101
|
Nesterova TB, Popova BC, Cobb BS, Norton S, Senner CE, Tang YA, Spruce T, Rodriguez TA, Sado T, Merkenschlager M, Brockdorff N. Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics Chromatin 2008; 1:2. [PMID: 19014663 PMCID: PMC2577046 DOI: 10.1186/1756-8935-1-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/27/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND X chromosome inactivation is the mechanism used in mammals to achieve dosage compensation of X-linked genes in XX females relative to XY males. Chromosome silencing is triggered in cis by expression of the non-coding RNA Xist. As such, correct regulation of the Xist gene promoter is required to establish appropriate X chromosome activity both in males and females. Studies to date have demonstrated co-transcription of an antisense RNA Tsix and low-level sense transcription prior to onset of X inactivation. The balance of sense and antisense RNA is important in determining the probability that a given Xist allele will be expressed, termed the X inactivation choice, when X inactivation commences. RESULTS Here we investigate further the mechanism of Xist promoter regulation. We demonstrate that both sense and antisense transcription modulate Xist promoter DNA methylation in undifferentiated embryonic stem (ES) cells, suggesting a possible mechanistic basis for influencing X chromosome choice. Given the involvement of sense and antisense RNAs in promoter methylation, we investigate a possible role for the RNA interference (RNAi) pathway. We show that the Xist promoter is hypomethylated in ES cells deficient for the essential RNAi enzyme Dicer, but that this effect is probably a secondary consequence of reduced levels of de novo DNA methyltransferases in these cells. Consistent with this we find that Dicer-deficient XY and XX embryos show appropriate Xist expression patterns, indicating that Xist gene regulation has not been perturbed. CONCLUSION We conclude that Xist promoter methylation prior to the onset of random X chromosome inactivation is influenced by relative levels of sense and antisense transcription but that this probably occurs independent of the RNAi pathway. We discuss the implications for this data in terms of understanding Xist gene regulation and X chromosome choice in random X chromosome inactivation.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- Developmental Epigenetics Group, MRC Clinical Sciences Centre, Faculty of Medicine ICSTM, Hammersmith Hospital, Du Cane Road, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
X-chromosome inactivation occurs randomly for one of the two X chromosomes in female cells during development. Inactivation occurs when RNA transcribed from the Xist gene on the X chromosome from which it is expressed spreads to coat the whole X chromosome. In the first issue of Epigenetics and Chromatin, Nesterova and colleagues investigate the role of the RNA interference pathway enzyme Dicer in DNA methylation of the Xist promoter.
Collapse
|
103
|
Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C, Rougeulle C, Avner P. Molecular coupling of Xist regulation and pluripotency. Science 2008; 321:1693-5. [PMID: 18802003 DOI: 10.1126/science.1160952] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During mouse embryogenesis, reversion of imprinted X chromosome inactivation in the pluripotent inner cell mass of the female blastocyst is initiated by the repression of Xist from the paternal X chromosome. Here we report that key factors supporting pluripotency-Nanog, Oct3/4, and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem (ES) cells. Whereas Nanog null ES cells display a reversible and moderate up-regulation of Xist in the absence of any apparent modification of Oct3/4 and Sox2 binding, the drastic release of all three factors from Xist intron 1 triggers rapid ectopic accumulation of Xist RNA. We conclude that the three main genetic factors underlying pluripotency cooperate to repress Xist and thus couple X inactivation reprogramming to the control of pluripotency during embryogenesis.
Collapse
Affiliation(s)
- Pablo Navarro
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, F-75015, Paris, France
| | | | | | | | | | | | | |
Collapse
|
104
|
Peters J, Robson JE. Imprinted noncoding RNAs. Mamm Genome 2008; 19:493-502. [DOI: 10.1007/s00335-008-9139-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
105
|
Erwin JA, Lee JT. New twists in X-chromosome inactivation. Curr Opin Cell Biol 2008; 20:349-55. [PMID: 18508252 DOI: 10.1016/j.ceb.2008.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Dosage compensation, the mechanism by which organisms equalize the relative gene expression of dimorphic sex chromosomes, requires action of a diverse range of epigenetic mechanisms. The mammalian form, 'named X-chromosome inactivation' (XCI), involves silencing of one X chromosome in the female cell and regulation by genes that make noncoding RNAs (ncRNA). With large-scale genomic and transcriptome studies pointing to a crucial role for noncoding elements in organizing the epigenome, XCI emerges as a major paradigm and a focus of active research worldwide. With more surprising twists, recent advances point to the significance of RNA-directed chromatin change, chromosomal trans-interactions, nuclear organization, and evolutionary change. These findings have impacted our understanding of general gene regulation and are discussed herein.
Collapse
Affiliation(s)
- Jennifer A Erwin
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
106
|
Tsai CL, Rowntree RK, Cohen DE, Lee JT. Higher order chromatin structure at the X-inactivation center via looping DNA. Dev Biol 2008; 319:416-25. [PMID: 18501343 DOI: 10.1016/j.ydbio.2008.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/24/2008] [Accepted: 04/08/2008] [Indexed: 01/30/2023]
Abstract
In mammals, the silencing step of the X-chromosome inactivation (XCI) process is initiated by the non-coding Xist RNA. Xist is known to be controlled by the non-coding Xite and Tsix loci, but the mechanisms by which Tsix and Xite regulate Xist are yet to be fully elucidated. Here, we examine the role of higher order chromatin structure across the 100-kb region of the mouse X-inactivation center (Xic) and map domains of specialized chromatin in vivo. By hypersensitive site mapping and chromosome conformation capture (3C), we identify two domains of higher order chromatin structure. Xite makes looping interactions with Tsix, while Xist makes contacts with Jpx/Enox, another non-coding gene not previously implicated in XCI. These regions interact in a developmentally-specific and sex-specific manner that is consistent with a regulatory role in XCI. We propose that dynamic changes in three-dimensional architecture leads to formation of separate chromatin hubs in Tsix and Xist that together regulate the initiation of X-chromosome inactivation.
