101
|
Nabavi S, Nazar RN. Pac1 endonuclease and Dhp1p 5′ → 3′ exonuclease are required for U3 snoRNA termination in Schizosaccharomyces pombe. FEBS Lett 2010; 584:3436-41. [DOI: 10.1016/j.febslet.2010.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 12/17/2022]
|
102
|
Leporé N, Lafontaine DLJ. [<< Catch me if you can >>: how the structural and functional integrity of eukaryotic RNA molecules is monitored by surveillance mechanisms]. Med Sci (Paris) 2010; 26:259-66. [PMID: 20346275 DOI: 10.1051/medsci/2010263259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular RNAs are invariably organized in ribonucleoprotein particles, or RNPs, regardless of their size, structure or function. RNPs are monitored by active surveillance mechanisms for their structural and functional integrity at every single step of their "life". A limited number of key endoRNase and/or exoRNase activities are recruited to multiple metabolic pathways by specific adaptors. These trans-acting factors are often endowed with synthesis activities in the formation of mature RNA termini, as well as degradation and surveillance activities. Quality control mechanisms are robust because they are partially redundant. The actual mechanisms that discriminate aberrant RNAs from normal RNAs are still loosely defined. Surveillance is essential to cellular homeostasis and has been linked to several human diseases.
Collapse
Affiliation(s)
- Nathalie Leporé
- Fonds de la recherche scientifique (FRS-FNRS), Métabolisme de l'ARN, Institut de biologie et de médecine moléculaires (IBMM), Université Libre de Bruxelles (ULB), avenue des Professeurs Jeener et Brachet, 12, B-6041 Gosselies, Belgique
| | | |
Collapse
|
103
|
Jimeno-González S, Haaning LL, Malagon F, Jensen TH. The yeast 5'-3' exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol Cell 2010; 37:580-7. [PMID: 20188675 DOI: 10.1016/j.molcel.2010.01.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/05/2009] [Accepted: 12/08/2009] [Indexed: 12/20/2022]
Abstract
Termination of RNA polymerase II (RNAPII) transcription of protein-coding genes occurs downstream of cleavage/polyadenylation sites. According to the "torpedo" model, the 5'-3' exonuclease Rat1p/Xrn2p attacks the newly formed 5' end of the cleaved pre-mRNA, causing the still transcribing RNAPII to terminate. Here we demonstrate a similar role of S. cerevisiae Rat1p within the gene body. We find that the transcription processivity defect imposed on RNAPII by the rpb1-N488D mutation is corrected upon Rat1p inactivation. Importantly, Rat1p-dependent transcription termination occurs upstream the polyadenylation site. Genetic and biochemical evidence demonstrate that mRNA capping is defective in rpb1-N488D cells, which leads to increased levels of Rat1p all along the gene locus. Consistently, Rat1p-dependent RNAPII termination is also observed in the capping-deficient ceg1-63 strain. Our data suggest that Rat1p serves to terminate RNAPII molecules engaged in the production of uncapped RNA, regardless of their position on the gene locus.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Aarhus DK-8000, Denmark
| | | | | | | |
Collapse
|
104
|
Zakrzewska-Placzek M, Souret FF, Sobczyk GJ, Green PJ, Kufel J. Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 2010; 38:4487-502. [PMID: 20338880 PMCID: PMC2910052 DOI: 10.1093/nar/gkq172] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Three Rat1/Xrn2 homologues exist in Arabidopsis thaliana: nuclear AtXRN2 and AtXRN3, and cytoplasmic AtXRN4. The latter has a role in degrading 3' products of miRNA-mediated mRNA cleavage, whereas all three proteins act as endogenous post-transcriptional gene silencing suppressors. Here we show that, similar to yeast nuclear Rat1, AtXRN2 has a role in ribosomal RNA processing. The lack of AtXRN2, however, does not result in defective formation of rRNA 5'-ends but inhibits endonucleolytic cleavage at the primary site P in the pre-rRNA resulting in the accumulation of the 35S* precursor. This does not lead to a decrease in mature rRNAs, as additional cleavages occur downstream of site P. Supplementing a P-site cleavage-deficient xrn2 plant extract with the recombinant protein restores processing activity, indicating direct participation of AtXRN2 in this process. Our data suggest that the 5' external transcribed spacer is shortened by AtXRN2 prior to cleavage at site P and that this initial exonucleolytic trimming is required to expose site P for subsequent endonucleolytic processing by the U3 snoRNP complex. We also show that some rRNA precursors and excised spacer fragments that accumulate in the absence of AtXRN2 and AtXRN3 are polyadenylated, indicating that these nucleases contribute to polyadenylation-dependent nuclear RNA surveillance.
