101
|
Kim JH, Paek KY, Choi K, Kim TD, Hahm B, Kim KT, Jang SK. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol Cell Biol 2003; 23:708-20. [PMID: 12509468 PMCID: PMC151538 DOI: 10.1128/mcb.23.2.708-720.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Revised: 09/20/2002] [Accepted: 10/11/2002] [Indexed: 02/05/2023] Open
Abstract
The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5' nontranslated region (5' NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G(2)/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G(2)/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G(2)/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.
Collapse
Affiliation(s)
- Jong Heon Kim
- National Research Laboratory, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
102
|
Hamilton BJ, Genin A, Cron RQ, Rigby WFC. Delineation of a novel pathway that regulates CD154 (CD40 ligand) expression. Mol Cell Biol 2003; 23:510-25. [PMID: 12509450 PMCID: PMC151525 DOI: 10.1128/mcb.23.2.510-525.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2002] [Revised: 07/18/2002] [Accepted: 10/07/2002] [Indexed: 02/05/2023] Open
Abstract
The expression of CD154 (CD40 ligand) by activated T lymphocytes plays a central role in humoral and cellular immunity. The fundamental importance of this protein in mounting an immune response has made it an attractive target for immunomodulation. Several studies have demonstrated that CD154 expression is regulated at the level of mRNA turnover in a manner distinct from other cytokine genes. We have purified, sequenced, and characterized the two major proteins that bind the CD154 3' untranslated region (3'UTR) as members of the polypyrimidine tract binding protein (PTB) family. One of these proteins is a previously unreported alternatively spliced PTB isoform, which we call PTB-T. These proteins interact with a polypyrimidine-rich region within the CD154 3'UTR that lacks any known cis-acting instability elements. The polypyrimidine-rich region of the CD154 3'UTR was both necessary and sufficient to mediate changes in reporter gene expression and mRNA accumulation, indicating the presence of a novel cis-acting instability element. The presence of a cis-acting instability element in the polypyrimidine-rich region was confirmed using a tetracycline-responsive reporter gene approach. The function of this cis-acting element appears to be dependent on the relative cytoplasmic levels of PTB and PTB-T. Cotransfection of vectors encoding PTB-T consistently decreased the CD154 3'UTR-dependent luciferase expression. In contrast, transfection of plasmids encoding PTB tended to increase CD154 3'UTR-dependent luciferase expression. Thus, the CD154 3'UTR contains a novel cis-acting element whose function is determined by the binding of PTB and PTB-T. These data identify a specific pathway that regulates CD154 expression that can potentially be selectively targeted for the treatment of autoimmune disease and allograft rejection.
Collapse
Affiliation(s)
- B JoNell Hamilton
- Departments of Medicine. Microbiology and Immunology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
103
|
Björk P, Baurén G, Jin S, Tong YG, Bürglin TR, Hellman U, Wieslander L. A novel conserved RNA-binding domain protein, RBD-1, is essential for ribosome biogenesis. Mol Biol Cell 2002; 13:3683-95. [PMID: 12388766 PMCID: PMC129975 DOI: 10.1091/mbc.e02-03-0138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 06/18/2002] [Accepted: 07/22/2002] [Indexed: 11/11/2022] Open
Abstract
Synthesis of the ribosomal subunits from pre-rRNA requires a large number of trans-acting proteins and small nucleolar ribonucleoprotein particles to execute base modifications, RNA cleavages, and structural rearrangements. We have characterized a novel protein, RNA-binding domain-1 (RBD-1), that is involved in ribosome biogenesis. This protein contains six consensus RNA-binding domains and is conserved as to sequence, domain organization, and cellular location from yeast to human. RBD-1 is essential in Caenorhabditis elegans. In the dipteran Chironomus tentans, RBD-1 (Ct-RBD-1) binds pre-rRNA in vitro and anti-Ct-RBD-1 antibodies repress pre-rRNA processing in vivo. Ct-RBD-1 is mainly located in the nucleolus in an RNA polymerase I transcription-dependent manner, but it is also present in discrete foci in the interchromatin and in the cytoplasm. In cytoplasmic extracts, 20-30% of Ct-RBD-1 is associated with ribosomes and, preferentially, with the 40S ribosomal subunit. Our data suggest that RBD-1 plays a role in structurally coordinating pre-rRNA during ribosome biogenesis and that this function is conserved in all eukaryotes.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
104
|
Aissouni Y, Perez C, Calmels B, Benech PD. The cleavage/polyadenylation activity triggered by a U-rich motif sequence is differently required depending on the poly(A) site location at either the first or last 3'-terminal exon of the 2'-5' oligo(A) synthetase gene. J Biol Chem 2002; 277:35808-14. [PMID: 12082089 DOI: 10.1074/jbc.m200540200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of the two mRNAs encoding distinct forms of 2'-5'-oligoadenylate synthetase depends on processing that involves the recognition of alternative poly(A) sites and an internal 5'-splice site located within the first 3'-terminal exon. The resulting 1.6- and 1.8-kb mRNAs are expressed in fibroblast cell lines, whereas lymphoblastoid B cells, such as Daudi, produce only the 1.8-kb mRNA. In the present study, we have shown that the 3'-end processing at the last 3'-terminal exon occurs independently of the core poly(A) site sequence or the presence of regulatory elements. In contrast, in Daudi cells, the recognition of the poly(A) site at the first 3'-terminal exon is impaired because of an unfavorable sequence context. The 3'-end processing at this particular location requires a strong stabilization of the cleavage/polyadenylation factors, which can be achieved by the insertion of a 25-nucleotide long U-rich motif identified upstream of the last poly(A) site. Consequently, we speculate that in cells expressing the 1.6-kb mRNA, such as fibroblasts, direct or indirect participation of a specific mechanism or cell type-specific factors are required for an efficient polyadenylation at the first 3'-terminal exon.
Collapse
Affiliation(s)
- Youssef Aissouni
- U119 INSERM, Institute of Cancerology and Immunology of Marseille, 27 Boulevard Lei Roure, F-13009, Marseille, France
| | | | | | | |
Collapse
|
105
|
Rahman L, Bliskovski V, Reinhold W, Zajac-Kaye M. Alternative splicing of brain-specific PTB defines a tissue-specific isoform pattern that predicts distinct functional roles. Genomics 2002; 80:245-9. [PMID: 12213192 DOI: 10.1006/geno.2002.6826] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Splicing of neural-specific exons is differentially regulated in neuronal and non-neuronal cells. The polypyrimidine tract binding protein (PTB) has been implicated as a negative regulator for exon splicing, whereas the brain-specific homolog of PTB, termed nPTB, promotes exon splicing exclusively in neurons. We have now isolated a novel mRNA splice variant of nPTB from non-neuronal cells. In contrast to the neural nPTB transcript, the expression of this novel isoform was absent from brain tissue and was generated in non-neuronal cells by alternative splicing to include five additional amino acid residues encoded by exon 9. In addition, we identified a brain-specific transcript containing a novel, alternatively spliced, internal exon 10. The exclusion of this 34-nucleotide exon 10 in non-neuronal tissues generates a premature termination codon and results in the truncation of the open reading frame. Our findings suggest that alternative splicing of nPTB has an important role in regulation of tissue-specific gene expression and thus in the functional activity of nPTB in neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Lambratu Rahman
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
106
|
Back SH, Shin S, Jang SK. Polypyrimidine tract-binding proteins are cleaved by caspase-3 during apoptosis. J Biol Chem 2002; 277:27200-9. [PMID: 12004072 DOI: 10.1074/jbc.m203887200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polypyrimidine tract-binding protein (PTB), an RNA-binding protein, is required for efficient translation of some mRNAs containing internal ribosomal entry sites (IRESs). Here we provide evidence that the addition of apoptosis-inducing agents to cells results in the cleavage of PTB isoforms 1, 2, and 4 by caspase-3. This cleavage of PTB separated the N-terminal region, containing NLS-RRM1, from the C-terminal region, containing RRM2-3-4. Our data indicate that there are three noncanonical caspase-3 target sites in PTBs, namely Ile-Val-Pro-Asp(7)Ile, Leu-Tyr-Thr-Asp(139)Ser, and Ala-Ala-Val-Asp(172)Ala. The C-terminal PTB fragments localized to the cytoplasm, as opposed to the nucleus where most intact PTBs are found. Moreover, these C-terminal PTB fragments inhibited translation of polioviral mRNA, which contains an IRES element requiring PTB for its activation. This suggests that translation of some IRES-containing mRNAs is regulated by proteolytic cleavage of PTB during apoptosis.
