101
|
Klebes A, Sustar A, Kechris K, Li H, Schubiger G, Kornberg TB. Regulation of cellular plasticity inDrosophilaimaginal disc cells by the Polycomb group, trithorax group andlamagenes. Development 2005; 132:3753-65. [PMID: 16077094 DOI: 10.1242/dev.01927] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drosophila imaginal disc cells can switch fates by transdetermining from one determined state to another. We analyzed the expression profiles of cells induced by ectopic Wingless expression to transdetermine from leg to wing by dissecting transdetermined cells and hybridizing probes generated by linear RNA amplification to DNA microarrays. Changes in expression levels implicated a number of genes: lamina ancestor, CG12534 (a gene orthologous to mouse augmenter of liver regeneration), Notch pathway members, and the Polycomb and trithorax groups of chromatin regulators. Functional tests revealed that transdetermination was significantly affected in mutants for lama and seven different PcG and trxG genes. These results validate our methods for expression profiling as a way to analyze developmental programs, and show that modifications to chromatin structure are key to changes in cell fate. Our findings are likely to be relevant to the mechanisms that lead to disease when homologs of Wingless are expressed at abnormal levels and to the manifestation of pluripotency of stem cells.
Collapse
Affiliation(s)
- Ansgar Klebes
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
102
|
Milán M, Pham TT, Cohen SM. Osa modulates the expression of Apterous target genes in the Drosophila wing. Mech Dev 2005; 121:491-7. [PMID: 15147766 DOI: 10.1016/j.mod.2004.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 03/05/2004] [Accepted: 03/05/2004] [Indexed: 11/29/2022]
Abstract
The establishment of the dorsal-ventral axis of the Drosophila wing depends on the activity of the LIM-homeodomain protein Apterous. Apterous activity depends on the formation of a higher order complex with its cofactor Chip to induce the expression of its target genes. Apterous activity levels are modulated during development by dLMO. Expression of dLMO in the Drosophila wing is regulated by two distinct Chip dependent mechanisms. Early in development, Chip bridges two molecules of Apterous to induce expression of dLMO in the dorsal compartment. Later in development, Chip, independently of Apterous, is required for expression of dLMO in the wing pouch. We have conducted a modular P-element based EP (enhancer/promoter) misexpression screen to look for genes involved in Apterous activity. We have found Osa, a member of the Brahma chromatin-remodeling complex, as a positive modulator of Apterous activity in the Drosophila wing. Osa mediates activation of some Apterous target genes and repression of others, including dLMO. Osa has been shown to bind Chip. We propose that Chip recruits Osa to the Apterous target genes, thus mediating activation or repression of their expression.
Collapse
Affiliation(s)
- Marco Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
103
|
Dorsoventral boundary for organizing growth and planar polarity in the Drosophila eye. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-3349(05)14004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
104
|
Berger EM, Dubrovsky EB. Juvenile hormone molecular actions and interactions during development of Drosophila melanogaster. VITAMINS AND HORMONES 2005; 73:175-215. [PMID: 16399411 DOI: 10.1016/s0083-6729(05)73006-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Berger
- Department Of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
105
|
Showalter AD, Yaden BC, Chernoff EAG, Rhodes SJ. Cloning and analysis of axolotl ISL2 and LHX2 LIM-homeodomain transcription factors. Genesis 2004; 38:110-21. [PMID: 15048808 DOI: 10.1002/gene.20007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We cloned and characterized the ISL2 and LHX2 LIM-homeodomain transcription factors of the Mexican salamander, or axolotl, Ambystoma mexicanum. Using a degenerate PCR approach, partial cDNAs representing five LIM-homeodomain genes were cloned, indicating conservation of this class of transcription factors in urodeles. Full-length cDNAs for Isl2 and Lhx2 were identified and sequenced. The predicted ISL2 and LHX2 proteins are well conserved, especially in the LIM and DNA-binding domains. The Isl2 and Lhx2 genes are expressed at all examined stages of embryogenesis and display tissue-restricted expression patterns in adults. In functional tests, axolotl LHX2 was inactive compared to homologous mammalian factors and adopted unusual DNA/protein complexes. However, axolotl ISL2 bound and induced transcription from the rat insulin gene. These experiments demonstrate conservation of key developmental regulatory proteins in salamanders and will allow future studies of their potential roles in the molecular regulation of tissue regeneration in such species.
Collapse
Affiliation(s)
- Aaron D Showalter
- Department of Biology and Indiana University Center for Regenerative Biology and Medicine, School of Science, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202-5132, USA
| | | | | | | |
Collapse
|
106
|
Pueyo JI, Couso JP. Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development. Development 2004; 131:3107-20. [PMID: 15175252 DOI: 10.1242/dev.01161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proximodistal patterning in Drosophila requires division of the developing leg into increasingly smaller, discrete domains of gene function. The LIM-HOM transcription factors apterous (ap) and Lim1 (also known as dlim1), and the homeobox genes Bar and aristaless (al) are part of the gene battery required for the development of specific leg segments. Our genetic results show that there are posttranslational interactions between Ap, Bar and the LIM-domain binding protein Chip in tarsus four, and between Al, Lim1 and Chip in the pretarsus, and that these interactions depend on the presence of balanced amounts of such proteins. We also observe in vitro protein binding between Bar and Chip, Bar and Ap, Lim1 and Chip, and Al and Chip. Together with the previous evidence for interactions between Ap and Chip, these results suggest that these transcription factors form protein complexes during leg development. We propose that the different developmental outcomes of LIM-HOM function are due to the precise identity and dosage of the interacting partners present in a given cell.
