101
|
Chou YY, Krupp A, Kaynor C, Gaudin R, Ma M, Cahir-McFarland E, Kirchhausen T. Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Sci Rep 2016; 6:36921. [PMID: 27841295 PMCID: PMC5107994 DOI: 10.1038/srep36921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating disease resulting from infection of oligodendrocytes by the JC polyomavirus (JCPyV). Currently, there is no anti-viral therapeutic available against JCPyV infection. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system (CRISPR/Cas9) is a genome editing tool capable of introducing sequence specific breaks in double stranded DNA. Here we show that the CRISPR/Cas9 system can restrict the JCPyV life cycle in cultured cells. We utilized CRISPR/Cas9 to target the noncoding control region and the late gene open reading frame of the JCPyV genome. We found significant inhibition of virus replication and viral protein expression in cells recipient of Cas9 together with JCPyV-specific single-guide RNA delivered prior to or after JCPyV infection.
Collapse
Affiliation(s)
- Yi-ying Chou
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Annabel Krupp
- Department of Neuroimmunology, Biogen, Cambridge, MA 02142, USA
| | - Campbell Kaynor
- Department of Neuroimmunology, Biogen, Cambridge, MA 02142, USA
| | - Raphaël Gaudin
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Minghe Ma
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
102
|
Tang L, Zhao Q, Wu S, Cheng J, Chang J, Guo JT. The current status and future directions of hepatitis B antiviral drug discovery. Expert Opin Drug Discov 2016; 12:5-15. [PMID: 27797587 DOI: 10.1080/17460441.2017.1255195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The current standard care of chronic hepatitis B fails to induce a durable off-drug control of hepatitis B virus (HBV) replication in the majority of treated patients. The primary reasons are its inability to eliminate the covalently closed circular (ccc) DNA, the nuclear form of HBV genome, and restoration of the dysfunctional host antiviral immune response against the virus. Accordingly, discovery and development of therapeutics to completely stop HBV replication, eliminate or functionally inactivate cccDNA as well as activate a functional antiviral immune response against HBV are the primary efforts for finding a cure for chronic hepatitis B. Area covered: Herein, the authors highlight the current efforts of HBV drug discovery and offer their opinions for the future directions of this research. Expert opinion: The authors believe that through a consecutive or overlapping three-stage antiviral and immunotherapy program to: (i) completely stop HBV replication and cccDNA amplification; (ii) reduce viral antigen load and induce HBV surface antigen (HBsAg) seroclearance through eradication or inactivation of cccDNA and RNA interference-mediated degradation of viral mRNA and (iii) activate a functional antiviral immune response against HBV through therapeutic immunization or immunotherapy, a functional cure of chronic HBV infection can be achieved in the majority of chronic HBV carriers.
Collapse
Affiliation(s)
- Liudi Tang
- a Microbiology and Immunology graduate program , Drexel University College of medicine , Philadelphia , PA , USA
| | - Qiong Zhao
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Shuo Wu
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Junjun Cheng
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Jinhong Chang
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Ju-Tao Guo
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| |
Collapse
|
103
|
Buchholz F, Hauber J. Antiviral therapy of persistent viral infection using genome editing. Curr Opin Virol 2016; 20:85-91. [PMID: 27723558 DOI: 10.1016/j.coviro.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
Chronic viral infections are often incurable because current antiviral strategies do not target chromosomally integrated or non-replicating episomal viral genomes. The rapid development of technologies for genome editing may possibly soon allow for therapeutic targeting of viral genomes and, hence, for development of curative strategies for persistent viral infection. However, detailed investigation of different antiviral genome editing approaches recently revealed various undesired effects. In particular, the problem of frequent and swift development of resistant viruses has to be thoroughly analysed before genome editing approaches become an established option for antiviral treatment.