Collapse
Affiliation(s)
- Chia-Lun Tsai
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114-2790, USA
| | | | | | | |
Collapse
|
107
|
Abstract
The compensation of the different level of transcripts of X-linked genes in male and female mammals is achieved through X chromosome inactivation, a complex process that differentially regulates the sex chromosomes of female cells. This mechanism has been dissected at evolutionary, genetic and molecular levels: here, we discuss some of the latest examples that illustrate better these intricate connections, focusing particularly on the emerging role of spatial and three-dimensional chromatin arrangements in the building of this special chromosome, the inactive X chromosome.
Collapse
|
108
|
Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 2008; 28:3713-28. [PMID: 18299392 DOI: 10.1128/mcb.02263-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kcnq1ot1 antisense noncoding RNA has been implicated in long-range bidirectional silencing, but the underlying mechanisms remain enigmatic. Here we characterize a domain at the 5' end of the Kcnq1ot1 RNA that carries out transcriptional silencing of linked genes using an episomal vector system. The bidirectional silencing property of Kcnq1ot1 maps to a highly conserved repeat motif within the silencing domain, which directs transcriptional silencing by interaction with chromatin, resulting in histone H3 lysine 9 trimethylation. Intriguingly, the silencing domain is also required to target the episomal vector to the perinucleolar compartment during mid-S phase. Collectively, our data unfold a novel mechanism by which an antisense RNA mediates transcriptional gene silencing of chromosomal domains by targeting them to distinct nuclear compartments known to be rich in heterochromatic machinery.
Collapse
|
109
|
Ohhata T, Hoki Y, Sasaki H, Sado T. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 2007; 135:227-35. [PMID: 18057104 DOI: 10.1242/dev.008490] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of Xist, which triggers X inactivation, is negatively regulated in cis by an antisense gene, Tsix, transcribed along the entire Xist gene. We recently demonstrated that Tsix silences Xist through modification of the chromatin structure in the Xist promoter region. This finding prompted us to investigate the role of antisense transcription across the Xist promoter in Tsix-mediated silencing. Here, we prematurely terminated Tsix transcription before the Xist promoter and addressed its effect on Xist silencing in mouse embryos. We found that although 93% of the region encoding Tsix was transcribed, truncation of Tsix abolished the antisense regulation of Xist. This resulted in a failure to establish the repressive chromatin configuration at the Xist promoter on the mutated X, including DNA methylation and repressive histone modifications, especially in extraembryonic tissues. These results suggest a crucial role for antisense transcription across the Xist promoter in Xist silencing.
Collapse
Affiliation(s)
- Tatsuya Ohhata
- PRESTO, Japan Science and Technology Agency (JST Saitama, 332-0012, Japan
| | | | | | | |
Collapse
|
110
|
Xu N, Donohoe ME, Silva SS, Lee JT. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 2007; 39:1390-6. [PMID: 17952071 DOI: 10.1038/ng.2007.5] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/15/2007] [Indexed: 12/11/2022]
Abstract
X-chromosome inactivation (XCI) ensures the equality of X-chromosome dosages in male and female mammals by silencing one X in the female. To achieve the mutually exclusive designation of active X (Xa) and inactive X (Xi), the process necessitates that two Xs communicate in trans through homologous pairing. Pairing depends on a 15-kb region within the genes Tsix and Xite. Here, we dissect molecular requirements and find that pairing can be recapitulated by 1- to 2-kb subfragments of Tsix or Xite with little sequence similarity. However, a common denominator among them is the presence of the protein Ctcf, a chromatin insulator that we find to be essential for pairing. By contrast, the Ctcf-interacting partner, Yy1 (ref. 8), is not required. Pairing also depends on transcription. Transcriptional inhibition prevents new pair formation but does not perturb existing pairs. The kinetics suggest a pairing half-life of <1 h. We propose that pairing requires Ctcf binding and co-transcriptional activity of Tsix and Xite.
Collapse
Affiliation(s)
- Na Xu
- Howard Hughes Medical Institute Department of Molecular Biology, Massachusetts General Hospital Department of Genetics, Harvard Medical School Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
111
|
Attia M, Rachez C, De Pauw A, Avner P, Rogner UC. Nap1l2 promotes histone acetylation activity during neuronal differentiation. Mol Cell Biol 2007; 27:6093-102. [PMID: 17591696 PMCID: PMC1952155 DOI: 10.1128/mcb.00789-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The deletion of the neuronal Nap1l2 (nucleosome assembly protein 1-like 2) gene in mice causes neural tube defects. We demonstrate here that this phenotype correlates with deficiencies in differentiation and increased maintenance of the neural stem cell stage. Nap1l2 associates with chromatin and interacts with histones H3 and H4. Loss of Nap1l2 results in decreased histone acetylation activity, leading to transcriptional changes in differentiating neurons, which include the marked downregulation of the Cdkn1c (cyclin-dependent kinase inhibitor 1c) gene. Cdkn1c expression normally increases during neuronal differentiation, and this correlates with the specific recruitment of the Nap1l2 protein and an increase in acetylated histone H3K9/14 at the site of Cdkn1c transcription. These results lead us to suggest that the Nap1l2 protein plays an important role in regulating transcription in developing neurons via the control of histone acetylation. Our data support the idea that neuronal nucleosome assembly proteins mediate cell-type-specific mechanisms of establishment/modification of a chromatin-permissive state that can affect neurogenesis and neuronal survival.