Collapse
Affiliation(s)
- Jose Ignacio Pueyo
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | |
Collapse
|
107
|
Park D, Han M, Kim YC, Han KA, Taghert PH. Ap-let neurons--a peptidergic circuit potentially controlling ecdysial behavior in Drosophila. Dev Biol 2004; 269:95-108. [PMID: 15081360 DOI: 10.1016/j.ydbio.2004.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
Here we describe a novel set of peptidergic neurons conserved throughout all developmental stages in the Drosophila central nervous system (CNS). We show that a small complement of 28 apterous-expressing cells (Ap-let neurons) in the ventral nerve cord (VNC) of Drosophila larvae co-express numerous gene products. The products include the neuroendocrine-specific bHLH regulator called Dimmed (Dimm), four neuropeptide biosynthetic enzymes (PC2, Fur1, PAL2, and PHM), and a specific dopamine receptor subtype (dDA1). For the PC2, Fur1, and PAL2 enzymes, and for the dDA1 receptor, this neuronal pattern represents the vast majority of their total expression in the VNC. In addition, while Dimm and PHM are present in the peritracheal Inka cells in larvae, pupae, and adults, Ap, PC2, Fur1, PAL2, and dDA1 are not. PC2, PAL2, and DA1 receptor expression were all controlled by both dimm and ap. Previous genetic analysis of animals deficient in PC2 revealed an abnormal larval ecdysis phenotype. Together, these data support the hypothesis that the small cohort of Ap-let interneurons regulates larval ecdysis behavior by secretion of an unidentified amidated peptide(s). This hypothesis further predicts that the production of the Ap-let neuropeptide(s) is dependent on each of four specific enzymes, and that a certain aspect(s) of its production and/or release is regulated by dopamine input.
Collapse
Affiliation(s)
- Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
108
|
del Alamo Rodríguez D, Terriente Felix J, Díaz-Benjumea FJ. The role of the T-box gene optomotor-blind in patterning the Drosophila wing. Dev Biol 2004; 268:481-92. [PMID: 15063183 DOI: 10.1016/j.ydbio.2004.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 12/19/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
The development of the Drosophila wing is governed by the action of two morphogens encoded by the genes decapentaplegic (dpp; a member of the BMP gene family) and wingless (wg; a member of the WNT gene family), which promote cell proliferation and pattern the wing. Along the anterior/posterior (A/P) axis, the precise expression of decapentaplegic and its receptors is required for the transcriptional regulation of specific target genes. In the present work, we analyze the function of the T-box gene optomotor-blind (omb), a decapentaplegic target gene. The wings of optomotor-blind mutants have two apparently opposite phenotypes: the central wing is severely reduced and shows massive cell death, mainly in the distal-most wing, and the lateral wing shows extra cell proliferation. Here, we present genetic evidence that optomotor-blind is required to establish the graded expression of the decapentaplegic type I receptor encoded by the gene thick veins (tkv) to repress the expression of the gene master of thick veins and also to activate the expression of spalt (sal) and vestigial (vg), two decapentaplegic target genes. optomotor-blind plays a role in wing development downstream of decapentaplegic by controlling the expression of its receptor thick veins and by mediating the activation of target genes required for the correct development of the wing. The lack of optomotor-blind produces massive cell death in its expression domain, which leads to the mis-activation of the Notch pathway and the overproliferation of lateral wing cells.
Collapse
Affiliation(s)
- David del Alamo Rodríguez
- Centro de Biología Molecular-C.S.I.C, Universidad Autónoma de Madrid-Cantoblanco, Madrid E-28049, Spain
| | | | | |
Collapse
|
109
|
Abstract
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
110
|
Yan SJ, Gu Y, Li WX, Fleming RJ. Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development. Development 2004; 131:285-98. [PMID: 14701680 DOI: 10.1242/dev.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila wing development is a useful model to study organogenesis, which requires the input of selector genes that specify the identity of various morphogenetic fields (Weatherbee, S. D. and Carroll, S. B. (1999) Cell 97, 283-286) and cell signaling molecules. In order to understand how the integration of multiple signaling pathways and selector proteins can be achieved during wing development, we studied the regulatory network that controls the expression of Serrate (Ser), a ligand for the Notch (N) signaling pathway, which is essential for the development of the Drosophila wing, as well as vertebrate limbs. Here, we show that a 794 bp cis-regulatory element located in the 3' region of the Ser gene can recapitulate the dynamic patterns of endogenous Ser expression during wing development. Using this enhancer element, we demonstrate that Apterous (Ap, a selector protein), and the Notch and Wingless (Wg) signaling pathways, can sequentially control wing development through direct regulation of Ser expression in early, mid and late third instar stages, respectively. In addition, we show that later Ser expression in the presumptive vein cells is controlled by the Egfr pathway. Thus, a cis-regulatory element is sequentially regulated by multiple signaling pathways and a selector protein during Drosophila wing development. Such a mechanism is possibly conserved in the appendage outgrowth of other arthropods and vertebrates.