Collapse
Affiliation(s)
- Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Am Tatzberg 47/49, D-01307 Dresden, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
104
|
Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016; 34:933-941. [DOI: 10.1038/nbt.3659] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
|
105
|
Peng Z, Ouyang T, Pang D, Ma T, Chen X, Guo N, Chen F, Yuan L, Ouyang H, Ren L. Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Res 2016; 223:197-205. [PMID: 27507009 DOI: 10.1016/j.virusres.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
The CRISPR-Cas9 system is a newly developed genome-engineering tool used to inhibit virus infection by targeting the conserved regions of the viral genomic DNA. In the present study, we constructed a cell line stably expressing Cas9 endonuclease and sgRNA targeting the conserved UL30 gene of pseudorabies virus (PRV). During the PRV infection, the CRISPR-Cas9 system was efficient in cleaving the UL30 gene in each passage. However, deletions and insertions occurred at low passages, while substitutions were frequently observed at high passages. Furthermore, copy numbers and virus titers of PRV were significantly increased in a passage-dependent manner, indicating that viral genomic replication and assembly were more effective at the high passages than at low passages. These results demonstrated that PRV could escape from CRISPR-Cas9-mediated inhibition. Therefore, whether the CRISPR-Cas9 system is suitable for antiviral application should be considered and carefully verified.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Teng Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Xinrong Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ning Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Fuwang Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
106
|
Shih C, Chou SF, Yang CC, Huang JY, Choijilsuren G, Jhou RS. Control and Eradication Strategies of Hepatitis B Virus. Trends Microbiol 2016; 24:739-749. [DOI: 10.1016/j.tim.2016.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
|
107
|
Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016; 135:1071-82. [PMID: 27272125 PMCID: PMC5002242 DOI: 10.1007/s00439-016-1686-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
108
|
Li H, Sheng C, Liu H, Liu G, Du X, Du J, Zhan L, Li P, Yang C, Qi L, Wang J, Yang X, Jia L, Xie J, Wang L, Hao R, Xu D, Tong Y, Zhou Y, Zhou J, Sun Y, Li Q, Qiu S, Song H. An Effective Molecular Target Site in Hepatitis B Virus S Gene for Cas9 Cleavage and Mutational Inactivation. Int J Biol Sci 2016; 12:1104-13. [PMID: 27570484 PMCID: PMC4997054 DOI: 10.7150/ijbs.16064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B infection remains incurable because HBV cccDNA can persist indefinitely in patients recovering from acute HBV infection. Given the incidence of HBV infection and the shortcomings of current therapeutic options, a novel antiviral strategy is urgently needed. To inactivate HBV replication and destroy the HBV genome, we employed genome editing tool CRISPR/Cas9. Specifically, we found a CRISPR/Cas9 system (gRNA-S4) that effectively targeted the HBsAg region and could suppress efficiently viral replication with minimal off-target effects and impact on cell viability. The mutation mediated by CRISPR/Cas9 in HBV DNA both in a stable HBV-producing cell line and in HBV transgenic mice had been confirmed and evaluated using deep sequencing. In addition, we demonstrated the reduction of HBV replication was caused by the mutation of S4 site through three S4 region-mutated monoclonal cells. Besides, the gRNA-S4 system could also reduce serum surface-antigen levels by 99.91 ± 0.05% and lowered serum HBV DNA level below the negative threshold in the HBV hydrodynamics mouse model. Together, these findings indicate that the S4 region may be an ideal target for the development of innovative therapies against HBV infection using CRISPR/Cas9.