Collapse
|
105
|
Chen WH, de Meaux J, Lercher MJ. Co-expression of neighbouring genes in Arabidopsis: separating chromatin effects from direct interactions. BMC Genomics 2010; 11:178. [PMID: 20233415 PMCID: PMC2851598 DOI: 10.1186/1471-2164-11-178] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/16/2010] [Indexed: 11/24/2022] Open
Abstract
Background In all eukaryotic species examined, genes that are chromosomal neighbours are more similar in their expression than random gene pairs. Currently, it is still unclear how much of this local co-expression is caused by direct transcriptional interactions, and how much is due to shared chromatin environments. Results We analysed neighbouring genes in Arabidopsis thaliana. At large intergenic distances (>400 bp), divergently and convergently transcribed gene pairs show very similar levels of co-expression, mediated most likely by shared chromatin environments. At gene distances below 400 bp, co-expression is strongly enhanced only for divergently transcribed gene pairs, indicating bi-directional transcription from a single promoter. Conversely, co-expression is suppressed for short convergently or uni-directionally transcribed pairs. This suppression points to transcriptional interference concentrated at the 3' end, e.g., in the context of transcription termination. Conclusions Classifying linked gene pairs by their orientation, we are able to partially tease apart the different levels of regional expression modulation. (i) Regional chromatin characteristics modulate the accessibility for regulation and transcription, regardless of gene orientation; the strength of this chromatin effect can be assessed from divergently or convergently transcribed distant neighbours. (ii) Shared promoter regions up to 400 bp in length enhance the co-expression of close bi-directional neighbours. (iii) Transcriptional interference of close neighbours is concentrated at the 3' ends of genes, and reduces co-expression on average by 40%.
Collapse
Affiliation(s)
- Wei-Hua Chen
- Bioinformatics, Heinrich-Heine University Duesseldorf, 40225, Germany
| | | | | |
Collapse
|
106
|
Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Mol Cell Biol 2010; 30:2028-45. [PMID: 20154141 DOI: 10.1128/mcb.01512-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In all eukaryotes, a specialized enzyme, RNA polymerase I (Pol I), is dedicated to transcribe the 35S rRNA gene from a multicopy gene cluster, the ribosomal DNA (rDNA). In certain Saccharomyces cerevisiae mutants, 35S rRNA genes can be transcribed by RNA polymerase II (Pol II). In these mutants, rDNA silencing of Pol II transcription is impaired. It has been speculated that upstream activating factor (UAF), which binds to a specific DNA element within the Pol I promoter, plays a crucial role in forming chromatin structures responsible for polymerase specificity and silencing at the rDNA locus. We therefore performed an in-depth analysis of chromatin structure and composition in different mutant backgrounds. We demonstrate that chromatin architecture of the entire Pol I-transcribed region is substantially altered in the absence of UAF, allowing RNA polymerases II and III to access DNA elements flanking a Pol promoter-proximal Reb1 binding site. Furthermore, lack of UAF leads to the loss of Sir2 from rDNA, correlating with impaired Pol II silencing. This analysis of rDNA chromatin provides a molecular basis, explaining many phenotypes observed in previous genetic analyses.