Collapse
Affiliation(s)
- Shian-Jang Yan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
111
|
Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA. Specification of the vertebrate eye by a network of eye field transcription factors. Development 2003; 130:5155-67. [PMID: 12944429 DOI: 10.1242/dev.00723] [Citation(s) in RCA: 366] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several eye-field transcription factors (EFTFs) are expressed in the anterior region of the vertebrate neural plate and are essential for eye formation. The Xenopus EFTFs ET, Rx1, Pax6, Six3, Lhx2, tll and Optx2 are expressed in a dynamic, overlapping pattern in the presumptive eye field. Expression of an EFTF cocktail with Otx2 is sufficient to induce ectopic eyes outside the nervous system at high frequency. Using both cocktail subsets and functional (inductive) analysis of individual EFTFs, we have revealed a genetic network regulating vertebrate eye field specification. Our results support a model of progressive tissue specification in which neural induction then Otx2-driven neural patterning primes the anterior neural plate for eye field formation. Next, the EFTFs form a self-regulating feedback network that specifies the vertebrate eye field. We find striking similarities and differences to the network of homologous Drosophila genes that specify the eye imaginal disc, a finding that is consistent with the idea of a partial evolutionary conservation of eye formation.
Collapse
Affiliation(s)
- Michael E Zuber
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
112
|
Gruntenko NE, Chentsova NA, Andreenkova EV, Bownes M, Segal D, Adonyeva NV, Rauschenbach IY. Stress response in a juvenile hormone-deficient Drosophila melanogaster mutant apterous56f. INSECT MOLECULAR BIOLOGY 2003; 12:353-363. [PMID: 12864915 DOI: 10.1046/j.1365-2583.2003.00419.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The apterous56f (ap56f) mutation leads to increases in juvenile hormone (JH) degradation levels and JH-esterase makes a greater contribution to the increase than JH-epoxide hydrolase. Dopamine levels in ap56f females, but not males, are higher than in wild-type. JH treatment of ap56f and wild-type females decreases their dopamine levels. ap56f females, but not males, produce less progeny. Survival under heat stress is dramatically decreased in ap56f females, but not males. ap56f flies show a stress reaction, as judged by changes in tyrosine decarboxylase and JH-hydrolysing activities, dopamine levels and fertility, but its intensity in the mutant females, but not males, differs significantly from wild-type. Thus, the ap56f mutation causes dramatic changes in female, but not male, metabolism and fitness.
Collapse
Affiliation(s)
- N E Gruntenko
- Institute of Cytology and Genetics, SD RAS, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
113
|
Gupta BP, Wang M, Sternberg PW. The C. elegans LIM homeobox gene lin-11 specifies multiple cell fates during vulval development. Development 2003; 130:2589-601. [PMID: 12736204 DOI: 10.1242/dev.00500] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
LIM homeobox family members regulate a variety of cell fate choices during animal development. In C. elegans, mutations in the LIM homeobox gene lin-11 have previously been shown to alter the cell division pattern of a subset of the 2 degrees lineage vulval cells. We demonstrate multiple functions of lin-11 during vulval development. We examined the fate of vulval cells in lin-11 mutant animals using five cellular markers and found that lin-11 is necessary for the patterning of both 1 degrees and 2 degrees lineage cells. In the absence of lin-11 function, vulval cells fail to acquire correct identity and inappropriately fuse with each other. The expression pattern of lin-11 reveals dynamic changes during development. Using a temporally controlled overexpression system, we show that lin-11 is initially required in vulval cells for establishing the correct invagination pattern. This process involves asymmetric expression of lin-11 in the 2 degrees lineage cells. Using a conditional RNAi approach, we show that lin-11 regulates vulval morphogenesis. Finally, we show that LDB-1, a NLI/Ldb1/CLIM2 family member, interacts physically with LIN-11, and is necessary for vulval morphogenesis. Together, these findings demonstrate that temporal regulation of lin-11 is crucial for the wild-type vulval patterning.
Collapse
Affiliation(s)
- Bhagwati P Gupta
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
114
|
van Meyel DJ, Thomas JB, Agulnick AD. Ssdp proteins bind to LIM-interacting co-factors and regulate the activity of LIM-homeodomain protein complexes in vivo. Development 2003; 130:1915-25. [PMID: 12642495 DOI: 10.1242/dev.00389] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
LIM-homeodomain transcription factors control a variety of developmental processes, and are assembled into functional complexes with the LIM-binding co-factor Ldb1 (in mouse) or Chip (in Drosophila). We describe the identification and characterization of members of the Ssdp family of proteins, which we show to interact with Ldb1 and Chip. The N terminus of Ssdp is highly conserved among species and binds a highly conserved domain within Ldb1/Chip that is distinct from the domains required for LIM binding and self-dimerization. In Drosophila, Ssdp is expressed in the developing nervous system and imaginal tissues, and it is capable of modifying the in vivo activity of complexes comprised of Chip and the LIM-homeodomain protein Apterous. Null mutations of the ssdp gene are cell-lethal in clones of cells within the developing wing disc. However, clones mutant for a hypomorphic allele give rise to ectopic margins, wing outgrowth and cell identity defects similar to those produced by mutant clones of Chip or apterous. Ssdp and Ldb/Chip each show structural similarity to two Arabidopsis proteins that cooperate with one another to regulate gene expression during flower development, suggesting that the molecular interactions between Ssdp and Ldb/Chip proteins are evolutionarily ancient and supply a fundamental function in the regulated control of transcription.