Collapse
Affiliation(s)
- Sung Hoon Back
- National Research Laboratory, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea
| | | | | |
Collapse
|
107
|
Huang KJ, Zemelman BV, Lehman IR. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus. J Biol Chem 2002; 277:21071-9. [PMID: 11912214 DOI: 10.1074/jbc.m201785200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) a sequence is present as a direct repeat at the two termini of the 152-kilobase viral genome and as an inverted repeat at the junction of the two unique components L and S. During replication, the HSV-1 genome undergoes inversion of L and S, producing an equimolar mixture of the four possible isomers. Isomerization is believed to result from recombination triggered by breakage at the a sequence, a recombinational hot spot. We have identified an enzyme in HeLa cell extracts that preferentially cleaves the a sequence and have purified it to near homogeneity. Microsequencing showed it to be human endonuclease G, an enzyme with a strong preference for G+C-rich sequences. Endonuclease G appears to be the only cellular enzyme that can specifically cleave the a sequence. Endonuclease G also showed the predicted recombination properties in an in vitro recombination assay. Based on these findings, we propose that endonuclease G initiates the a sequence-mediated inversion of the L and S components during HSV-1 DNA replication.
Collapse
Affiliation(s)
- Ke-Jung Huang
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
108
|
Abstract
Recent discoveries have revealed that there is a myriad of RNAs and associated RNA-binding proteins that spatially and temporally appear in the cells of all organisms. The structures of these RNA-protein complexes are providing valuable insights into the binding modes and functional implications of these interactions. Even the common RNA-binding domains (RBDs) and the double stranded RNA binding motifs (dsRBMs) have been shown to exhibit a plethora of binding modes.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
109
|
Arikan MC, Memmott J, Broderick JA, Lafyatis R, Screaton G, Stamm S, Andreadis A. Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 101:109-21. [PMID: 12007838 DOI: 10.1016/s0169-328x(02)00178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. The N-terminal domain of the protein interacts with the axonal membrane, and is modulated by differential inclusion of exons 2 and 3. These two tau exons are alternatively spliced cassettes, in which exon 3 never appears independently of exon 2. Previous work with tau minigene constructs indicated that exon 3 is intrinsically suboptimal and its primary regulator is a weak branch point. In this study, we confirm the role of the weak branch point in the regulation of exon 3 but also show that the exon is additionally regulated by a combination of exonic enhancers and silencers. Furthermore, we demonstrate that known splicing regulators affect the ratio of exon 3 isoforms, Lastly, we tentatively pinpoint the site of action of several splicing factors which regulate tau exon 3.
Collapse
Affiliation(s)
- Meltem Cevik Arikan
- Department of Biomedical Sciences, E.K. Shriver Center for Mental Retardation, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Hayakawa M, Sakashita E, Ueno E, Tominaga SI, Hamamoto T, Kagawa Y, Endo H. Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA. J Biol Chem 2002; 277:6974-84. [PMID: 11744705 DOI: 10.1074/jbc.m110138200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial ATP synthase gamma-subunit (F(1)gamma) pre-mRNA undergoes alternative splicing in a tissue- or cell type-specific manner. Exon 9 of F(1)gamma pre-mRNA is specifically excluded in heart and skeletal muscle tissues and in acid-stimulated human fibrosarcoma HT1080 cells, rhabdomyosarcoma KYM-1 cells, and mouse myoblast C2C12 cells. Recently, we found a purine-rich exonic splicing enhancer (ESE) element on exon 9 via transgenic mice bearing F(1)gamma mutant minigenes and demonstrated that this ESE functions ubiquitously with exception of muscle tissue (Ichida, M., Hakamata, Y., Hayakawa, M., Ueno E., Ikeda, U., Shimada, K., Hamamoto, T., Kagawa, Y., Endo, H. (2000) J. Biol. Chem. 275, 15992-16001). Here, we identified an exonic negative regulatory element responsible for muscle-specific exclusion of exon 9 using both in vitro and in vivo splicing systems. A supplementation assay with nuclear extracts from HeLa cells and acid-stimulated HT1080 cells was performed for an in vitro reaction of muscle-specific alternative splicing of F(1)gamma minigene and revealed that the splicing reaction between exons 8 and 9 was the key step for regulation of muscle-specific exon exclusion. Polypyrimidine tract in intron 8 requires ESE on exon 9 for constitutive splice site selection. Mutation analyses on the F(1)gammaEx8-9 minigene using a supplementation assay demonstrated that the muscle-specific negative regulatory element is positioned in the middle region of exon 9, immediately downstream from ESE. Detailed mutation analyses identified seven nucleotides (5'-AGUUCCA-3') as a negative regulatory element responsible for muscle-specific exon exclusion. This element was shown to cause exon skipping in in vivo splicing systems using acid-stimulated HT1080 cells after transient transfection of several mutant F(1)gammaEx8-9-10 minigenes. These results demonstrated that the 5'-AGUUCCA-3' immediately downstream from ESE is a muscle-specific exonic splicing silencer (MS-ESS) responsible for exclusion of exon 9 in vivo and in vitro.
Collapse
Affiliation(s)
- Morisada Hayakawa
- Department of Biochemistry, Jichi Medical School, Minamikawachi-machi, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
111
|
Back SH, Kim YK, Kim WJ, Cho S, Oh HR, Kim JE, Jang SK. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol 2002; 76:2529-42. [PMID: 11836431 PMCID: PMC135932 DOI: 10.1128/jvi.76.5.2529-2542.2002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 12/04/2001] [Indexed: 12/26/2022] Open
Abstract
The translation of polioviral mRNA occurs through an internal ribosomal entry site (IRES). Several RNA-binding proteins, such as polypyrimidine tract-binding protein (PTB) and poly(rC)-binding protein (PCBP), are required for the poliovirus IRES-dependent translation. Here we report that a poliovirus protein, 3C(pro) (and/or 3CD(pro)), cleaves PTB isoforms (PTB1, PTB2, and PTB4). Three 3C(pro) target sites (one major target site and two minor target sites) exist in PTBs. PTB fragments generated by poliovirus infection are redistributed to the cytoplasm from the nucleus, where most of the intact PTBs are localized. Moreover, these PTB fragments inhibit polioviral IRES-dependent translation in a cell-based assay system. We speculate that the proteolytic cleavage of PTBs may contribute to the molecular switching from translation to replication of polioviral RNA.
Collapse
Affiliation(s)
- Sung Hoon Back
- NRL, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
112
|
Davis MB, Sun W, Standiford DM. Lineage-specific expression of polypyrimidine tract binding protein (PTB) in Drosophila embryos. Mech Dev 2002; 111:143-7. [PMID: 11804786 DOI: 10.1016/s0925-4773(01)00595-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polypyrimidine tract binding protein (PTB) is a member of the hnRNP family of RNA binding proteins (Nucleic Acids Res., 20 (1992) 3671) that functions in a number of processes important for the regulation of mRNA metabolism and gene expression (reviewed in Curr. Biol., 7 (1997) R705). Specifically, PTB binds polypyrimidine-rich intronic elements upstream of alternatively spliced exons to antagonize the binding of the essential U2AF splicing factor and repress the use of the regulated exons in specific tissues (RNA, 1 (1995) 234). Additionally, PTB interacts with elements that mediate 3-prime end processing of nascent transcripts (Mol. Cell. Biol., 19 (1999) 78) and is required for the expression of viral mRNAs that contain an internal ribosome binding site (RNA, 5 (1999) 344; RNA, 1 (1995) 924). Tissue-specific or alternatively spliced isoforms of PTB are thought to have different gene regulatory properties (Proc. Natl Acad. Sci. USA, 97 (2000) 6350; RNA, 7 (2001) 819), but little is known about the function and activity of PTB isoforms during development. Here, we investigate the expression of PTB during Drosophila embryogenesis using in situ hybridization assays. We show that PTB expression is patterned in the early embryo and occurs in specific mesodermal and neuronal lineages as well as in the imaginal discs and adult germline. These data indicate that PTB regulates gene expression in specific tissue lineages during development.