Collapse
Affiliation(s)
- Mikaël Attia
- Unité Génétique Moléculaire Murine, CNRS URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
112
|
Anguera MC, Sun BK, Xu N, Lee JT. X-chromosome kiss and tell: how the Xs go their separate ways. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:429-37. [PMID: 17381325 DOI: 10.1101/sqb.2006.71.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Loci associated with noncoding RNAs have important roles in X-chromosome inactivation (XCI), the dosage compensation mechanism by which one of two X chromosomes in female cells becomes transcriptionally silenced. The Xs start out as epigenetically equivalent chromosomes, but XCI requires a cell to treat two identical X chromosomes in completely different ways: One X chromosome must remain transcriptionally active while the other becomes repressed. In the embryo of eutherian mammals, the choice to inactivate the maternal or paternal X chromosome is random. The fact that the Xs always adopt opposite fates hints at the existence of a trans-sensing mechanism to ensure the mutually exclusive silencing of one of the two Xs. This paper highlights recent evidence supporting a model for mutually exclusive choice that involves homologous chromosome pairing and the placement of asymmetric chromatin marks on the two Xs.
Collapse
Affiliation(s)
- M C Anguera
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
113
|
Kulaeva OI, Gaykalova D, Studitsky VM. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat Res 2007; 618:116-29. [PMID: 17313961 PMCID: PMC1924643 DOI: 10.1016/j.mrfmmm.2006.05.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
The process of transcript elongation by RNA polymerase II (Pol II) involves transcription-dependent exchange and displacement of all core histones and is tightly controlled by numerous protein complexes modifying chromatin structure. These processes can contribute to regulation of transcription initiation and elongation, as well as the chromatin state. Recent data suggest that the histone octamer is displaced from DNA at a high rate of transcription, but can survive less frequent transcription that is accompanied only by partial loss of H2A/H2B histones. Here we propose that critical density of Pol II molecules could be required for displacement of the histone octamer and discuss mechanisms that are most likely involved in the processes of histone exchange.
Collapse
Affiliation(s)
- Olga I. Kulaeva
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Daria Gaykalova
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| |
Collapse
|
114
|
Abstract
Mammalian X inactivation, imprinting, and allelic exclusion are classic examples of monoallelic gene expression. Two emerging themes are thought to be critical for monoallelic expression: (1) noncoding, often antisense, transcription linked to differential chromatin marks on otherwise homologous alleles and (2) physical segregation of alleles to separate domains within the nucleus. Here, we highlight recent progress in identifying these phenomena as possible key regulatory mechanisms of monoallelic expression.
Collapse
Affiliation(s)
- Pok Kwan Yang
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
115
|
Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev 2007; 21:11-42. [PMID: 17210785 DOI: 10.1101/gad.1484207] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A large portion of the eukaryotic genome is transcribed as noncoding RNAs (ncRNAs). While once thought of primarily as "junk," recent studies indicate that a large number of these RNAs play central roles in regulating gene expression at multiple levels. The increasing diversity of ncRNAs identified in the eukaryotic genome suggests a critical nexus between the regulatory potential of ncRNAs and the complexity of genome organization. We provide an overview of recent advances in the identification and function of eukaryotic ncRNAs and the roles played by these RNAs in chromatin organization, gene expression, and disease etiology.
Collapse
|
116
|
Navarro P, Page DR, Avner P, Rougeulle C. Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 2006; 20:2787-92. [PMID: 17043308 PMCID: PMC1619945 DOI: 10.1101/gad.389006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Initiation of X inactivation depends on the coordinated expression of the sense/antisense pair Xist/Tsix. We show here that a precisely defined Xist promoter region flanked by CTCF is maintained by Tsix in a heterochromatic-like state in undifferentiated embryonic stem (ES) cells and shifts to a pseudoeuchromatic structure upon Tsix truncation. We further demonstrate that the epigenetic state of the Xist 5' region prior to differentiation predicts the efficiency of transcriptional machinery recruitment to the Xist promoter during differentiation. Our results provide mechanistic insights into the Tsix-mediated epigenetic regulation of Xist resulting in Xist promoter activation and initiation of X inactivation in differentiating ES cells.
Collapse
Affiliation(s)
- Pablo Navarro
- Unité de Génétique Moléculaire Murine, Institut Pasteur 75724, Paris Cedex 15, France
| | | | | | | |
Collapse
|
117
|
Affiliation(s)
- Sébastien Vigneau
- Unité Génétique Moléculaire Murine, CNRS URA 2578, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
118
|
Sado T, Hoki Y, Sasaki H. Tsix defective in splicing is competent to establish Xist silencing. Development 2006; 133:4925-31. [PMID: 17108001 DOI: 10.1242/dev.02670] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dosage differences of X-linked genes between male and female mammals are compensated for by a mechanism known as X-inactivation, and the noncoding Xist gene plays a crucial role in this process. The expression of Xist is regulated in cis by its noncoding antisense gene, Tsix, whose transcripts (though a fraction of them stay unspliced), are processed like common proteincoding RNAs. It has been suggested that certain classes of sense-antisense pairs of RNA are causally involved in not only gene regulation but also higher order chromatin structure in various organisms. In fact, recent studies demonstrated that Tsix modulates Xist expression through modification of the chromatin structure. It is still unknown, however, whether the RNA product is important for the function of Tsix or whether the antisense transcription is sufficient. To obtain insight into this issue, we eliminated the splicing products of Tsix in the mouse and explored the effects of this elimination on Tsix-mediated Xist silencing. To our surprise, the Xist locus was stably repressed on the X carrying the splicing-defective Tsix allele. Moreover, the repressive chromatin configuration was properly established at the Xist locus. These unexpected results indicate that the splicing products are dispensable for Tsix-mediated Xist silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Human Genetics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, 411-8540, Japan.
