAc-(1-->]6-(1-->O)-PO2-(O-->6)-MurNAc-, with modifications of the amide groups. In one glycoform, all beta-D-Manp-2,3-diNAcANH2 (2,3-diacetamido-2,3-dideoxy-beta-D-mannopyranuronamide, ManpANH2) residues are substituted with two acetyl groups (glycoform I) at the amide group at C-6; in the other glycoform (glycoform II), only one proton of this amide group is substituted by an acetyl group. The ratio between both the glycoforms approximates 1:1.
Collapse
Affiliation(s)
- Christian Steindl
- Institut für Organische Chemie, Johannes-Kepler-Universität Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | | | | | | | | |
Collapse
|