Collapse
|
107
|
Rondón AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 2009; 36:88-98. [PMID: 19818712 PMCID: PMC2779338 DOI: 10.1016/j.molcel.2009.07.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/05/2009] [Accepted: 07/22/2009] [Indexed: 12/15/2022]
Abstract
Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3′ end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.
Collapse
Affiliation(s)
- Ana G Rondón
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
108
|
Ghazal G, Gagnon J, Jacques PE, Landry JR, Robert F, Elela SA. Yeast RNase III triggers polyadenylation-independent transcription termination. Mol Cell 2009; 36:99-109. [PMID: 19818713 DOI: 10.1016/j.molcel.2009.07.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/22/2009] [Accepted: 07/22/2009] [Indexed: 12/17/2022]
Abstract
Transcription termination of messenger RNA (mRNA) is normally achieved by polyadenylation followed by Rat1p-dependent 5'-3' exoribonuleolytic degradation of the downstream transcript. Here we show that the yeast ortholog of the dsRNA-specific ribonuclease III (Rnt1p) may trigger Rat1p-dependent termination of RNA transcripts that fail to terminate near polyadenylation signals. Rnt1p cleavage sites were found downstream of several genes, and the deletion of RNT1 resulted in transcription readthrough. Inactivation of Rat1p impaired Rnt1p-dependent termination and resulted in the accumulation of 3' end cleavage products. These results support a model for transcription termination in which cotranscriptional cleavage by Rnt1p provides access for exoribonucleases in the absence of polyadenylation signals.
Collapse
Affiliation(s)
- Ghada Ghazal
- RNA Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
109
|
Nabavi S, Nazar RN. Fail‐safe termination elements: a common feature of the eukaryotic genome? FASEB J 2009; 24:684-8. [DOI: 10.1096/fj.09-142745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sadeq Nabavi
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Ross N. Nazar
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
110
|
Abstract
Thermococcus kodakarensis (formerly Thermococcus kodakaraensis) strains have been constructed with synthetic and natural DNA sequences, predicted to function as archaeal transcription terminators, identically positioned between a constitutive promoter and a beta-glycosidase-encoding reporter gene (TK1761). Expression of the reporter gene was almost fully inhibited by the upstream presence of 5'-TTTTTTTT (T(8)) and was reduced >70% by archaeal intergenic sequences that contained oligo(T) sequences. An archaeal intergenic sequence (t(mcrA)) that conforms to the bacterial intrinsic terminator motif reduced TK1761 expression approximately 90%, but this required only the oligo(T) trail sequence and not the inverted-repeat and loop region. Template DNAs were amplified from each T. kodakarensis strain, and transcription in vitro by T. kodakarensis RNA polymerase was terminated by sequences that reduced TK1761 expression in vivo. Termination occurred at additional sites on these linear templates, including at a 5'-AAAAAAAA (A(8)) sequence that did not reduce TK1761 expression in vivo. When these sequences were transcribed on supercoiled plasmid templates, termination occurred almost exclusively at oligo(T) sequences. The results provide the first in vivo experimental evidence for intrinsic termination of archaeal transcription and confirm that archaeal transcription termination is stimulated by oligo(T) sequences and is different from the RNA hairpin-dependent mechanism established for intrinsic bacterial termination.
Collapse
|
111
|
Dengl S, Cramer P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J Biol Chem 2009; 284:21270-9. [PMID: 19535338 PMCID: PMC2755851 DOI: 10.1074/jbc.m109.013847] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/28/2009] [Indexed: 11/06/2022] Open
Abstract
Termination of RNA polymerase (pol) II transcription in vivo requires the 5'-RNA exonuclease Rat1. It was proposed that Rat1 degrades RNA from the 5'-end that is created by transcript cleavage, catches up with elongating pol II, and acts like a Torpedo that removes pol II from DNA. Here we test the Torpedo model in an in vitro system based on bead-coupled pol II elongation complexes (ECs). Recombinant Rat1 complexes with Rai1, and with Rai1 and Rtt103, degrade RNA extending from the EC until they reach the polymerase surface but fail to terminate pol II. Instead, the EC retains an approximately 18-nucleotide RNA that remains with its 3'-end at the active site and can be elongated. Thus, pol II termination apparently requires a factor or several factors in addition to Rat1, Rai1, and Rtt103, post-translational modifications of these factors, or unusual reaction conditions.