| | | | | |
Collapse
|
119
|
Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 2006; 20:2450-64. [PMID: 16951257 PMCID: PMC1560418 DOI: 10.1101/gad.382806] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We address the molecular control of myogenesis in progenitor cells derived from the hypaxial somite. Null mutations in Pax3, a key regulator of skeletal muscle formation, lead to cell death in this domain. We have developed a novel allele of Pax3 encoding a Pax3-engrailed fusion protein that acts as a transcriptional repressor. Heterozygote mouse embryos have an attenuated mutant phenotype, with partial conservation of the hypaxial somite and its myogenic derivatives, including some hindlimb muscles. At these sites, expression of Myf5 is compromised, showing that Pax3 acts genetically upstream of this myogenic determination gene. We have characterized a 145-base-pair (bp) regulatory element, at -57.5 kb from Myf5, that directs transgene expression to the mature somite, notably to myogenic cells of the hypaxial domain that form ventral trunk and limb muscles. A Pax3 consensus site in this sequence binds Pax3 in vitro and in vivo. Multimers of the 145-bp sequence direct transgene expression to sites of Pax3 function, and an assay of its activity in the chick embryo shows Pax3 dependence. Mutation of the Pax3 site abolishes all expression controlled by the 145-bp sequence in transgenic mouse embryos. We conclude that Pax3 directly regulates Myf5 in the hypaxial somite and its derivatives.
Collapse
Affiliation(s)
- Lola Bajard
- Centre National de la Recherche Scientifique URA 2578, Department of Developmental Biology, Pasteur Institute, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
120
|
Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848-67. [PMID: 16847345 DOI: 10.1101/gad.1422906] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian females have two X chromosomes and males have only one. This has led to the evolution of special mechanisms of dosage compensation. The inactivation of one X chromosome in females equalizes gene expression between the sexes. This process of X-chromosome inactivation (XCI) is a remarkable example of long-range, monoallelic gene silencing and facultative heterochromatin formation, and the questions surrounding it have fascinated biologists for decades. How does the inactivation of more than a thousand genes on one X chromosome take place while the other X chromosome, present in the same nucleus, remains genetically active? What are the underlying mechanisms that trigger the initial differential treatment of the two X chromosomes? How is this differential treatment maintained once it has been established, and how are some genes able to escape the process? Does the mechanism of X inactivation vary between species and even between lineages? In this review, X inactivation is considered in evolutionary terms, and we discuss recent insights into the epigenetic changes and developmental timing of this process. We also review the discovery and possible implications of a second form of dosage compensation in mammals that deals with the unique, potentially haploinsufficient, status of the X chromosome with respect to autosomal gene expression.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
121
|
Seidl CIM, Stricker SH, Barlow DP. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J 2006; 25:3565-75. [PMID: 16874305 PMCID: PMC1538572 DOI: 10.1038/sj.emboj.7601245] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/28/2006] [Indexed: 11/09/2022] Open
Abstract
Expression of the Air ncRNA is necessary to silence multiple genes in cis in the imprinted Igf2r cluster. However, its mode of action is unknown. Here, we characterize co- and post-transcriptional features of Air that identify it as a new member of the class of nuclear regulatory RNAs. We show that Air is transcribed from a DNA methylation-sensitive promoter by RNA polymerase II (RNAPII). However, although it is capped and polyadenylated similar to other RNAPII transcripts, the majority of Air transcripts evade cotranscriptional splicing resulting in a mature 108 kb ncRNA. As a consequence, the mature unspliced Air is nuclear localized and highly unstable. These features show that Air is an atypical RNAPII transcript whose properties indicate that its mode of action in gene silencing may not depend on the RNA per se but instead is related to its actual transcription.
Collapse
Affiliation(s)
- Christine I M Seidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Stefan H Stricker
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, A-1030 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, 1030 Vienna, Austria. Tel.: +43 1 4277 54 610; Fax: +43 1 4277 9546; E-mail:
| |
Collapse
|
122
|
Thorvaldsen JL, Verona RI, Bartolomei MS. X-tra! X-tra! News from the mouse X chromosome. Dev Biol 2006; 298:344-53. [PMID: 16916508 DOI: 10.1016/j.ydbio.2006.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022]
Abstract
X chromosome inactivation (XCI) is the phenomenon through which one of the two X chromosomes in female mammals is silenced to achieve dosage compensation with males. XCI is a highly complex, tightly controlled and developmentally regulated process. The mouse undergoes two forms of XCI: imprinted, which occurs in all cells of the preimplantation embryo and in the extraembryonic lineage, and random, which occurs in somatic cells after implantation. This review presents results and hypotheses that have recently been proposed concerning important aspects of both imprinted and random XCI in mice. We focus on how imprinted XCI occurs during preimplantation development, including a brief discussion of the debate as to when silencing initiates. We also discuss regulation of random XCI, focusing on the requirement for Tsix antisense transcription through the Xist locus, on the regulation of Xist chromatin structure by Tsix and on the effect of Tsix regulatory elements on choice and counting. Finally, we review exciting new data revealing that X chromosomes co-localize during random XCI. To conclude, we highlight other aspects of X-linked gene regulation that make it a suitable model for epigenetics at work.