Collapse
Affiliation(s)
- Mary Beth Davis
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
113
|
Kamath RV, Leary DJ, Huang S. Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell 2001; 12:3808-20. [PMID: 11739782 PMCID: PMC60757 DOI: 10.1091/mbc.12.12.3808] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 08/21/2001] [Accepted: 09/05/2001] [Indexed: 02/05/2023] Open
Abstract
Polypyrimidine tract binding protein, PTB/hnRNP I, is involved in pre-mRNA processing in the nucleus and RNA localization and translation in the cytoplasm. In this report, we demonstrate that PTB shuttles between the nucleus and cytoplasm in an energy-dependent manner. Deletion mutagenesis demonstrated that a minimum of the N terminus and RNA recognition motifs (RRMs) 1 and 2 are necessary for nucleocytoplasmic shuttling. Deletion of RRM3 and 4, domains that are primarily responsible for RNA binding, accelerated the nucleocytoplasmic shuttling of PTB. Inhibition of transcription directed by either RNA polymerase II alone or all RNA polymerases yielded similar results. In contrast, selective inhibition of RNA polymerase I did not influence the shuttling kinetics of PTB. Furthermore, the intranuclear mobility of GFP-PTB, as measured by fluorescence recovery after photobleaching analyses, increased significantly in transcriptionally inactive cells compared with transcriptionally active cells. These observations demonstrate that nuclear RNA transcription and export are not necessary for the shuttling of PTB. In addition, binding to nascent RNAs transcribed by RNA polymerase II and/or III retards both the nuclear export and nucleoplasmic movement of PTB. The uncoupling of PTB shuttling and RNA export suggests that the nucleocytoplasmic shuttling of PTB may also play a regulatory role for its functions in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- R V Kamath
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
114
|
Le Guiner C, Plet A, Galiana D, Gesnel MC, Del Gatto-Konczak F, Breathnach R. Polypyrimidine tract-binding protein represses splicing of a fibroblast growth factor receptor-2 gene alternative exon through exon sequences. J Biol Chem 2001; 276:43677-87. [PMID: 11557769 DOI: 10.1074/jbc.m107381200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fibroblast growth factor receptor (FGFR)-2 gene contains two mutually exclusive exons, K-SAM and BEK. We made a cell line designed to become drug-resistant on repression of BEK exon splicing. One drug-resistant derivative of this line carried an insertion within the BEK exon of a sequence containing at least two independent splicing silencers. One silencer was a pyrimidine-rich sequence, which markedly increased binding of polypyrimidine tract-binding protein to the BEK exon. The BEK exon binds to polypyrimidine tract-binding protein even in the silencer's absence. Several exonic pyrimidine runs are required for this binding, and they are also required for overexpression of polypyrimidine tract-binding protein to repress BEK exon splicing. These results show that binding of polypyrimidine tract-binding protein to exon sequences can repress splicing. In epithelial cells, the K-SAM exon is spliced in preference to the BEK exon, whose splicing is repressed. Mutation of the BEK exon pyrimidine runs decreases this repression. If this mutation is combined with the deletion of a sequence in the intron upstream from the BEK exon, a complete switch from K-SAM to BEK exon splicing ensues. Binding of polypyrimidine tract binding protein to the BEK exon thus participates in the K-SAM/BEK alternative splicing choice.
Collapse
Affiliation(s)
- C Le Guiner
- INSERM U463, Institut de Biologie-CHR, 9 Quai Moncousu, 44093 Nantes Cedex 1, France
| | | | | | | | | | | |
Collapse
|
115
|
Tateiwa H, Gotoh N, Ichikawa M, Kikuchi T, Yoshimura N. Molecular cloning and characterization of human PTB-like protein: a possible retinal autoantigen of cancer-associated retinopathy. J Neuroimmunol 2001; 120:161-9. [PMID: 11694331 DOI: 10.1016/s0165-5728(01)00427-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human homologue of polypyrimidine tract binding protein (PTB), a possible autoantigen for cancer-associated retinopathy (CAR), was isolated from a human retinal cDNA library. This homologue, named PTB-like protein (PTBLP), encodes a 532 amino acid residue and has a 75% homology to the human PTB. The human PTBLP had four RNA recognition motifs (RRMs) and had a RNA binding ability. There are four splicing variants in PTBLP. The CAR serum recognized the full length form of PTBLP and the antigenic determinant was localized within 12 amino acids of the C-terminal region. The sequence was included in the fourth RRM sequence.
Collapse
Affiliation(s)
- H Tateiwa
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | |
Collapse
|
116
|
Romanelli MG, Faggioli L, Lorenzi P, Morandi C. Cloning and functional characterization of the human heterogeneous nuclear ribonucleoprotein type I promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:85-8. [PMID: 11470163 DOI: 10.1016/s0167-4781(01)00259-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have cloned and functionally characterized a portion of the human hnRNP I (heterogeneous nuclear ribonucleoprotein type I) gene containing the promoter elements. HnRNP I is an alternative splicing modulator of tissue-specific transcripts that is expressed in three different isoforms. The DNA sequence at the transcription start site, identified by 5'-rapid amplification of cDNA ends, shows a high 'GC' content, lacks canonical TATA sequences and contains multiple putative Sp1 and NF1 transcription factor-binding sites, a GATA box and a CAAT box. By means of a chloramphenicol acetyltransferase reporter construct and deletion analyses, we have identified two regions between -770 bp and -206 bp that had a positive effect on expression activity in HeLa cells.
Collapse
Affiliation(s)
- M G Romanelli
- Department of Mother and Child, Biology and Genetics, University of Verona, Italy.
| | | | | | | |
Collapse
|
117
|
Miles DH, Johnston KH, Freistadt MS. An improved method for detection and quantification of differential interactions between poliovirus internal ribosome entry site RNA and pyrimidine tract binding protein from primary cells. J Virol Methods 2001; 96:67-84. [PMID: 11516490 DOI: 10.1016/s0166-0934(01)00319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Attenuated and pathogenic viral variants are often extremely similar viruses with drastically different replication potentials. Despite precise knowledge of viral residues responsible for poliovirus attenuation/neurovirulence, molecular mechanisms mediating these effects remain poorly understood. Data from numerous sources suggest that a functional difference in translation initiation is one responsible factor. However, direct evidence, as well as a comprehensive model are lacking. Several difficulties, including lack of an assay system to quantify differential internal ribosome entry site/pyrimidine tract binding protein interaction in relevant systems, have precluded progress. A novel assay system that overcomes some difficulties is presented below. The assay uses streptavidin paramagnetic particles, biotinylated RNA and glutathione-S-transferase/pyrimidine tract binding protein fusion to detect nanogram levels of uncloned cellular pyrimidine tract binding protein species that interact with internal ribosome entry site RNA. Using this assay, it was shown that pyrimidine tract binding protein from primary human monocytes binds to internal ribosome entry site RNA from virulent poliovirus better than to that from attenuated virus, while pyrimidine tract binding protein from HeLa cells does not distinguish between the two internal ribosome entry sites. Since primary human monocytes reflect neurovirulence-related differential poliovirus replication, these results suggest that pyrimidine tract binding protein may contribute to differential poliovirus replication in vivo. This assay also has the potential to be applicable broadly to other nucleic acid/protein interactions.
Collapse
Affiliation(s)
- D H Miles
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
118
|
Affiliation(s)
- E J Wagner
- Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
119
|
Côté J, Dupuis S, Wu JY. Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion. J Biol Chem 2001; 276:8535-43. [PMID: 11116151 PMCID: PMC2140227 DOI: 10.1074/jbc.m008924200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have been using the caspase-2 pre-mRNA as a model system to study the importance of alternative splicing in the regulation of programmed cell death. Inclusion or skipping of a cassette-type exon in the 3' portion of this pre-mRNA leads to the production of isoforms with antagonistic activity in apoptosis. We previously identified a negative regulatory element (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element harbors a decoy 3' acceptor site that engages in nonproductive commitment complex interactions with the 5' splice site of exon 9. This in turn confers a competitive advantage to the exon-skipping splicing pattern. Further characterization of the In100 element reveals a second, functionally distinct, domain located downstream from the decoy 3' acceptor site. This downstream domain harbors several polypyrimidine track-binding protein (PTB)-binding sites. We show that PTB binding to these sites correlates with the negative effect on exon 9 inclusion. Finally, we show that both domains of the In100 element can function independently to repress exon 9 inclusion, although PTB binding in the vicinity of the decoy 3' splice site can modulate its activity. Our results thus reveal a complex composite element that regulates caspase-2 exon 9 alternative splicing through a novel mechanism.