Collapse
Affiliation(s)
- Hao Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chunyu Sheng
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Hongbo Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Guangze Liu
- Transgenic Engineering Research Laboratory, Infectious Disease Center, Guangzhou 458 th Hospital, Guangzhou, China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Juan Du
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Linsheng Zhan
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chaojie Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Lihua Qi
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jian Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoxia Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Rongzhang Hao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Dongping Xu
- Research Center for Liver Failure, Beijing 302 nd Hospital, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
109
|
Tajiri K, Shimizu Y. New horizon for radical cure of chronic hepatitis B virus infection. World J Hepatol 2016; 8:863-873. [PMID: 27478536 PMCID: PMC4958696 DOI: 10.4254/wjh.v8.i21.863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/28/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
About 250 to 350 million people worldwide are chronically infected with hepatitis B virus (HBV), and about 700000 patients per year die of HBV-related cirrhosis or hepatocellular carcinoma (HCC). Several anti-viral agents, such as interferon and nucleos(t)ide analogues (NAs), have been used to treat this disease. NAs especially have been shown to strongly suppress HBV replication, slowing the progression to cirrhosis and the development of HCC. However, reactivation of HBV replication often occurs after cessation of treatment, because NAs alone cannot completely remove covalently-closed circular DNA (cccDNA), the template of HBV replication, from the nuclei of hepatocytes. Anti-HBV immune responses, in conjunction with interferon-γ and tumor necrosis factor-α, were found to eliminate cccDNA, but complete eradication of cccDNA by immune response alone is difficult, as shown in patients who recover from acute HBV infection but often show long-term persistence of small amounts of HBV-DNA in the blood. Several new drugs interfering with the life cycle of HBV in hepatocytes have been developed, with drugs targeting cccDNA theoretically the most effective for radical cure of chronic HBV infection. However, the safety of these drugs should be extensively examined before application to patients, and combinations of several approaches may be necessary for radical cure of chronic HBV infection.
Collapse
|
110
|
Abstract
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305
| |
Collapse
|
111
|
Zhu W, Xie K, Xu Y, Wang L, Chen K, Zhang L, Fang J. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse. Virus Res 2016; 217:125-32. [PMID: 27049051 DOI: 10.1016/j.virusres.2016.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
Chronic infection of hepatitis B virus (HBV) is at risk of liver cirrhosis and hepatocellular carcinoma and remains one of the major public health problems worldwide. It is a major barrier of persistence HBV cccDNA under current antiviral therapy as novel strategies of disrupting HBV cccDNA is pressing. The (CRISPR)/Cas9 system is presently emerging in gene editing and we also apply it for targeting and deleting the conserved regions of HBV genome. Two homologous sequences of HBV S and X genes were carried with CRISPR/Cas9 endonuclease to build pCas9 constructs, which may mediate anti-HBV effects of in vitro and in vivo systems in this study. The results showed the better anti-HBV productions by pCas9-2 and without significant differences in between Huh7 and HepG2 cells. CRISPR/Cas9 direct cleavage and mutagenesis were further analyzed of in vitro system. In the M-TgHBV mouse model of HBV, injection of pCas9 constructs by hydrodynamics decreased HBsAg of sera and liver HBcAg. In conclusion, this designed CRISPR/Cas9 system can induce anti-HBV effects and potentially consider as a novel therapeutic agent against chronic HBV infection.
Collapse
Affiliation(s)
- Wei Zhu
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Kun Xie
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuanjian Xu
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Le Wang
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaiming Chen
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Longzhen Zhang
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianmin Fang
- Laboratory of Molecular Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
112
|
Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol 2016; 64:S17-S31. [PMID: 27084033 DOI: 10.1016/j.jhep.2016.02.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimate of 240 million people worldwide despite the availability of a preventive vaccine. Medication to repress viral replication is available but a cure is rarely achieved. The narrow species and tissue tropism of the virus and the lack of reliable in vitro models and laboratory animals susceptible to HBV infection, have limited research progress in the past. As a result, several aspects of the HBV life cycle as well as the network of virus host interactions occurring during the infection are not yet understood. Only recently, the identification of the functional cellular receptor enabling HBV entry has opened new possibilities to establish innovative infection systems. Regarding the in vivo models of HBV infection, the classical reference was the chimpanzee. However, because of the strongly restricted use of great apes for HBV research, major efforts have focused on the development of mouse models of HBV replication and infection such as the generation of humanized mice. This review summarizes the animal and cell culture based models currently available for the study of HBV biology. We will discuss the benefits and caveats of each model and present a selection of the most important findings that have been retrieved from the respective systems.