Collapse
Affiliation(s)
- Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
123
|
Ciaudo C, Bourdet A, Cohen-Tannoudji M, Dietz HC, Rougeulle C, Avner P. Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation. PLoS Genet 2006; 2:e94. [PMID: 16789828 PMCID: PMC1479048 DOI: 10.1371/journal.pgen.0020094] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022] Open
Abstract
A critical step in X-chromosome inactivation (XCI), which results in the dosage compensation of X-linked gene expression in mammals, is the coating of the presumptive inactive X chromosome by the large noncoding Xist RNA, which then leads to the recruitment of other factors essential for the heterochromatinisation of the inactive X and its transcriptional silencing. In an approach aimed at identifying genes implicated in the X-inactivation process by comparative transcriptional profiling of female and male mouse gastrula, we identified the Eif1 gene involved in translation initiation and RNA degradation. We show here that female embryonic stem cell lines, silenced by RNA interference for the Eif1 gene, are unable to form Xist RNA domains upon differentiation and fail to undergo X-inactivation. To probe further an effect involving RNA degradation pathways, the inhibition by RNA interference of Rent1, a factor essential for nonsense-mediated decay and Exosc10, a specific nuclear component of the exosome, was analysed and shown to similarly impair Xist upregulation and XCI. In Eif1-, Rent1-, and Exosc10-interfered clones, Xist spliced form(s) are strongly downregulated, while the levels of unspliced form(s) of Xist and the stability of Xist RNA remain comparable to that of the control cell lines. Our data suggests a role for mRNA nuclear degradation pathways in the critical regulation of spliced Xist mRNA levels and the onset of the X-inactivation process. In mammals, each cell of the female contains two X chromosomes and hence, potentially a double dose of all X-linked genes when compared to XY males, who carry a single X chromosome. X-inactivation is the mechanism that ensures the dosage-compensation of X-linked gene products between the two sexes. X-inactivation is under the control of a specific region of the X chromosome, the X inactivation center (Xic), which contains the Xist gene encoding a large noncoding RNA transcript whose upregulation is critical to the initiation of X-inactivation. Such changes in steady-state transcript level could be due to altered rates of transcription or changes in the stability and processing of the transcript. How expression of Xist RNA is regulated and the nature of the mechanisms, which lead to Xist upregulation, remain unanswered or only partially answered questions of major importance to the field. In the following article, the authors identify three genes, Eif1, Rent1, and Exosc10, involved in nuclear mRNA degradation pathway(s), which are required for Xist expression upregulation and associated X-inactivation. Inhibition of the function of one or other of these genes leads to a failure of the female cells to undergo X inactivation, suggesting that post-transcriptional nuclear mRNA degradation pathway(s) are essential for the regulation of Xist RNA metabolism and X chromosome inactivation process.
Collapse
Affiliation(s)
- Constance Ciaudo
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France
| | - Agnès Bourdet
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France
| | | | - Harry C Dietz
- Institute of Genetic Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Claire Rougeulle
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France
| | - Philip Avner
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
124
|
Tufarelli C. The silence RNA keeps: cis mechanisms of RNA mediated epigenetic silencing in mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:67-79. [PMID: 16553309 PMCID: PMC1626536 DOI: 10.1098/rstb.2005.1732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the fundamental questions of modern biology is to unravel how genes are switched on and off at the right time and in the correct tissues. It is well recognized that gene regulation depends on a dynamic balance between activating and repressing forces, and multiple mechanisms are involved in both gene silencing and activation. Work over the last decade has revealed that in some cases transcriptional silencing of specific genes is mediated by RNAs that specifically recruit repressing complexes to homologous DNA sequences. Examples of both cis and trans RNA driven transcriptional silencing have been reported. This review focuses on those examples of transcriptional gene silencing in which the RNA component seems to act uniquely in cis. Speculative models of how such cis acting transcripts may trigger transcriptional silencing are proposed. Future experimental testing of these and other mechanisms is important to gain a fuller understanding of how genes are regulated and to identify instances in which such mechanisms are defective, leading to disease. Understanding the basic molecular basis of these phenomena will provide us with invaluable tools for the future development of targeted therapies and drugs for those diseases in which they are faulty.
Collapse
Affiliation(s)
- Cristina Tufarelli
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
125
|
Mlynarczyk-Evans S, Royce-Tolland M, Alexander MK, Andersen AA, Kalantry S, Gribnau J, Panning B. X chromosomes alternate between two states prior to random X-inactivation. PLoS Biol 2006; 4:e159. [PMID: 16669701 PMCID: PMC1457015 DOI: 10.1371/journal.pbio.0040159] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/16/2006] [Indexed: 12/05/2022] Open
Abstract
Early in the development of female mammals, one of the two X chromosomes is silenced in half of cells and the other X chromosome is silenced in the remaining half. The basis of this apparent randomness is not understood. We show that before X-inactivation, the two X chromosomes appear to exist in distinct states that correspond to their fates as the active and inactive X chromosomes.
Xist and
Tsix, noncoding RNAs that control X chromosome fates upon X-inactivation, also determine the states of the X chromosomes prior to X-inactivation. In wild-type ES cells, X chromosomes switch between states; among the progeny of a single cell, a given X chromosome exhibits each state with equal frequency. We propose a model in which the concerted switching of homologous X chromosomes between mutually exclusive future active and future inactive states provides the basis for the apparently random silencing of one X chromosome in female cells.
During female mammalian development, one of the two X chromosomes in each cell is inactivated. Prior to X-inactivation, these chromosomes appear to exist in distinct states that correspond to their fates.
Collapse
Affiliation(s)
- Susanna Mlynarczyk-Evans
- 1Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Morgan Royce-Tolland
- 1Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Mary Kate Alexander
- 1Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Angela A Andersen
- 1Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Sundeep Kalantry
- 2Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joost Gribnau
- 3Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Barbara Panning
- 1Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
126
|
Clerc P, Avner P. Random X-chromosome inactivation: skewing lessons for mice and men. Curr Opin Genet Dev 2006; 16:246-53. [PMID: 16647851 DOI: 10.1016/j.gde.2006.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The mammalian X-chromosome exists in two flavors, active and inactive, in each cell of the adult female. This phenomenon originates from the process of random choice occurring early in development in a small number of progenitor cells in which the decision is made to inactivate either one or the other X chromosome on a cell-autonomous basis. Once made, this initial decision is irreversible, although exceptions exist in specific chromosomal territories and cell lineages. Recent findings implicate various factors, including non-coding RNAs and chromatin modification complexes, as effectors in the initiation and maintenance of X-chromosome inactivation. The functional redundancy of such factors almost certainly plays an important role in the stability of the inactive X. Studying skewing or bias opens an important opportunity for understanding facets of the random choice process.