Collapse
Affiliation(s)
- Donald J van Meyel
- The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | | | | |
Collapse
|
115
|
Herrero P, Magariños M, Torroja L, Canal I. Neurosecretory identity conferred by the apterous gene: lateral horn leucokinin neurons in Drosophila. J Comp Neurol 2003; 457:123-32. [PMID: 12541314 DOI: 10.1002/cne.10555] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The LIM-HD protein Apterous has been shown to regulate expression of the FMRFamide neuropeptide in Drosophila neurons (Benveniste et al. [1998] Development 125:4757-4765). To test whether Apterous has a broader role in controlling neurosecretory identity, we analyzed the expression of several neuropeptides in apterous (ap) mutants. We show that Apterous is necessary for expression of the Leucokinin neuropeptide in a pair of brain neurons located in the lateral horn region of the protocerebrum (LHLK neurons). ap null mutants are depleted of Leucokinin in these cells, whereas hypomorphic mutants show reduced Leucokinin expression. Other Leucokinin-containing neurons are not affected by mutations in ap gene. Co-expression of apterous and Leucokinin is observed exclusively in the LHLK neurons, from larval stages to adulthood. Rescue assays performed in null ap mutants, by expressing Apterous protein under apGAL4 and elavGAL4 drivers, demonstrate the recovery of Leucokinin in the LHLK neurons. These results reinforce the emerging role of the LIM-HD proteins in determining neuronal identity. They also clarify the neuroendocrine phenotype of apterous mutants.
Collapse
Affiliation(s)
- Pilar Herrero
- Departamento de Biología, Fisiología Animal, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
116
|
Bulchand S, Subramanian L, Tole S. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev Dyn 2003; 226:460-9. [PMID: 12619132 DOI: 10.1002/dvdy.10235] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
LIM-homeodomain (LIM-HD) genes encode a family of transcription factors known to be involved in development and patterning in several systems. Previously, we have shown that LIM-HD gene Lhx2 is required for the formation of a crucial boundary in the dorsal telencephalon (Bulchand et al. [2001] Mech Dev 100:165-175). To further explore the role of LIM-HD genes as well as the broader LIM gene family in dorsal telencephalic development, we examined the expression pattern of the members of this gene family and their cofactors in the developing mouse cerebral cortex. Transcription factor activity of the LIM-HD proteins requires the formation of a tetrameric complex consisting of two LIM-HD molecules linked by a dimer of cofactor (Clim) molecules. LIM-only (Lmo) proteins can interfere with this process by competing for the cofactors. LIM-HD protein function, thus, can be modulated by the presence of the appropriate Clim or Lmo molecules. At least 13 LIM-HD, 4 Lmo, and 2 Clim genes have been identified in the mouse. Several of these genes exhibit complex spatiotemporal patterns spanning different stages of cortical development, from embryonic to postnatal ages. Noteworthy features of the expression patterns include delineation of boundaries within the developing cortex, up- or down-regulation during formation of selected cortical layers, and a striking complementarity of expression of several members consistent with specific functions in cortical development. Significantly, in some cases, Lmo or Clim gene expression is robust where no LIM-HD gene expression is detectable. These results suggest multiple and distinct roles for LIM-HD, Lmo, and Clim genes in cortical development, and also support a LIM-HD-independent role for some Lmo and Clim members.
Collapse
|
117
|
Whitworth AJ, Russell S. Temporally dynamic response to Wingless directs the sequential elaboration of the proximodistal axis of the Drosophila wing. Dev Biol 2003; 254:277-88. [PMID: 12591247 DOI: 10.1016/s0012-1606(02)00036-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila wing imaginal disc gives rise to three main regions along the proximodistal axis of the dorsal mesothoracic segment: the notum, proximal wing, and wing blade. Development of the wing blade requires the Notch and wingless signalling pathways to activate vestigial at the dorsoventral boundary. However, in the proximal wing, Wingless activates a different subset of genes, e.g., homothorax. This raises the question of how the downstream response to Wingless signalling differentiates between proximal and distal fate specification. Here, we show that a temporally dynamic response to Wingless signalling sequentially elaborates the proximodistal axis. In the second instar, Wingless activates genes involved in proximal wing development; later in the third instar, Wingless acts to direct the differentiation of the distal wing blade. The expression of a novel marker for proximal wing fate, zfh-2, is initially activated by Wingless throughout the "wing primordium," but later is repressed by the activity of Vestigial and Nubbin, which together define a more distal domain. Thus, activation of a distal developmental program is antagonistic to previously established proximal fate. In addition, Wingless is required early to establish proximal fate, but later when Wingless activates distal differentiation, development of proximal fate becomes independent of Wingless signalling. Since P-element insertions in the zfh-2 gene result in a revertable proximal wing deletion phenotype, it appears that zfh-2 activity is required for correct proximal wing development. Our data are consistent with a model in which Wingless first establishes a proximal appendage fate over notum, then the downstream response changes to direct the differentiation of a more distal fate over proximal. Thus, the proximodistal domains are patterned in sequence and show a distal dominance.