Collapse
|
113
|
Price AA, Grakoui A, Weiss DS. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense. Trends Microbiol 2016; 24:294-306. [PMID: 26852268 PMCID: PMC4808413 DOI: 10.1016/j.tim.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Clustered, regularly interspaced, short palindromic repeats - CRISPR-associated (CRISPR-Cas) systems - are sequence-specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense.
Collapse
Affiliation(s)
- Aryn A Price
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30329, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30329, USA.
| | - David S Weiss
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30329, USA.
| |
Collapse
|
114
|
Aravalli RN, Steer CJ. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 2016; 16:595-608. [PMID: 26914853 DOI: 10.1517/14712598.2016.1158808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
115
|
White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2016. [PMID: 26840090 DOI: 10.18632/oncotarget.7104.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
All cancers have multiple mutations that can largely be grouped into certain classes depending on the function of the gene in which they lie and these include oncogenic changes that enhance cellular proliferation, loss of function of tumor suppressors that regulate cell growth potential and induction of metabolic enzymes that confer resistance to chemotherapeutic agents. Thus the ability to correct such mutations is an important goal in cancer treatment. Recent research has led to the developments of reagents which specifically target nucleotide sequences within the cellular genome and these have a huge potential for expanding our anticancer armamentarium. One such a reagent is the clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, a powerful, highly specific and adaptable tool that provides unparalleled control for editing the cellular genome. In this short review, we discuss the potential of CRISPR/Cas9 against human cancers and the current difficulties in translating this for novel therapeutic approaches.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
116
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
117
|
Ely A, Moyo B, Arbuthnot P. Progress With Developing Use of Gene Editing To Cure Chronic Infection With Hepatitis B Virus. Mol Ther 2016; 24:671-7. [PMID: 26916283 DOI: 10.1038/mt.2016.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) occurs in approximately 6% of the world's population. Carriers of the virus are at risk for life-threatening complications, and developing curative treatment remains a priority. The main shortcoming of licensed therapies is that they do not affect viral covalently closed circular DNA (cccDNA), a stable intermediate of replication. Harnessing gene editing to mutate cccDNA provides the means to inactivate HBV gene expression permanently. Reports have described use of engineered zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated (Cas) nucleases. Although inhibition of viral replication has been demonstrated, reliably detecting mutations in cccDNA has been difficult. Also, the dearth of murine models that mimic cccDNA formation has hampered analysis in vivo. To reach a stage of clinical use, efficient delivery of the editors to HBV-infected hepatocytes and limiting unintended off-target effects will be important. Investigating therapeutic efficacy in combination with other treatment strategies, such as immunotherapies, may be useful to augment antiviral effects. Advancing gene editing as a mode of treating HBV infection is now at an interesting stage and significant progress is likely to be made in the immediate future.
Collapse
Affiliation(s)
- Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Buhle Moyo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
118
|
Brahmania M, Feld J, Arif A, Janssen HLA. New therapeutic agents for chronic hepatitis B. THE LANCET. INFECTIOUS DISEASES 2016; 16:e10-21. [PMID: 26795693 DOI: 10.1016/s1473-3099(15)00436-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
The treatment goal for chronic hepatitis B is true eradication of the hepatitis B virus, but this is rarely achieved with first-line treatment regimens because of an inability to disrupt covalently closed circular DNA and an inadequate host immune response. Therefore, new antiviral agents are needed to target various stages of the hepatitis B virus lifecycle and modulation of the immune system. This Review provides a summary of available regimens with their strengths and limitations, and highlights future therapeutic strategies to target the virus and host immune response. These new agents can hopefully lead to a finite duration of treatment, and provide a functional and durable cure for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Mayur Brahmania
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jordan Feld
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ambreen Arif
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Gastroenterology and Hepatology, Erasmus Medical Center University Hospital, Rotterdam, Netherlands.