Collapse
Affiliation(s)
- Philippe Clerc
- Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | | |
Collapse
|
127
|
Kalantry S, Magnuson T. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2006; 2:e66. [PMID: 16680199 PMCID: PMC1456320 DOI: 10.1371/journal.pgen.0020066] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/17/2006] [Indexed: 12/01/2022] Open
Abstract
The Polycomb group (PcG) proteins are thought to silence gene expression by modifying chromatin. The Polycomb repressive complex 2 (PRC2) plays an essential role in mammalian X-chromosome inactivation (XCI), a model system to investigate heritable gene silencing. In the mouse, two different forms of XCI occur. In the preimplantation embryo, all cells undergo imprinted inactivation of the paternal X-chromosome (Xp). During the peri-implantation period, cells destined to give rise to the embryo proper erase the imprint and randomly inactivate either the maternal X-chromosome or the Xp; extraembryonic cells, on the other hand, maintain imprinted XCI of the Xp. PRC2 proteins are enriched on the inactive-X during early stages of both imprinted and random XCI. It is therefore thought that PRC2 contributes to the initiation of XCI. Mouse embryos lacking the essential PRC2 component EED harbor defects in the maintenance of imprinted XCI in differentiating trophoblast cells. Assessment of PRC2 requirement in the initiation of XCI, however, has been hindered by the presence of maternally derived proteins in the early embryo. Here we show that Eed-/- embryos initiate and maintain random XCI despite lacking any functional EED protein prior to the initiation of random XCI. Thus, despite being enriched on the inactive X-chromosome, PcGs appear to be dispensable for the initiation and maintenance of random XCI. These results highlight the lineage- and differentiation state-specific requirements for PcGs in XCI and argue against PcG function in the formation of the facultative heterochromatin of the inactive X-chromosome.
Collapse
Affiliation(s)
- Sundeep Kalantry
- Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics and the Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
128
|
Furuno M, Pang KC, Ninomiya N, Fukuda S, Frith MC, Bult C, Kai C, Kawai J, Carninci P, Hayashizaki Y, Mattick JS, Suzuki H. Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet 2006; 2:e37. [PMID: 16683026 PMCID: PMC1449886 DOI: 10.1371/journal.pgen.0020037] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 02/01/2006] [Indexed: 02/07/2023] Open
Abstract
Non-protein-coding RNAs (ncRNAs) are increasingly being recognized as having important regulatory roles. Although much recent attention has focused on tiny 22- to 25-nucleotide microRNAs, several functional ncRNAs are orders of magnitude larger in size. Examples of such macro ncRNAs include Xist and Air, which in mouse are 18 and 108 kilobases (Kb), respectively. We surveyed the 102,801 FANTOM3 mouse cDNA clones and found that Air and Xist were present not as single, full-length transcripts but as a cluster of multiple, shorter cDNAs, which were unspliced, had little coding potential, and were most likely primed from internal adenine-rich regions within longer parental transcripts. We therefore conducted a genome-wide search for regional clusters of such cDNAs to find novel macro ncRNA candidates. Sixty-six regions were identified, each of which mapped outside known protein-coding loci and which had a mean length of 92 Kb. We detected several known long ncRNAs within these regions, supporting the basic rationale of our approach. In silico analysis showed that many regions had evidence of imprinting and/or antisense transcription. These regions were significantly associated with microRNAs and transcripts from the central nervous system. We selected eight novel regions for experimental validation by northern blot and RT-PCR and found that the majority represent previously unrecognized noncoding transcripts that are at least 10 Kb in size and predominantly localized in the nucleus. Taken together, the data not only identify multiple new ncRNAs but also suggest the existence of many more macro ncRNAs like Xist and Air. The human genome has been sequenced, and, intriguingly, less than 2% specifies the information for the basic protein building blocks of our bodies. So, what does the other 98% do? It now appears that the mammalian genome also specifies the instructions for many previously undiscovered “non protein-coding RNA” (ncRNA) genes. However, what these ncRNAs do is largely unknown. In recent years, strategies have been designed that have successfully identified hundreds of short ncRNAs—termed microRNAs—many of which have since been shown to act as genetic regulators. Also known to be functionally important are a handful of ncRNAs orders of magnitude larger in size than microRNAs. The availability of complete genome and comprehensive transcript sequences allows for the systematic discovery of more large ncRNAs. The authors developed a computational strategy to screen the mouse genome and identify large ncRNAs. They detected existing large ncRNAs, thus validating their approach, but, more importantly, discovered more than 60 other candidates, some of which were subsequently confirmed experimentally. This work opens the door to a virtually unexplored world of large ncRNAs and beckons future experimental work to define the cellular functions of these molecules.