Collapse
Affiliation(s)
- Stefan Dengl
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Patrick Cramer
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
112
|
Haenni S, Studer E, Burkard GS, Roditi I. Bidirectional silencing of RNA polymerase I transcription by a strand switch region in Trypanosoma brucei. Nucleic Acids Res 2009; 37:5007-18. [PMID: 19531741 PMCID: PMC2731899 DOI: 10.1093/nar/gkp513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The procyclin genes in Trypanosoma brucei are transcribed by RNA polymerase I as part of 5–10 kb long polycistronic transcription units on chromosomes VI and X. Each procyclin locus begins with two procyclin genes followed by at least one procyclin-associated gene (PAG). In procyclic (insect midgut) form trypanosomes, PAG mRNA levels are about 100-fold lower than those of procyclins. We show that deletion of PAG1, PAG2 or PAG3 results in increased mRNA levels from downstream genes in the same transcription unit. Nascent RNA analysis revealed that most of the effects are due to increased transcription elongation in the knockouts. Furthermore, transient and stable transfections showed that sequence elements on both strands of PAG1 can inhibit Pol I transcription. Finally, by database mining we identified 30 additional PAG-related sequences that are located almost exclusively at strand switch regions and/or at sites where a change of RNA polymerase type is likely to occur.
Collapse
Affiliation(s)
- Simon Haenni
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
113
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
114
|
Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J. The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 2009; 32:465-77. [PMID: 19026778 DOI: 10.1016/j.molcel.2008.10.019] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/21/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Vertebrate telomeres are transcribed into telomeric repeat-containing RNA (TERRA) that associates with telomeres and may be important for telomere function. Here, we demonstrate that telomeres are also transcribed in Saccharomyces cerevisiae by RNA polymerase II (RNAPII). Yeast TERRA is polyadenylated and stabilized by Pap1p and regulated by the 5' to 3' exonuclease, Rat1p. rat1-1 mutant cells accumulate TERRA and harbor short telomeres because of defects in telomerase-mediated telomere elongation. Overexpression of RNaseH overcomes telomere elongation defects in rat1-1 cells, indicating that RNA/DNA hybrids inhibit telomerase function at chromosome ends in these mutants. Thus, telomeric transcription combined with Rat1p-dependent TERRA degradation is important for regulating telomerase in yeast. Telomere transcription is conserved in different kingdoms of the eukaryotic domain.
Collapse
Affiliation(s)
- Brian Luke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
115
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
116
|
Shimizu KK, Ito T, Ishiguro S, Okada K. MAA3 (MAGATAMA3) helicase gene is required for female gametophyte development and pollen tube guidance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:1478-83. [PMID: 18772186 PMCID: PMC2566929 DOI: 10.1093/pcp/pcn130] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/29/2008] [Indexed: 05/18/2023]
Abstract
The female gametophyte plays a central role in the sexual reproduction of angiosperms. We previously isolated the maa3 (magatama3) mutant of Arabidopsis thaliana, defective in development of the female gametophyte, micropylar pollen tube guidance, and preventing the attraction of multiple pollen tubes. We here observed that the nucleolus of polar nuclei is small, and that the fusion of polar nuclei often did not occur at the time of pollination. The MAA3 gene encodes a homolog of yeast Sen1 helicase, required for RNA metabolism. It is suggested that MAA3 may regulate RNA molecules responsible for nucleolar organization and pollen tube guidance.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto, 606-8502 Japan.
| | | | | | | |
Collapse
|