Collapse
Affiliation(s)
- J Côté
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
120
|
Standiford DM, Sun WT, Davis MB, Emerson CP. Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts. Genetics 2001; 157:259-71. [PMID: 11139507 PMCID: PMC1461464 DOI: 10.1093/genetics/157.1.259] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing of Drosophila muscle myosin heavy chain (MHC) transcripts is precisely regulated to ensure the expression of specific MHC isoforms required for the distinctive contractile activities of physiologically specialized muscles. We have used transgenic expression analysis in combination with mutagenesis to identify cis-regulatory sequences that are required for muscle-specific splicing of exon 11, which is encoded by five alternative exons that produce alternative "converter" domains in the MHC head. Here, we report the identification of three conserved intronic elements (CIE1, -2, and -3) that control splicing of exon 11e in the indirect flight muscle (IFM). Each of these CIE elements has a distinct function: CIE1 acts as a splice repressor, while CIE2 and CIE3 behave as splice enhancers. These CIE elements function in combination with a nonconsensus splice donor to direct IFM-specific splicing of exon 11e. An additional cis-regulatory element that is essential in coordinating the muscle-specific splicing of other alternative exon 11s is identified. Therefore, multiple interacting intronic and splice donor elements establish the muscle-specific splicing of alternative exon 11s.
Collapse
Affiliation(s)
- D M Standiford
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennyslvania 19104, USA
| | | | | | | |
Collapse
|
121
|
Fukushi S, Okada M, Kageyama T, Hoshino FB, Nagai K, Katayama K. Interaction of poly(rC)-binding protein 2 with the 5'-terminal stem loop of the hepatitis C-virus genome. Virus Res 2001; 73:67-79. [PMID: 11163645 DOI: 10.1016/s0168-1702(00)00228-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 5' noncoding region (NCR) of hepatitis C virus (HCV) contains an internal ribosome entry site for translation initiation. Cellular proteins (e.g. La, polypyrimidine tract-binding protein, and p25) that interact with HCV 5' NCR have been implicated in facilitating efficient internal initiation. The 5' NCR may also contain RNA structures and specific RNA sequences that interact with cellular proteins to promote RNA replication. UV crosslinking experiments revealed a 43-kDa cellular protein (p43) also interacts with the HCV 5' NCR. Further UV crosslinking experiments with deletion mutants of HCV 5' NCR demonstrated that p43 bound specifically to the 5'-terminal stem-loop of the HCV 5' NCR. Achromobactor proteinase I digests, competition experiments, and immunoprecipitation confirmed that p43 was identical to human poly(rC)-binding protein 2 (PCBP2). We prepared a PCBP2-immunodepleted rabbit reticulocyte lysate with an anti-PCBP2 antibody. Translation activity promoted by the HCV internal ribosome-entry site was the same in PCBP2-depleted lysates as in mock-depleted lysates. In conclusion, PCBP2 specifically interacted with the 5' terminus of HCV genome but had no effect on HCV translation. We speculate that PCBP2's interaction with HCV 5' NCR may be involved in the replication-initiation complex of HCV.
Collapse
Affiliation(s)
- S Fukushi
- R&D Center, BioMedical Laboratories, 1361-1, Matoba, Kawagoe-shi, 350-1101, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
122
|
de Vries H, Rüegsegger U, Hübner W, Friedlein A, Langen H, Keller W. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J 2000; 19:5895-904. [PMID: 11060040 PMCID: PMC305781 DOI: 10.1093/emboj/19.21.5895] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Six different protein factors are required in vitro for 3' end formation of mammalian pre-mRNAs by endonucleolytic cleavage and polyadenylation. Five of the factors have been purified and most of their components cloned, but cleavage factor II(m) (CF II(m)) remained uncharacterized. We have purified CF II(m) from HeLa cell nuclear extract by several chromatographic steps. During purification, CF II(m) activity separated into two components, one essential (CF IIA(m)) and one stimulatory (CF IIB(m)) for the cleavage reaction. CF IIA(m) fractions contain the human homologs of two yeast 3' end processing factors, Pcf11p and Clp1p, as well as cleavage factor I(m) (CF I(m)) and several splicing and transcription factors. We report the cloning of hClp1 and show that it is a genuine subunit of CF IIA(m). Antibodies directed against hClp1 deplete cleavage activity, but not polyadenylation activity from HeLa cell nuclear extract. hClp1 interacts with CF I(m) and the cleavage and polyadenylation specificity factor CPSF, suggesting that it bridges these two 3' end processing factors within the cleavage complex.
Collapse
Affiliation(s)
- H de Vries
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Guo N, Kawamoto S. An intronic downstream enhancer promotes 3' splice site usage of a neural cell-specific exon. J Biol Chem 2000; 275:33641-9. [PMID: 10931847 DOI: 10.1074/jbc.m005597200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human nonmuscle myosin heavy chain B gene contains a 30-nucleotide alternative exon, N30, that is included in the mRNA from neural cells but is skipped in all other cells. We have previously identified an intronic distal downstream enhancer (IDDE) region that is required for neural cell-specific inclusion of N30. In this study, we investigated the mechanism by which the IDDE promotes N30 exon usage. In vitro splicing analysis using neural cell nuclear extracts and two-exon pre-mRNA substrates, which consist of the N30 exon and either the upstream (E5) or downstream (E6) exon, demonstrates that the IDDE activates upstream E5-N30 splicing by facilitating early prespliceosome complex formation. The IDDE has no effect on N30-E6 splicing where the IDDE resides. Inspection of splice site consensus sequences shows that a polypyrimidine (Py) tract preceding N30 is suboptimal for U2AF binding. Optimizing the Py tract completely relieves the requirement for the IDDE in E5-N30 splicing in vitro. In transfected cells, the wild-type minigene transcripts, which consist of three exons, E5, N30, and E6, undergo neural cell-specific and IDDE-dependent alternative splicing of N30. Optimizing the Py tract in minigenes also completely relieves the requirement for the IDDE in N30 inclusion. Furthermore, overexpression of the truncated U2AF65, which contains the arginine and serine dipeptide-rich domain and linker domain, but lacks the RNA binding domain, selectively inhibits the IDDE-mediated N30 inclusion in mRNA from the wild-type minigene in a dominant negative fashion. These results support the hypothesis that the IDDE facilitates the recognition of the 3' splice site preceding N30 by a network of protein-protein interactions implicated in the recruitment of U2AF to a suboptimal Py tract.
Collapse
Affiliation(s)
- N Guo
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
124
|
Carstens RP, Wagner EJ, Garcia-Blanco MA. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol 2000; 20:7388-400. [PMID: 10982855 PMCID: PMC86292 DOI: 10.1128/mcb.20.19.7388-7400.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for "intronic splicing activator and repressor") which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.
Collapse
Affiliation(s)
- R P Carstens
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
125
|
Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou MY, Black DL. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 2000; 20:7463-79. [PMID: 11003644 PMCID: PMC86300 DOI: 10.1128/mcb.20.20.7463-7479.2000] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splicing of the c-src N1 exon in neuronal cells depends in part on an intronic cluster of RNA regulatory elements called the downstream control sequence (DCS). Using site-specific cross-linking, RNA gel shift, and DCS RNA affinity chromatography assays, we characterized the binding of several proteins to specific sites along the DCS RNA. Heterogeneous nuclear ribonucleoprotein (hnRNP) H, polypyrimidine tract binding protein (PTB), and KH-type splicing-regulatory protein (KSRP) each bind to distinct elements within this sequence. We also identified a new 60-kDa tissue-specific protein that binds to the CUCUCU splicing repressor element of the DCS RNA. This protein was purified, partially sequenced, and cloned. The new protein (neurally enriched homolog of PTB [nPTB]) is highly homologous to PTB. Unlike PTB, nPTB is enriched in the brain and in some neural cell lines. Although similar in sequence, nPTB and PTB show significant differences in their properties. nPTB binds more stably to the DCS RNA than PTB does but is a weaker repressor of splicing in vitro. nPTB also greatly enhances the binding of two other proteins, hnRNP H and KSRP, to the DCS RNA. These experiments identify specific cooperative interactions between the proteins that assemble onto an intricate splicing-regulatory sequence and show how this hnRNP assembly is altered in different cell types by incorporating different but highly related proteins.