Collapse
Affiliation(s)
- Masaaki Furuno
- Mouse Genome Informatics Consortium, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ken C Pang
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- T Cell laboratory, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, Victoria, Australia
| | - Noriko Ninomiya
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Shiro Fukuda
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Martin C Frith
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Carol Bult
- Mouse Genome Informatics Consortium, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Chikatoshi Kai
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - Jun Kawai
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako, Japan
| | - Piero Carninci
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako, Japan
| | - Yoshihide Hayashizaki
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako, Japan
| | - John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Harukazu Suzuki
- Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
129
|
Vigneau S, Augui S, Navarro P, Avner P, Clerc P. An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc Natl Acad Sci U S A 2006; 103:7390-5. [PMID: 16648248 PMCID: PMC1464350 DOI: 10.1073/pnas.0602381103] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A counting process senses the X chromosome/autosome ratio and ensures that X chromosome inactivation (XCI) initiates in the early female (XX) embryo and in differentiating female ES cells but not in their male (XY) counterparts. Counting depends on the X inactivation center (Xic), which contains the Xist gene encoding a nuclear RNA, which coats the inactive X chromosome and induces gene silencing. A 37-kb sequence lying 3' to the Xist gene is known to prevent initiation of XCI in male differentiating ES cells. This region contains the major and minor promoters of the Tsix gene, which runs antisense to Xist, and the DXPas34 tandem repeat lying close to the Tsix major promoter. We have addressed the role of these elements in counting by using male ES cells. Targeted deletion of DXPas34 impaired recruitment of RNA-polymerase II and TFIIB at the Tsix major promoter, resulting in low levels of Tsix expression in ES cells and moderate ectopic initiation of XCI upon differentiation. A deletion extending 3' to Xist and including the Tsix major promoter resulted in almost complete impairment of Tsix transcription and in efficient ectopic XCI upon differentiation of male ES cells. Internal deletions within the Tsix gene did not affect significantly the level of antisense transcription within Xist and had only minor effects upon differentiation. Our results identify a function for DXPas34 in murine XCI and demonstrate the critical role of Tsix transcription in preventing XCI in differentiating male ES cells and in normal functioning of the counting pathway.
Collapse
Affiliation(s)
- Sébastien Vigneau
- Génétique Moléculaire Murine, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Sandrine Augui
- Génétique Moléculaire Murine, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Génétique Moléculaire Murine, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Philip Avner
- Génétique Moléculaire Murine, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Philippe Clerc
- Génétique Moléculaire Murine, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
130
|
Okamoto I, Heard E. The dynamics of imprinted X inactivation during preimplantation development in mice. Cytogenet Genome Res 2006; 113:318-24. [PMID: 16575196 DOI: 10.1159/000090848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/07/2005] [Indexed: 11/19/2022] Open
Abstract
In the mouse, there are two forms of X chromosome inactivation (XCI), random XCI in the fetus and imprinted paternal XCI, which is limited to the extraembryonic tissues. While the mechanism of random XCI has been studied extensively using the in vitro XX ES cell differentiation system, imprinted XCI during early embryonic development has been less well characterized. Recent studies of early embryos have reported unexpected findings for the paternal X chromosome (Xp). Imprinted XCI may not be linked to meiotic silencing in the male germ line but rather to the imprinted status of the Xist gene. Furthermore, the Xp becomes inactivated in all cells of cleavage-stage embryos and then reactivated in the cells of the inner cell mass (ICM) that form the epiblast, where random XCI ensues.
Collapse
Affiliation(s)
- I Okamoto
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
131
|
Kanduri C, Thakur N, Pandey RR. The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 2006; 25:2096-106. [PMID: 16628224 PMCID: PMC1462980 DOI: 10.1038/sj.emboj.7601090] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 03/21/2006] [Indexed: 11/08/2022] Open
Abstract
The underlying mechanisms linking antisense RNA, chromatin architecture and gene expression have not been fully elucidated. Here we show that long transcripts encoded from the Kcnq1ot1 antisense promoter silence the flanking genes more efficiently than short antisense transcripts. Interestingly, the antisense RNA-mediated deposition of inactive chromatin-specific histone modifications was higher with the longer antisense transcripts than with the shorter antisense transcripts. The kinetic studies of expression and chromatin remodeling of overlapping and nonoverlapping genes in response to antisense transcription revealed that the overlapping gene was rapidly silenced due to decrease in the occupancy of basal transcription machinery and simultaneous enrichment of its promoter with inactive chromatin modifications. The nonoverlapping gene, initially enriched with histone modifications specific to active chromatin, was subsequently silenced. Surprisingly, the flanking sequences were initially enriched with H3K9 monomethylation, as compared to di- and trimethylation, with a subsequent shift to trimethylated H3K9 enrichment. Our data provide a new perspective into antisense RNA-mediated gene silencing, and, more importantly, provide an explanation for why the antisense transcripts encoded from imprinting control regions are of significant length.
Collapse
Affiliation(s)
- Chandrasekhar Kanduri
- Department of Development and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
132
|
Sun BK, Deaton AM, Lee JT. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 2006; 21:617-28. [PMID: 16507360 DOI: 10.1016/j.molcel.2006.01.028] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/30/2005] [Accepted: 01/19/2006] [Indexed: 10/25/2022]
Abstract
X chromosome inactivation (XCI) depends on a noncoding sense-antisense transcript pair, Xist and Tsix. At the onset of XCI, Xist RNA accumulates on one of two Xs, coating and silencing the chromosome in cis. The molecular basis for monoallelic Xist upregulation is not known, though evidence predominantly supports a posttranscriptional mechanism through RNA stabilization. Here, we test whether Tsix RNA destabilizes Xist RNA. Unexpectedly, we find that Xist upregulation is not based on transcript stabilization at all but is instead controlled by transcription in a sex-specific manner. Tsix directly regulates its transcription. On the future inactive X, Tsix downregulation induces a transient heterochromatic state in Xist, followed paradoxically by high-level Xist expression. A Tsix-deficient X chromosome adopts the heterochromatic state in pre-XCI cells. This state persists through XCI establishment and "reverts" to a euchromatic state during XCI maintenance. We have therefore identified chromatin marks that preempt and predict asymmetric Xist expression.