Collapse
|
118
|
Milán M, Cohen SM. A re-evaluation of the contributions of Apterous and Notch to the dorsoventral lineage restriction boundary in the Drosophila wing. Development 2003; 130:553-62. [PMID: 12490561 DOI: 10.1242/dev.00276] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila limb primordia are subdivided into compartments: cell populations that do not mix during development. The wing is subdivided into dorsal (D) and ventral (V) compartments by the activity of the selector gene apterous in D cells. Apterous causes segregation of D and V cell populations by at least two distinct mechanisms. The LRR transmembrane proteins Capricious and Tartan are transiently expressed in D cells and contribute to initial segregation of D and V cells. Signaling between D and V cells mediated by Notch and Fringe contributes to the maintenance of the DV affinity boundary. Given that Notch is activated symmetrically, in D and V cells adjacent to the boundary, its role in boundary formation remains somewhat unclear. We re-examine the roles of Apterous and Fringe activities in DV boundary formation and present evidence that Fringe cannot, by itself, generate an affinity difference between D and V cells. Although not sufficient, Fringe is required via Notch activation for expression of an Apterous-dependent affinity difference. We propose that Apterous controls expression of surface proteins that confer an affinity difference in conjunction with activated Notch. Thus, we view Apterous as instructive and Notch activity as essential, but permissive.
Collapse
Affiliation(s)
- Marco Milán
- European Molecular Biology Laboratory, Meyerhofstr 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
119
|
Delanoue R, Zider A, Cossard R, Dutriaux A, Silber J. Interaction between apterous and early expression of vestigial in formation of the dorso-ventral compartments in the Drosophila wing disc. Genes Cells 2002; 7:1255-66. [PMID: 12485165 DOI: 10.1046/j.1365-2443.2002.00600.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Compartment formation is a developmental process that requires the existence of barriers against intermixing between cell groups. In the Drosophila wing disc, the dorso-ventral (D/V) compartment boundary is defined by the expression of the apterous (ap) selector gene in the dorsal compartment. AP activity is under control of dLMO which destabilizes the formation of the AP-CHIP complex. RESULTS We report that D/V boundary formation in the wing disc also depends on early expression of vestigial (vg). Our data suggest that vg is already required for wing cell proliferation before D/V compartmentalization. In addition, we show that over-expression of vg can, to some extent, rescue the effect of the absence of ap on D/V boundary formation. Early VG product regulates AP activity by inducing dLMO and thus indirectly regulating ap target genes such as fringe and the PSalpha1 and PSalpha2 integrins. CONCLUSION Normal cell proliferation is necessary for ap expression at the level of the D/V boundary. This would be mediated by vg, which interacts in a dose-dependent way with ap.
Collapse
Affiliation(s)
- Rénald Delanoue
- Institut Jacques Monod, Tour 43, 2 Place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
120
|
Adachi-Yamada T, O'Connor MB. Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Dev Biol 2002; 251:74-90. [PMID: 12413899 DOI: 10.1006/dbio.2002.0821] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Smooth gradients of the morphogens Hh, Dpp, and Wg are required for proper development of Drosophila imaginal discs. Here, it is reported that, when a discontinuity is generated between two adjacent cells in the reception of either the Dpp or Wg signal, then cells on either side of the discontinuity boundary undergo apoptosis by activating the c-Jun N-terminal Kinase (JNK) pathway. Furthermore, in the medial region of the wing imaginal disc, the JNK pathway is also activated if cells do not receive the proper levels of Dpp and Hh signals. These observations suggest that cells within a developing field have the ability to access their spatial positions by comparing the level of morphogen signal they receive with that of their neighbors. This phenomenon is likely related to the process of cell competition, and we suggest that it is an evolutionarily important mechanism that helps prevent abnormal tissue specification and growth during development.
Collapse
Affiliation(s)
- Takashi Adachi-Yamada
- Department of Sciences for Natural Environment, Faculty of Human Development, Kobe University, Japan
| | | |
Collapse
|
121
|
Abstract
The topographic assembly of neural circuits is dependent upon the generation of specific neuronal subtypes, each subtype displaying unique properties that direct the formation of selective connections with appropriate target cells. Studies of motor neuron development in the spinal cord have begun to elucidate the molecular mechanisms involved in controlling motor projections. In this review, we first describe the actions of transcription factors within motor neuron progenitors, which initiate a cascade of transcriptional interactions that lead to motor neuron specification. We next highlight the contribution of the LIM homeodomain (LIM-HD) transcription factors in establishing motor neuron subtype identity. Importantly, it has recently been shown that the combinatorial expression of LIM-HD transcription factors, the LIM code, confers motor neuron subtypes with the ability to select specific axon pathways to reach their distinct muscle targets. Finally, the downstream targets of the LIM code are discussed, especially in the context of subtype-specific motor axon pathfinding.