Collapse
Affiliation(s)
- V Markovtsov
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
126
|
Romanelli MG, Lorenzi P, Morandi C. Organization of the human gene encoding heterogeneous nuclear ribonucleoprotein type I (hnRNP I) and characterization of hnRNP I related pseudogene. Gene 2000; 255:267-72. [PMID: 11024286 DOI: 10.1016/s0378-1119(00)00331-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human gene hnRNPI encoding the heterogeneous nuclear ribonucleoprotein type I, an alternative splicing modulator of tissue-specific transcripts, also known as PTB (polypyrimidine tract-binding protein), was recently mapped on chromosome 14, as well as on chromosome 19, suggesting that two closely related copies of the same gene might exist in the human genome. We report here that the gene localized on chromosome 14 corresponds to a highly homologous processed pseudogene related to hnRNPI gene (psihnRNPI). Analysis by RT-PCR and by EST database comparison indicates that psihnRNPI is not expressed. In this report we have also analyzed the organization of the actual hnRNPI gene localized on chromosome 19. The DNA sequence at the intron-exon boundaries unveiled the possible mechanism by which three isoforms of the protein (namely hnRNPI, PTB2 and PTB3) are generated by means of alternative splicing of the same hnRNPI gene transcript.
Collapse
Affiliation(s)
- M G Romanelli
- Department of Mother and Child, Biology and Genetics, University of Verona, Strada le Grazie, 8, 37134, Verona, Italy.
| | | | | |
Collapse
|
127
|
Wei ML, Memmott J, Screaton G, Andreadis A. The splicing determinants of a regulated exon in the axonal MAP tau reside within the exon and in its upstream intron. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:207-18. [PMID: 11038253 DOI: 10.1016/s0169-328x(00)00137-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 6 of the gene is an alternatively spliced cassette whose expression profile is distinct from that of the other tau regulated exons, implying the utilization of distinct regulatory factors. Previous work had established the use of cryptic splice sites within exon 6 and the influence of flanking exons on the ratio of exon 6 variants. The present work shows that, in addition to the previously identified participants, the ratio of exon 6 isoforms is affected by: (1) suppression of the cryptic sites, (2) deletions of the upstream intron, and (3) the splicing regulators PTB and U2AF, both of which act on the branch point/polypyrimidine tract region. These results strongly suggest that factors binding immediately upstream of exon 6 are involved in regulation of this exon. They also lead to the conclusion that splicing of exon 6 is primarily governed by multiple branch points.
Collapse
Affiliation(s)
- M L Wei
- Department of Biomedical Sciences, E. K. Shriver Center for Mental Retardation, 200 Trapelo Road, 02452, Waltham, MA, USA
| | | | | | | |
Collapse
|
128
|
Shav-Tal Y, Lee B, Bar-Haim S, Vandekerckhove J, Zipori D. Enhanced proteolysis of pre-mRNA splicing factors in myeloid cells. Exp Hematol 2000; 28:1029-38. [PMID: 11008015 DOI: 10.1016/s0301-472x(00)00510-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Molecular identification and characterization of the bone marrow nuclear protein detected by the B92 monoclonal antibody. MATERIALS AND METHODS The protein was purified to homogeneity from acute myeloid leukemia cells and was subjected to peptide digestion and amino acid sequencing. Identified sequences were used to screen a bone marrow cDNA library in search of matching transcripts. The protein was further studied in different cells and tissues by examination of protease inhibitors and harsh lytic conditions and during apoptosis in HL-60 cells. RESULTS We found that the apparent bone marrow specific protein is a 47 kD proteolytic cleavage product of PSF, an essential pre-mRNA splicing factor. PSF is completely cleaved to p47 during lysis of immature myeloid cells due to potent proteolytic activity found in these cells but is rare in other cells and tissues. Furthermore, p47 is abundant in intact normal and tumor myeloid cells while in other cell types it is undetectable. The cleavage of PSF is accompanied by digestion of the PTB splicing regulator but not other proteins tested. In contrast, during apoptosis PTB is degraded while PSF remains intact. CONCLUSIONS The bone marrow 47 kD protein is a fragment constituting the N-terminal, protease-resistant half of the splicing factor PSF. Proteolytic degradation of PSF specifically occurs in intact myeloid cells and this process is enhanced upon myeloid cell lysis.
Collapse
Affiliation(s)
- Y Shav-Tal
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
129
|
Abstract
Mammalian genes are characterized by relatively small exons surrounded by variable lengths of intronic sequence. Sequences similar to the splice signals that define the 5' and 3' boundaries of these exons are also present in abundance throughout the surrounding introns. What causes the real sites to be distinguished from the multitude of pseudosites in pre-mRNA is unclear. Much progress has been made in defining additional sequence elements that enhance the use of particular sites. Less work has been done on sequences that repress the use of particular splice sites. To find additional examples of sequences that inhibit splicing, we searched human genomic DNA libraries for sequences that would inhibit the inclusion of a constitutively spliced exon. Genetic selection experiments suggested that such sequences were common, and we subsequently tested randomly chosen restriction fragments of about 100 bp. When inserted into the central exon of a three-exon minigene, about one in three inhibited inclusion, revealing a high frequency of inhibitory elements in human DNA. In contrast, only 1 in 27 Escherichia coli DNA fragments was inhibitory. Several previously identified silencing elements derived from alternatively spliced exons functioned weakly in this constitutively spliced exon. In contrast, a high-affinity site for U2AF65 strongly inhibited exon inclusion. Together, our results suggest that splicing occurs in a background of repression and, since many of our inhibitors contain splice like signals, we suggest that repression of some pseudosites may occur through an inhibitory arrangement of these sites.
Collapse
Affiliation(s)
- W G Fairbrother
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
130
|
Conte MR, Grüne T, Ghuman J, Kelly G, Ladas A, Matthews S, Curry S. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J 2000; 19:3132-41. [PMID: 10856256 PMCID: PMC203357 DOI: 10.1093/emboj/19.12.3132] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2000] [Revised: 04/20/2000] [Accepted: 04/20/2000] [Indexed: 11/14/2022] Open
Abstract
Polypyrimidine tract binding protein (PTB), an RNA binding protein containing four RNA recognition motifs (RRMs), is involved in both pre-mRNA splicing and translation initiation directed by picornaviral internal ribosome entry sites. Sequence comparisons previously indicated that PTB is a non-canonical RRM protein. The solution structure of a PTB fragment containing RRMs 3 and 4 shows that the protein consists of two domains connected by a long, flexible linker. The two domains tumble independently in solution, having no fixed relative orientation. In addition to the betaalphabetabetaalphabeta topology, which is characteristic of RRM domains, the C-terminal extension of PTB RRM-3 incorporates an unanticipated fifth beta-strand, which extends the RNA binding surface. The long, disordered polypeptide connecting beta4 and beta5 in RRM-3 is poised above the RNA binding surface and is likely to contribute to RNA recognition. Mutational analyses show that both RRM-3 and RRM-4 contribute to RNA binding specificity and that, despite its unusual sequence, PTB binds RNA in a manner akin to that of other RRM proteins.
Collapse
Affiliation(s)
- M R Conte
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London, UK
| | | | | | | | | | | | | |
Collapse
|
131
|
Chou MY, Underwood JG, Nikolic J, Luu MH, Black DL. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell 2000; 5:949-57. [PMID: 10911989 DOI: 10.1016/s1097-2765(00)80260-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the role of polypyrimidine tract binding protein in repressing splicing of the c-src neuron-specific N1 exon. Immunodepletion/add-back experiments demonstrate that PTB is essential for splicing repression in HeLa extract. When splicing is repressed, PTB cross-links to intronic CUCUCU elements flanking the N1 exon. Mutation of the downstream CU elements causes dissociation of PTB from the intact upstream CU elements and allows splicing. Thus, PTB molecules bound to multiple elements cooperate to repress splicing. Interestingly, in neuronal WERI-1 cell extract where N1 is spliced, PTB also binds to the upstream CU elements but is dissociated in the presence of ATP. We conclude that splicing repression by PTB is modulated in different cells by a combination of cooperative binding and ATP-dependent dissociation.