Collapse
Affiliation(s)
- Bryan K Sun
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, 02114, USA
| | | | | |
Collapse
|
133
|
Lin W, Dent SYR. Functions of histone-modifying enzymes in development. Curr Opin Genet Dev 2006; 16:137-42. [PMID: 16503130 DOI: 10.1016/j.gde.2006.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 02/10/2006] [Indexed: 11/22/2022]
Abstract
Multiple histone-modifying enzymes have been identified in the past several years. Much has been learned regarding the biochemistry of these enzymes and their effects on gene expression in cultured cells. However, the functions of these factors during development are still largely unknown. Recent genetic studies indicate that specific histone modifications and modifying enzymes play essential roles in both global and tissue-specific chromatin organization. In particular, these studies indicate that enzymes that control levels and patterns of histone acetylation and methylation are required for normal embryo patterning, organogenesis, and survival.
Collapse
Affiliation(s)
- Wenchu Lin
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
134
|
Bourdet A, Ciaudo C, Zakin L, Elalouf JM, Rusniok C, Rusniol C, Weissenbach J, Avner P. A SAGE approach to identifying novel trans-acting factors involved in the X inactivation process. Cytogenet Genome Res 2006; 113:325-35. [PMID: 16575197 DOI: 10.1159/000090849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/18/2005] [Indexed: 11/19/2022] Open
Abstract
X chromosome inactivation ensures the dosage compensation of X-linked genes in XX females compared to their XY male counterpart. It is characterised by the specific recruitment of an inhibitory ribonucleoprotein complex involving the non-coding Xist RNA to the presumptive inactive X chromosome and associated chromatin modifications, which result in the transcriptional silencing of the X chromosome. As an approach to the identification of some of the potential molecular players in this process we have performed comparative transcriptional profiling of mouse 6.5-dpc (days post-coitum) female and male embryos using a modified SAGE (Serial analysis of gene expression) technique which allows the analysis of small quantities of biological material. At 6.5 dpc, a moment when random X inactivation of embryonic tissues has just been achieved, some two hundred transcripts that were significantly enriched in the female gastrula compared to its male counterpart could be identified. The validation of an association with the X inactivation process of a subset of these transcripts has been studied, ex vivo, in differentiating female and male ES cells and in female ES cells in which the establishment of X inactivation is interrupted through the post-transcriptional inhibition of Xist synthesis.
Collapse
Affiliation(s)
- A Bourdet
- Unité de Génétique Moléculaire Murine, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Glusman G, Qin S, El-Gewely MR, Siegel AF, Roach JC, Hood L, Smit AFA. A third approach to gene prediction suggests thousands of additional human transcribed regions. PLoS Comput Biol 2006; 2:e18. [PMID: 16543943 PMCID: PMC1391917 DOI: 10.1371/journal.pcbi.0020018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/25/2006] [Indexed: 12/26/2022] Open
Abstract
The identification and characterization of the complete ensemble of genes is a main goal of deciphering the digital information stored in the human genome. Many algorithms for computational gene prediction have been described, ultimately derived from two basic concepts: (1) modeling gene structure and (2) recognizing sequence similarity. Successful hybrid methods combining these two concepts have also been developed. We present a third orthogonal approach to gene prediction, based on detecting the genomic signatures of transcription, accumulated over evolutionary time. We discuss four algorithms based on this third concept: Greens and CHOWDER, which quantify mutational strand biases caused by transcription-coupled DNA repair, and ROAST and PASTA, which are based on strand-specific selection against polyadenylation signals. We combined these algorithms into an integrated method called FEAST, which we used to predict the location and orientation of thousands of putative transcription units not overlapping known genes. Many of the newly predicted transcriptional units do not appear to code for proteins. The new algorithms are particularly apt at detecting genes with long introns and lacking sequence conservation. They therefore complement existing gene prediction methods and will help identify functional transcripts within many apparent "genomic deserts."
Collapse
|
136
|
Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R, Heard E. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 2006; 8:293-9. [PMID: 16434960 DOI: 10.1038/ncb1365] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 01/11/2006] [Indexed: 11/09/2022]
Abstract
The initial differential treatment of the two X chromosomes during X-chromosome inactivation is controlled by the X-inactivation centre (Xic). This locus determines how many X chromosomes are present in a cell ('counting') and which X chromosome will be inactivated in female cells ('choice'). Critical control sequences in the Xic include the non-coding RNAs Xist and Tsix, and long-range chromatin elements. However, little is known about the process that ensures that X inactivation is triggered appropriately when more than one Xic is present in a cell. Using three-dimensional fluorescence in situ hybridization (FISH) analysis, we showed that the two Xics transiently colocalize, just before X inactivation, in differentiating female embryonic stem cells. Using Xic transgenes capable of imprinted but not random X inactivation, and Xic deletions that disrupt random X inactivation, we demonstrated that Xic colocalization is linked to Xic function in random X inactivation. Both long-range sequences and the Tsix element, which generates the antisense transcript to Xist, are required for the transient interaction of Xics. We propose that transient colocalization of Xics may be necessary for a cell to determine Xic number and to ensure the correct initiation of X inactivation.
Collapse
Affiliation(s)
- Christian P Bacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, German
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2006; 6:669-77. [PMID: 16094312 DOI: 10.1038/nrg1673] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As the relationship between nuclear structure and function begins to unfold, a picture is emerging of a dynamic landscape that is centred on the two main processes that execute the regulated use and propagation of the genome. Rather than being subservient enzymatic activities, the replication and transcriptional machineries provide potent forces that organize the genome in three-dimensional nuclear space. Their activities provide opportunities for epigenetic changes that are required for differentiation and development. In addition, they impose physical constraints on the genome that might help to shape its evolution.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|