| |
Collapse
|
119
|
Lin G, Zhang K, Li J. Application of CRISPR/Cas9 Technology to HBV. Int J Mol Sci 2015; 16:26077-86. [PMID: 26540039 PMCID: PMC4661809 DOI: 10.3390/ijms161125950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
More than 240 million people around the world are chronically infected with hepatitis B virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients treated achieve sustained viral response (SVR) or cure, highlights the need for new therapies against HBV. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system can specifically target the conserved regions of the HBV genome. This results in robust viral suppression and provides a promising tool for eradicating the virus. In this review, we discuss the function and application of the CRISPR/Cas9 system as a novel therapy for HBV.
Collapse
Affiliation(s)
- Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital, Beijing 100730, China.
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing 100730, China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing 100730, China.
| |
Collapse
|
120
|
CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV. Virol Sin 2015; 30:317-25. [PMID: 26511989 DOI: 10.1007/s12250-015-3660-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.
Collapse
|
121
|
Kennedy EM, Kornepati AVR, Cullen BR. Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antiviral Res 2015; 123:188-92. [PMID: 26476375 DOI: 10.1016/j.antiviral.2015.10.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Despite the existence of an excellent prophylactic vaccine and the development of highly effective inhibitors of the viral polymerase, chronic hepatitis B virus (HBV) infection remains a major source of morbidity and mortality, especially in Africa and Asia. A significant problem is that, while polymerase inhibitors can effectively prevent the production of viral genomic DNA from pre-genomic RNA transcripts, they do not prevent the transcription and translation of viral mRNAs from the covalently closed circular DNA (cccDNA) templates present in the nuclei of infected cells. Moreover, because these cccDNAs are highly stable, chronic HBV infections are only very rarely cured by the use of polymerase inhibitors and these drugs clearly cannot entirely prevent the subsequent development of HBV-related morbidities such as cirrhosis and hepatocellular carcinoma. As a result, there has been considerable interest in the possibility of developing treatment approaches that directly target cccDNA for elimination. Here, we discuss recent publications that analyze the ability of the bacterial CRISPR/Cas DNA editing machinery to be repurposed as a tool for the specific cleavage and destruction of HBV cccDNAs in the nuclei of infected cells and consider which steps will be necessary to make CRISPR/Cas targeting of HBV DNA a clinically feasible approach to the treatment of chronic infections in humans. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Edward M Kennedy
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Anand V R Kornepati
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
122
|
Guo JT, Guo H. Metabolism and function of hepatitis B virus cccDNA: Implications for the development of cccDNA-targeting antiviral therapeutics. Antiviral Res 2015; 122:91-100. [PMID: 26272257 DOI: 10.1016/j.antiviral.2015.08.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
Abstract
Persistent hepatitis B virus (HBV) infection relies on the stable maintenance and proper functioning of a nuclear episomal form of the viral genome called covalently closed circular (ccc) DNA. One of the major reasons for the failure of currently available antiviral therapeutics to achieve a cure of chronic HBV infection is their inability to eradicate or inactivate cccDNA. In this review article, we summarize our current understanding of cccDNA metabolism in hepatocytes and the modulation of cccDNA by host pathophysiological and immunological cues. Perspectives on the future investigation of cccDNA biology, as well as strategies and progress in therapeutic elimination and/or transcriptional silencing of cccDNA through rational design and phenotypic screenings, are also discussed. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902, USA.
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
123
|
Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and Specificity of CRISPR/Cas9 Genome Editing Technologies for Human Gene Therapy. Hum Gene Ther 2015; 26:443-51. [DOI: 10.1089/hum.2015.074] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Shen Shen
- Editas Medicine, Cambridge, Massachusetts
| | | | | |
Collapse
|