Collapse
Affiliation(s)
- M Y Chou
- Howard Hughes Medical Institute, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
132
|
Bayele HK, Eisenthal RS, Towner P. Complementation of a glucose transporter mutant of Schizosaccharomyces pombe by a novel Trypanosoma brucei gene. J Biol Chem 2000; 275:14217-22. [PMID: 10799499 DOI: 10.1074/jbc.275.19.14217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The African trypanosome Trypanosoma brucei has a digenetic life cycle that involves the insect vector and the mammalian host. This is underscored by biochemical switches in its nutritional requirements. In the insect vector, the parasite relies on amino acid catabolism, but in the mammalian host, it derives its energy exclusively from blood glucose. Glucose transport is facilitated, and constitutes the rate-limiting step in ATP synthesis. Here, we report the cloning of a novel glucose transporter-related gene by heterologous screening of a lambdaEMBL4 genomic library of T. brucei EATRO 164 using a rat liver glucose transporter cDNA clone. Genomic analysis shows that the gene is present as a single copy within the parasite genome. The gene encodes a protein with an estimated molecular mass of 55.9 kDa, which shares only segmental homology with members of the glucose transporter superfamily. Several potential post-translational modification sites including phosphorylation, N-glycosylation, and cotranslational myristoylation sites also punctuate the sequence. It is distinguished from classical transporter proteins by the absence of putative hydrophobic membrane-spanning domains. However, this protein was capable of complementing Schizosaccharomyces pombe glucose transporter mutants. The rescued phenotype conferred the ability of the cells to grow on a broad range of sugars, both monosaccharides and disaccharides. The kinetics of glucose uptake reflected those in T. brucei. In addition to complementation in yeast, we also showed that the gene enhanced glucose uptake in cultured mammalian cells.
Collapse
Affiliation(s)
- H K Bayele
- Department of Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom.
| | | | | |
Collapse
|
133
|
Kim JH, Hahm B, Kim YK, Choi M, Jang SK. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol 2000; 298:395-405. [PMID: 10772858 DOI: 10.1006/jmbi.2000.3687] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in several RNA-related biological processes such as transcription, pre-mRNA processing, mature mRNA transport to the cytoplasm, and translation. About 20 major hnRNPs from A1 to U are known. Among them, hnRNP A, D, E, I, and K are known to shuttle between the nucleus and the cytoplasm. hnRNP E2 has been seen to stabilize alpha-globin mRNA and to enhance polioviral mRNA translation. hnRNP K modulates transcription and translation of some mRNAs. hnRNP I and its homologue hnRNP L have been suggested to enhance translation of some IRES-dependent mRNAs. In order to better understand the molecular mechanisms of the biological functions of hnRNPs, we investigated protein-protein interactions of six hnRNPs (hnRNP A1, C1, E2, I, K, and L) using the yeast two-hybrid system and in vitro co-precipitation assays. All of the hnRNPs tested exerted homomeric interactions, and hnRNP E2, I, K, and L interacted with each other. In the case of hnRNP E2 and hnRNP K, the N-terminal half of the proteins containing two KH (K homologous) domains were required for protein-protein interaction, and the second quarter of hnRNP I and hnRNP L containing RRM2 (RNA recognition motif 2) was essential for protein-protein interaction. hnRNP A1 and C1 did not form complexes with other hnRNPs in our assay systems. This suggests that the hnRNPs could fall into two groups: one group, including hnRNP A1 and C1, involved in hnRNP core complex formation and another group, including hnRNP E2, I, K, and L, involved in a variety of RNA-related biological processes. Different combinations of the proteins of the second group may facilitate different biological processes in conjunction with other factors.
Collapse
Affiliation(s)
- J H Kim
- Department of Life Science, Pohang University of Science and Technology, Hyoja-Dong San31, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | | | |
Collapse
|
134
|
Barnard DC, Patton JG. Identification and characterization of a novel serine-arginine-rich splicing regulatory protein. Mol Cell Biol 2000; 20:3049-57. [PMID: 10757789 PMCID: PMC85584 DOI: 10.1128/mcb.20.9.3049-3057.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.
Collapse
Affiliation(s)
- D C Barnard
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
135
|
Longman D, Johnstone IL, Cáceres JF. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J 2000; 19:1625-37. [PMID: 10747030 PMCID: PMC310231 DOI: 10.1093/emboj/19.7.1625] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.
Collapse
Affiliation(s)
- D Longman
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU
| | | | | |
Collapse
|
136
|
Meissner M, Dechat T, Gerner C, Grimm R, Foisner R, Sauermann G. Differential nuclear localization and nuclear matrix association of the splicing factors PSF and PTB. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<559::aid-jcb4>3.0.co;2-u] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
137
|
Gosert R, Chang KH, Rijnbrand R, Yi M, Sangar DV, Lemon SM. Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo. Mol Cell Biol 2000; 20:1583-95. [PMID: 10669736 PMCID: PMC85342 DOI: 10.1128/mcb.20.5.1583-1595.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The regulation of cap-independent translation directed by the internal ribosome entry sites (IRESs) present in some viral and cellular RNAs is poorly understood. Polypyrimidine-tract binding protein (PTB) binds specifically to several viral IRESs. IRES-directed translation may be reduced in cell-free systems that are depleted of PTB and restored by reconstitution of lysates with recombinant PTB. However, there are no data concerning the effects of PTB on IRES-directed translation in vivo. We transfected cells with plasmids expressing dicistronic transcripts in which the upstream cistron encoded PTB or PTB deletion mutants (including a null mutant lacking amino acid residues 87 to 531). The downstream cistron encoded a reporter protein (chloramphenicol acetyltransferase [CAT]) under translational control of the poliovirus IRES which was placed within the intercistronic space. In transfected BS-C-1 cells, transcripts expressing wild-type PTB produced 12-fold more reporter protein than similar transcripts encoding the PTB null mutant. There was a 2.4-fold difference in CAT produced from these transcripts in HeLa cells, which contain a greater natural abundance of PTB. PTB similarly stimulated CAT production from transcripts containing the IRES of hepatitis A virus or hepatitis C virus in BS-C-1 cells and Huh-7 cells (37- to 44-fold increase and 5 to 5.3-fold increase, respectively). Since PTB had no quantitative or qualitative effect on transcription from these plasmids, we conclude that PTB stimulates translation of representative picornaviral and flaviviral RNAs in vivo. This is likely to reflect the stabilization of higher ordered RNA structures within the IRES and was not observed with PTB mutants lacking RNA recognition motifs located in the C-terminal third of the molecule.
Collapse
Affiliation(s)
- R Gosert
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030, USA
| | | | | | | | | | | |
Collapse
|
138
|
Gao QS, Memmott J, Lafyatis R, Stamm S, Screaton G, Andreadis A. Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J Neurochem 2000; 74:490-500. [PMID: 10646499 DOI: 10.1046/j.1471-4159.2000.740490.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 10 of the gene is an alternatively spliced cassette that is adult-specific and that codes for a microtubule binding domain. Recently, mutations that affect splicing of exon 10 have been shown to cause inherited frontotemporal dementia (FTDP). In this study, we establish the endogenous expression patterns of exon 10 in human tissue; by reconstituting naturally occurring FTDP mutants in the homologous context of exon 10, we show that the cis determinants of exon 10 splicing regulation include an exonic silencer within the exon, its 5' splice site, and the relative affinities of its flanking exons to it. By cotransfections in vivo, we demonstrate that several splicing regulators affect the ratio of tau isoforms by inhibiting exon 10 inclusion.