Collapse
Affiliation(s)
- Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
122
|
Glise B, Jones DL, Ingham PW. Notch and Wingless modulate the response of cells to Hedgehog signalling in the Drosophila wing. Dev Biol 2002; 248:93-106. [PMID: 12142023 DOI: 10.1006/dbio.2002.0720] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.
Collapse
Affiliation(s)
- Bruno Glise
- MRC Intercellular Signalling Group, Centre for Developmental Genetics, University School of Medicine and Biomedical Science, Sheffield, United Kingdom
| | | | | |
Collapse
|
123
|
Abstract
During development of multicellular organisms, cells are often eliminated by apoptosis if they fail to receive appropriate signals from their surroundings. Here, we report on short-range cell interactions that support cell survival in the Drosophila wing imaginal disc. We present evidence showing that cells incorrectly specified for their position undergo apoptosis because they fail to express specific proteins that are found on surrounding cells, including the LRR transmembrane proteins Capricious and Tartan. Interestingly, only the extracellular domains of Capricious and Tartan are required, suggesting that a bidirectional process of cell communication is involved in triggering apoptosis. We also present evidence showing that activation of the Notch signal transduction pathway is involved in triggering apoptosis of cells misspecified for their dorsal-ventral position.
Collapse
Affiliation(s)
- Marco Milán
- European Molecular Biology Laboratory, Meyerhofstr 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
124
|
Abstract
The wing imaginal disc comprises the primordia of the adult wing and the dorsal thoracic body wall. During second larval instar, the wing disc is subdivided into distinct domains that correspond to the presumptive wing and body wall. Early activity of the signaling protein Wingless has been implicated in the specification of the wing primordium. Wingless mutants can produce animals in which the wing is replaced by a duplication of thoracic structures. Specification of wing fate has been visualized by expression of the POU-homeodomain protein Nubbin in the presumptive wing territory and by repression of the homeodomain protein Homothorax. We report that repression of the zinc-finger transcription factor Teashirt (Tsh) is the earliest event in wing specification. Repression of Tsh by the combined action of Wingless and Decapentaplegic is required for wing pouch formation and for subsequent repression of Hth. Thus, repression of Tsh defines the presumptive wing earlier in development than repression of Hth, which must therefore be considered a secondary event.
Collapse
Affiliation(s)
- Jun Wu
- Developmental Biology program, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
125
|
Zecca M, Struhl G. Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development 2002; 129:1357-68. [PMID: 11880345 DOI: 10.1242/dev.129.6.1357] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate apterous (ap) expression, thereby segregating the wing disc into D (ap-ON) and V (ap-OFF) compartments. Similarly, we demonstrate that EGFR signaling directs the expression of Iroquois Complex (Iro-C) genes in prospective notum cells, rendering them distinct from, and immiscible with, neighboring wing cells. However, EGFR signaling acts only early in development to heritably activate ap, whereas it is required persistently during subsequent development to maintain Iro-C gene expression. Hence, as the disc grows, the DV compartment boundary can shift ventrally, beyond the range of the instructive EGFR signal(s), in contrast to the notum-wing boundary, which continues to be defined by EGFR input.
Collapse
Affiliation(s)
- Myriam Zecca
- Department of Genetics and Development, Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
126
|
Peña-Rangel MT, Rodriguez I, Riesgo-Escovar JR. A misexpression study examining dorsal thorax formation in Drosophila melanogaster. Genetics 2002; 160:1035-50. [PMID: 11901120 PMCID: PMC1462010 DOI: 10.1093/genetics/160.3.1035] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied thorax formation in Drosophila melanogaster using a misexpression screen with EP lines and thoracic Gal4 drivers that provide a genetically sensitized background. We identified 191 interacting lines showing alterations of thoracic bristles (number and/or location), thorax and scutellum malformations, lethality, or suppression of the thoracic phenotype used in the screen. We analyzed these lines and showed that known genes with different functional roles (selector, prepattern, proneural, cell cycle regulation, lineage restriction, signaling pathways, transcriptional control, and chromatin organization) are among the modifier lines. A few lines have previously been identified in thorax formation, but others, such as chromatin-remodeling complex genes, are novel. However, most of the interacting loci are uncharacterized, providing a wealth of new genetic data. We also describe one such novel line, poco pelo (ppo), where both misexpression and loss-of-function phenotypes are similar: loss of bristles and scutellum malformation.
Collapse
Affiliation(s)
- María Teresa Peña-Rangel
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, 76230, México
| | | | | |
Collapse
|
127
|
Bergman CM, Pfeiffer BD, Rincón-Limas DE, Hoskins RA, Gnirke A, Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M, Wan K, George RA, de Jong PJ, Botas J, Rubin GM, Celniker SE. Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 2002; 3:RESEARCH0086. [PMID: 12537575 PMCID: PMC151188 DOI: 10.1186/gb-2002-3-12-research0086] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 11/25/2002] [Accepted: 12/05/2002] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. RESULTS We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences. CONCLUSIONS Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone.
Collapse
Affiliation(s)
- Casey M Bergman
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- These authors contributed equally to this work
| | - Barret D Pfeiffer
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- These authors contributed equally to this work
| | - Diego E Rincón-Limas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Current address: Departamento de Biologia Molecular, Universidad Autonoma de Tamaulipas-UAMRA, Reynosa, CP 88740, Mexico
| | - Roger A Hoskins
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | | | - Chris J Mungall
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Adrienne M Wang
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Current address: Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Brent Kronmiller
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Current address: Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Joanne Pacleb
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Soo Park
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark Stapleton
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Kenneth Wan
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Reed A George
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Pieter J de Jong
- Children's Hospital and Research Center at Oakland, Oakland, CA 94609, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald M Rubin
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
128
|
Abstract
Apterous is a LIM-homeodomain protein that confers dorsal compartment identity in Drosophila wing development. Apterous activity requires formation of a complex with a co-factor, Chip/dLDB. Apterous activity is regulated during wing development by dLMO, which competes with Apterous for complex formation. Here, we present evidence that complex formation between Apterous, Chip and DNA stabilizes Apterous protein in vivo. We also report that a difference in the ability of Chip to bind the LIM domains of Apterous and dLMO contributes to regulation of activity levels in vivo.
Collapse
Affiliation(s)
- U Weihe
- European Molecular Biology Laboratory, Meyerhofstr 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
129
|
Milán M, Weihe U, Pérez L, Cohen SM. The LRR proteins capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell 2001; 106:785-94. [PMID: 11572783 DOI: 10.1016/s0092-8674(01)00489-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mechanisms to segregate cell populations play important roles in tissue patterning during animal development. Rhombomeres and compartments in the ectoderm and imaginal discs of Drosophila are examples in which initially homogenous populations of cells come to be separated by boundaries of lineage restriction. Boundary formation depends in part on signaling between the distinctly specified cell populations that comprise compartments and in part on formation of affinity boundaries that prevent intermingling of these cell populations. Here, we present evidence that two transmembrane proteins with leucine-rich repeats, known as Capricious and Tartan, contribute to formation of the affinity boundary between dorsal and ventral compartments during Drosophila wing development.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | | | |
Collapse
|
130
|
Milán M, Weihe U, Tiong S, Bender W, Cohen SM. msh specifies dorsal cell fate in the Drosophila wing. Development 2001; 128:3263-8. [PMID: 11546743 DOI: 10.1242/dev.128.17.3263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila limbs develop from imaginal discs that are subdivided into compartments. Dorsal-ventral subdivision of the wing imaginal disc depends on apterous activity in dorsal cells. Apterous protein is expressed in dorsal cells and is responsible for (1) induction of a signaling center along the dorsal-ventral compartment boundary (2) establishment of a lineage restriction boundary between compartments and (3) specification of dorsal cell fate. Here, we report that the homeobox gene msh (muscle segment homeobox) acts downstream of apterous to confer dorsal identity in wing development.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
131
|
Richard DS, Gilbert M, Crum B, Hollinshead DM, Schelble S, Scheswohl D. Yolk protein endocytosis by oocytes in Drosophila melanogaster: immunofluorescent localization of clathrin, adaptin and the yolk protein receptor. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:715-723. [PMID: 11356418 DOI: 10.1016/s0022-1910(00)00165-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The process of yolk protein (YP) uptake by developing oocytes in Drosophila melanogaster has been investigated by immunofluorescent localization of the endocytosis proteins, clathrin, alpha-adaptin and the putative yolk protein receptor (YP receptor). Data suggests that YPs from the follicle cells are trafficked into the oocyte during early stages of vitellogenesis, and that hemolymph YPs are sequestered by nurse cells adjacent to the developing oocyte during late stages of vitellogenesis. Yolk proteins were immunolocalized to both follicle cells and nurse cells during these processes. Diapausing female Drosophila melanogaster undergo a pre-vitellogenic arrest of ovarian development associated with the absence of ovarian alpha-adaptin, clathrin and putative YP receptor. Diapause termination by transfer of whole animals from 11 degrees C to 25 degrees C, or by 20-hydroxyecdysone injection, results in the appearance of immunopositive material in the nurse cells for all three proteins between 12 h and 16 h post upshift and within four days of injection. Immunopositive material was not noted in the follicle cells during diapause termination. In vitro warming of diapausing ovaries, or incubation in the presence of 1 &mgr;M 20-hydroxyecdysone failed to initiate early vitellogenic development suggesting that diapause termination requires factor(s) external to the ovary. Western blotting analysis of extracts of 24 h post-eclosion wild type and ap(56f) females identified putative yolk protein receptor with a molecular weight of 208 kDa and clathrin with a molecular weight of 178 kDa.