Collapse
Affiliation(s)
- Q S Gao
- Department of Biomedical Sciences, E. K. Shriver Center for Mental Retardation, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
139
|
Kim YK, Jang SK. La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site. J Gen Virol 1999; 80 ( Pt 12):3159-3166. [PMID: 10567647 DOI: 10.1099/0022-1317-80-12-3159] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translation of internal ribosomal entry site (IRES)-dependent mRNAs is mediated by RNA-binding proteins as well as canonical translation factors. In order to elucidate the roles of RNA-binding proteins in IRES-dependent translation, the role of polypyrimidine tract-binding protein (PTB) and La protein in encephalomyocarditis virus (EMCV) IRES-dependent translation was investigated. PTB was required for efficient EMCV IRES-driven translation but, intriguingly, an excess of PTB suppressed it. Such a translational suppression by surplus PTB was relieved by addition of La protein. A possible role for La protein in IRES-dependent translation is discussed.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Life Science, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea1
| | - Sung Key Jang
- Department of Life Science, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea1
| |
Collapse
|
140
|
Shinozaki A, Arahata K, Tsukahara T. Changes in pre-mRNA splicing factors during neural differentiation in P19 embryonal carcinoma cells. Int J Biochem Cell Biol 1999; 31:1279-87. [PMID: 10605820 DOI: 10.1016/s1357-2725(99)00101-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alternative RNA splicing can be regulated in a highly cell- and tissue-specific or developmentally specific manner. In neurons, the functions of many gene products, such as those of trk genes are regulated by alternative splicing. In this paper the mechanism of neural-specific RNA splicing is investigated using trk genes as models. First, we confirm the splicing patterns of trk transcripts during neural differentiation of P19 embryonal carcinoma (EC) cells. The full-length form of trk B was expressed in the neuronal state. In contrast, both the full-length and truncated forms of trk C were expressed constitutively in all differentiation states. However, two alternatively spliced forms with either 42- or 117-nucleotide insertions in the tyrosine kinase domain were detected only in the neuronal state. Thus, the expression of functional trk B and C was found to be regulated by alternative splicing during neural differentiation. To examine the molecular basis of neural-specific splicing, and how splicing regulation is modulated in different neurons. The expression of a number of general splicing factors was studied. The mRNA levels of the splicing factors ASF/SF2, U2AF SF3a, p54nrb and PTB was found to decrease rapidly during differentiation. In contrast, Nova, an RNA-binding protein was expressed in the neuronal state. We also found that the levels of two SR proteins, members of a family of splicing factors, increased in the neuronal state. These results suggest that the stoichiometric balance among some splicing factors, including SR proteins, may be associated with the alternative splicing of trk transcripts during differentiation.
Collapse
Affiliation(s)
- A Shinozaki
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | |
Collapse
|
141
|
Ai LS, Chau LY. Post-transcriptional regulation of H-ferritin mRNA. Identification of a pyrimidine-rich sequence in the 3'-untranslated region associated with message stability in human monocytic THP-1 cells. J Biol Chem 1999; 274:30209-14. [PMID: 10514512 DOI: 10.1074/jbc.274.42.30209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that phorbol myristate acetate (PMA) up-regulates H-ferritin gene expression in myeloid cells by stabilization of its message. In the present report, we showed that insertion of the 3'-untranslated region (3'-UTR) of H-ferritin mRNA at the 3'-end of luciferase coding sequence significantly reduced the stability of luciferase mRNA in human monocytic THP-1 cells. However, the half-life of the chimeric transcript was markedly prolonged after PMA treatment. A cytosolic protein factor from THP-1 cells was found to specifically bind to H-ferritin 3'-UTR. PMA treatment of THP-1 cells resulted in the reduction of the RNA binding activity in a time-dependent manner. Deletion analysis and RNase T1 mapping revealed a pyrimidine-rich sequence within the 3'-UTR which interacts with the protein factor. Competition experiments with homoribopolymers further demonstrated the importance of uridines for the binding activity. Point mutations in uridines of the pyrimidine-rich sequence reduced the protein binding to 3'-UTR, while increasing the stability of the chimeric luciferase transcript. Together, these results demonstrate that the pyrimidine-rich sequence in the 3'-UTR is involved in post-transcriptional regulation of H-ferritin gene expression in myeloid cells.
Collapse
Affiliation(s)
- L S Ai
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | | |
Collapse
|
142
|
Sickinger S, Schweizer M. A high affinity binding site for the polypyrimidine tract binding protein (PTB) is located in the 5'-untranslated region of the rat proteinase alpha1-inhibitor 3 variant I gene. Biol Chem 1999; 380:1217-23. [PMID: 10595585 DOI: 10.1515/bc.1999.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As a first step towards understanding the mechanism underlying the differential gene expression of the two variants of the rat proteinase-inhibitor alpha1-inhibitor 3 (alpha1-I3) corresponding genomic clones were isolated. The 100% similarity between the sequence of one genomic clone and that of the alpha1-13 variant I cDNA strongly suggested that its 5'-sequence represented the upstream region of the corresponding gene. Several putative cis-regulatory elements were identified as well as a polypyrimidine tract located between the transcription start site of the alpha1-I3 variant I mRNA and the AUG codon. The polypyrimidine tract functions as a positive cis-element in a heterologous promoter. By electrophoretic mobility shift assays (EMSA) we have shown that a GST (glutathione S-transferase) fusion of the rat polypyrimidine tract binding protein (PTB) has a high affinity for the pyrimidine-rich sense strand but not for the complementary sequence of the 5'-untranslated region of the alpha1-I3 variant I gene.
Collapse
Affiliation(s)
- S Sickinger
- Department of Biological Sciences, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
143
|
Cote CA, Gautreau D, Denegre JM, Kress TL, Terry NA, Mowry KL. A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol Cell 1999; 4:431-7. [PMID: 10518224 DOI: 10.1016/s1097-2765(00)80345-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytoplasmic localization of mRNA molecules is a powerful mechanism for generating cell polarity. In vertebrates, one paradigm is localization of Vg1 RNA within the Xenopus oocyte, a process directed by recognition of a localization element within the Vg1 3' UTR. We show that specific base changes within the localization element abolish both localization in vivo and binding in vitro by a single protein, VgRBP60. VgRBP60 is homologous to a human hnRNP protein, hnRNP I, and combined immunolocalization and in situ hybridization demonstrate striking colocalization of hnRNP I and Vg1 RNA within the vegetal cytoplasm of the Xenopus oocyte. These results implicate a novel role in cytoplasmic RNA transport for this family of nuclear RNA-binding proteins.
Collapse
Affiliation(s)
- C A Cote
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
144
|
Pret AM, Balvay L, Fiszman MY. Regulated splicing of an alternative exon of beta-tropomyosin pre-mRNAs in myogenic cells depends on the strength of pyrimidine-rich intronic enhancer elements. DNA Cell Biol 1999; 18:671-83. [PMID: 10492398 DOI: 10.1089/104454999314953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing of chicken beta-tropomyosin (beta-TM) pre-mRNAs ensures that in nonmuscle cells, only exon 6A is expressed, whereas in skeletal muscle, exon 6B is utilized preferentially. We have previously shown that efficient splicing of the nonmuscle exon 6A requires two pyrimidine-rich splicing enhancers (S4 and I5Y) that are present in the introns flanking exon 6A. Here, we examined the function of the S4 and I5Y elements by replacing them within beta-TM minigenes by other pyrimidine- and purine-rich sequence elements and analyzing splicing in transfected quail nonmuscle and muscle cells. Several features of these splicing regulatory elements were revealed by this study. First, a wide variety of pyrimidine-rich sequences can replace the intronic S4 splicing enhancer, indicating that pyrimidine composition, rather than sequence specificity, determines activity for this element. Second, one type of purine-rich sequence (GARn), normally found within exons, can also replace the S4 splicing enhancer. Third, the diverse elements tested exhibit differential activation of the splice sites flanking exon 6A and different positional constraints. Fourth, the strength of the S4 splicing enhancer is appropriately set to obtain proper regulation of the transition from exon 6A splicing in myoblasts to exon 6B splicing in myotubes, but this splicing regulatory element is not the target for cell-type-specific splicing factors.
Collapse
Affiliation(s)
- A M Pret
- INSERM U523, Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | | | | |
Collapse
|
145
|
Chen T, Boisvert FM, Bazett-Jones DP, Richard S. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol Biol Cell 1999; 10:3015-33. [PMID: 10473643 PMCID: PMC25546 DOI: 10.1091/mbc.10.9.3015] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The GSG (GRP33, Sam68, GLD-1) domain is a protein module found in an expanding family of RNA-binding proteins. The numerous missense mutations identified genetically in the GSG domain support its physiological role. Although the exact function of the GSG domain is not known, it has been shown to be required for RNA binding and oligomerization. Here it is shown that the Sam68 GSG domain plays a role in protein localization. We show that Sam68 concentrates into novel nuclear structures that are predominantly found in transformed cells. These Sam68 nuclear bodies (SNBs) are distinct from coiled bodies, gems, and promyelocytic nuclear bodies. Electron microscopic studies show that SNBs are distinct structures that are enriched in phosphorus and nitrogen, indicating the presence of nucleic acids. A GFP-Sam68 fusion protein had a similar localization as endogenous Sam68 in HeLa cells, diffusely nuclear with two to five SNBs. Two other GSG proteins, the Sam68-like mammalian proteins SLM-1 and SLM-2, colocalized with endogenous Sam68 in SNBs. Different GSG domain missense mutations were investigated for Sam68 protein localization. Six separate classes of cellular patterns were obtained, including exclusive SNB localization and association with microtubules. These findings demonstrate that the GSG domain is involved in protein localization and define a new compartment for Sam68, SLM-1, and SLM-2 in cancer cell lines.
Collapse
Affiliation(s)
- T Chen
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology, Medicine, and Microbiology and Immunology, McGill University, Montréal, Québec H3T 1E2
| | | | | | | |
Collapse
|
146
|
Hunt SL, Skern T, Liebig HD, Kuechler E, Jackson RJ. Rhinovirus 2A proteinase mediated stimulation of rhinovirus RNA translation is additive to the stimulation effected by cellular RNA binding proteins. Virus Res 1999; 62:119-28. [PMID: 10507322 DOI: 10.1016/s0168-1702(99)00039-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The internal ribosome entry site (IRES) of enteroviruses, and especially human rhinoviruses (HRV), functions very inefficiently in rabbit reticulocyte lysates, but can be stimulated by addition of HeLa cell extracts. Two HeLa cell activities have been identified: the A-type activity is due to polypyrimidine tract binding protein and the B-type to unr. In addition HRV and enterovirus IRES function requires a third RNA binding protein, poly(rC) binding protein 2, but this is present in reticulocyte lysates in non-limiting amounts. IRES activity can also be stimulated by the cleavage of initiation factor eIF4G mediated by either HRV 2A protease, or foot-and-mouth disease virus (FMDV) L protease. This raises the question of whether this stimulation is independent of that effected by the three RNA binding proteins, or whether cleaved eIF4G functionally mimics one or more of these proteins. It is shown here that the stimulation of HRV IRES activity resulting from cleavage of eIF4G is additive with the stimulation effected by HeLa cell A- and B-type activities. It is proposed that the role of the RNA binding proteins is to maintain or attain the appropriate 3-dimensional structure of the IRES RNA element, whereas the function of eIF4G is to deliver the 40S ribosomal subunit to the correct site on the IRES, a function which, for reasons not yet fully understood, is fulfilled more efficiently by the C-terminal cleavage product of eIF4G than by the intact factor.
Collapse
Affiliation(s)
- S L Hunt
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
147
|
Yamamoto H, Tsukahara K, Kanaoka Y, Jinno S, Okayama H. Isolation of a mammalian homologue of a fission yeast differentiation regulator. Mol Cell Biol 1999; 19:3829-41. [PMID: 10207106 PMCID: PMC84229 DOI: 10.1128/mcb.19.5.3829] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe the nrd1(+) gene encoding an RNA binding protein negatively regulates the onset of differentiation. Its biological role is to block differentiation by repressing a subset of the Ste11-regulated genes essential for conjugation and meiosis until the cells reach a critical level of nutrient starvation. By using the phenotypic suppression of the S. pombe temperature-sensitive pat1 mutant that commits lethal haploid meiosis at the restrictive temperature, we have cloned ROD1, a functional homologue of nrd1(+), from rat and human cDNA libraries. Like nrd1(+), ROD1 encodes a protein with four repeats of typical RNA binding domains, though its amino acid homology to Nrd1 is limited. When expressed in the fission yeast, ROD1 behaves in a way that is functionally similar to nrd1(+), being able to repress Ste11-regulated genes and to inhibit conjugation upon overexpression. ROD1 is predominantly expressed in hematopoietic cells or organs of adult and embryonic rat. Like nrd1(+) for fission yeast differentiation, overexpressed ROD1 effectively blocks both 12-O-tetradecanoyl phorbol-13-acetate-induced megakaryocytic and sodium butyrate-induced erythroid differentiation of the K562 human leukemia cells without affecting their proliferative ability. These results suggest a role for ROD1 in differentiation control in mammalian cells. We discuss the possibility that a differentiation control system found in the fission yeast might well be conserved in more complex organisms, including mammals.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
148
|
Southby J, Gooding C, Smith CW. Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of alpha-actinin mutally exclusive exons. Mol Cell Biol 1999; 19:2699-711. [PMID: 10082536 PMCID: PMC84063 DOI: 10.1128/mcb.19.4.2699] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The smooth muscle (SM) and nonmuscle (NM) isoforms of alpha-actinin are produced by mutually exclusive splicing of an upstream NM exon and a downstream SM-specific exon. A rat alpha-actinin genomic clone encompassing the mutually exclusive exons was isolated and sequenced. The SM exon was found to utilize two branch points located 382 and 386 nucleotides (nt) upstream of the 3' splice site, while the NM exon used a single branch point 191 nt upstream. Mutually exclusive splicing arises from the proximity of the SM branch points to the NM 5' splice site, and this steric repression could be relieved in part by the insertion of spacer elements. In addition, the SM exon is repressed in non-SM cells and extracts. In vitro splicing of spacer-containing transcripts could be activated by (i) truncation of the transcript between the SM polypyrimidine tract and exon, (ii) addition of competitor RNAs containing the 3' end of the actinin intron or regulatory sequences from alpha-tropomyosin (TM), and (iii) depletion of the splicing extract by using biotinylated alpha-TM RNAs. A number of lines of evidence point to polypyrimidine tract binding protein (PTB) as the trans-acting factor responsible for repression. PTB was the only nuclear protein observed to cross-link to the actinin RNA, and the ability of various competitor RNAs to activate splicing correlated with their ability to bind PTB. Furthermore, repression of alpha-actinin splicing in the nuclear extracts depleted of PTB by using biotinylated RNA could be specifically restored by the addition of recombinant PTB. Thus, alpha-actinin mutually exclusive splicing is enforced by the unusual location of the SM branch point, while constitutive repression of the SM exon is conferred by regulatory elements between the branch point and 3' splice site and by PTB.
Collapse
Affiliation(s)
- J Southby
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
149
|
Shaw-Jackson C, Michiels T. Absence of internal ribosome entry site-mediated tissue specificity in the translation of a bicistronic transgene. J Virol 1999; 73:2729-38. [PMID: 10074119 PMCID: PMC104029 DOI: 10.1128/jvi.73.4.2729-2738.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' noncoding regions of the genomes of picornaviruses form a complex structure that directs cap-independent initiation of translation. This structure has been termed the internal ribosome entry site (IRES). The efficiency of translation initiation was shown, in vitro, to be influenced by the binding of cellular factors to the IRES. Hence, we hypothesized that the IRES might control picornavirus tropism. In order to test this possibility, we made a bicistronic construct in which translation of the luciferase gene is controlled by the IRES of Theiler's murine encephalomyelitis virus. In vitro, we observed that the IRES functions in various cell types and in macrophages, irrespective of their activation state. In vivo, we observed that the IRES is functional in different tissues of transgenic mice. Thus, it seems that the IRES is not an essential determinant of Theiler's virus tropism. On the other hand, the age of the mouse could be critical for IRES function. Indeed, the IRES was found to be more efficient in young mice. Picornavirus IRESs are becoming popular tools in transgenesis technology, since they allow the expression of two genes from the same transcription unit. Our results show that the Theiler's virus IRES is functional in cells of different origins and that it is thus a broad-spectrum tool. The possible age dependency of the IRES function, however, could be a drawback for gene expression in adult mice.
Collapse
Affiliation(s)
- C Shaw-Jackson
- International Institute of Cellular and Molecular Pathology, University of Louvain, MIPA-VIRO 74-49, B-1200 Brussels, Belgium
| | | |
Collapse
|
150
|
Abstract
In this report we present evidence for a novel switch in the ratio of the two major isoforms of the polypyrimidine tract binding protein (PTB) in two related prostate cancer cell lines. The existence of different isoforms of PTB is thought to be the result of alternative splicing. We used UV cross-linking to identify a PTB doublet in the DT3 cell line, which is a rat prostate epithelial cancer line that is androgen-dependent and nonmetastatic. The AT3 cell line, a metastatic, androgen-independent cell line derived from the same tumor as the DT3 cells, was noted here to have a different isoform ratio of PTB. The two most prevalent isoforms of PTB were found to bind to an RNA probe containing a pyrimidine stretch. Western blot analysis demonstrated that these isoforms are indeed expressed differently in the two cell lines and that the observed binding is the result of this differential expression. These two cell lines are derived from the original Dunning prostate tumor, which is a model for studying tumor progression in the prostate. This ratio switch may be an important event in tumor progression in this model system of prostate cancer.
Collapse
Affiliation(s)
- E J Wagner
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|