Collapse
Affiliation(s)
- D S. Richard
- Department of Biology, Susquehanna University, 17870, Selinsgrove, PA, USA
| | | | | | | | | | | |
Collapse
|
132
|
Capovilla M, Kambris Z, Botas J. Direct regulation of the muscle-identity gene apterous by a Hox protein in the somatic mesoderm. Development 2001; 128:1221-30. [PMID: 11262224 DOI: 10.1242/dev.128.8.1221] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes control segment identity in the mesoderm as well as in other tissues. Most evidence indicates that Hox genes act cell-autonomously in muscle development, although this remains a controversial issue. We show that apterous expression in the somatic mesoderm is under direct Hox control. We have identified a small enhancer element of apterous (apME680) that regulates reporter gene expression in the LT1-4 muscle progenitors. We show that the product of the Hox gene Antennapedia is present in the somatic mesoderm of the second and third thoracic segments. Through complementary alterations in the Antennapedia protein and in its binding sites on apME680, we show that Antennapedia positively regulates apterous in a direct manner, demonstrating unambiguously its cell-autonomous role in muscle development. Finally, we determine that LT1-4 muscles contain more nuclei in the thorax than in the abdomen and we propose that one of the segmental differences under Hox control is the number of myoblasts allocated to the formation of specific muscles in different segments.
Collapse
Affiliation(s)
- M Capovilla
- Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, 67084 Strasbourg, France.
| | | | | |
Collapse
|
133
|
Abstract
The developing wing disc of Drosophila is divided into distinct lineage-restricted compartments along both the anterior/posterior (A/P) and dorsal/ventral (D/V) axes. At compartment boundaries, morphogenic signals pattern the disc epithelium and direct appropriate outgrowth and differentiation of adult wing structures. The mechanisms by which affinity boundaries are established and maintained, however, are not completely understood. Compartment-specific adhesive differences and inter-compartment signaling have both been implicated in this process. The selector gene apterous (ap) is expressed in dorsal cells of the wing disc and is essential for D/V compartmentalization, wing margin formation, wing outgrowth and dorsal-specific wing structures. To better understand the mechanisms of Ap function and compartment formation, we have rescued aspects of the ap mutant phenotype with genes known to be downstream of Ap. We show that Fringe (Fng), a secreted protein involved in modulation of Notch signaling, is sufficient to rescue D/V compartmentalization, margin formation and wing outgrowth when appropriately expressed in an ap mutant background. When Fng and alphaPS1, a dorsally expressed integrin subunit, are co-expressed, a nearly normal-looking wing is generated. However, these wings are entirely of ventral identity. Our results demonstrate that a number of wing development features, including D/V compartmentalization and wing vein formation, can occur independently of dorsal identity and that inter-compartmental signaling, refined by Fng, plays the crucial role in maintaining the D/V affinity boundary. In addition, it is clear that key functions of the ap selector gene are mediated by only a small number of downstream effectors.
Collapse
Affiliation(s)
- D D O'Keefe
- The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | | |
Collapse
|
134
|
Abstract
Just a glance at the body of the fruit fly Drosophila reveals that it has a main body part--the trunk--and a number of specialized appendages such as legs, wings, halteres and antennae. How do Drosophila appendages develop, what gives each appendage its unique identity, and what can the fruit fly teach us about appendage development in vertebrates?
Collapse
Affiliation(s)
- G Morata
- Centro de Biología Molecular, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
135
|
Hayes WP, Yangco N, Chin H, Mill JF, Pu LP, Taira M, Dawid IB, Gallo V. Expression and regulation of the LIM-class homeobox gene rlim-1 in neuronal progenitors of the rat cerebellum. J Neurosci Res 2001; 63:237-51. [PMID: 11170173 DOI: 10.1002/1097-4547(20010201)63:3<237::aid-jnr1017>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate LIM gene function in the rat cerebellar system, we analyzed expression and regulation of the rat homologue of frog Xlim-1 (rlim-1) in vivo and in cultured cells. In developing cerebellum, peak levels of rlim-1 mRNA at postnatal day 8 (p8) are coincident with the peak period of granule cell proliferation. Analysis of rlim-1 protein with a specific antibody showed that expression was also maximal at p8. In situ hybridization showed that at p8 rlim-1 mRNA was expressed in Purkinje and granule cells. Both the proliferative and the premigratory granule cells in the external germinal zone displayed high levels of rlim-1 mRNA expression. Immunocytochemical staining demonstrated that at p8 rlim-1 protein was also present in proliferative and premigratory granule cells. In adult cerebellum (p30), rlim-1 mRNA and protein expression in granule cells was strongly attenuated. The down-regulation of rlim-1 mRNA occurred in granule cells just after the time of final division, coinciding with the onset of their migration. rlim-1 protein was detected in migratory granule neurons. The developmental decrease in rlim-1 mRNA and protein found in vivo was reproduced in pure cerebellar granule cell cultures. In these cultures, granule neurons were postmitotic 1 day after plating but still displayed high levels of rlim-1 protein expression up to 3 days in vitro. Our findings indicate that 1) rlim-1 is likely to act in concert with other genes to specify granule cell fate, 2) rlim-1 expression in granule neurons is regulated autonomously, and 3) rlim-1 protein may also play an important role in granule neuron differentiation and survival. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- W P Hayes
- Department of Biology, Catholic University of America, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
The Lyra mutation was first described by Jerry Coyne in 1935. Lyra causes recessive pupal lethality and adult heterozygous Lyra mutants exhibit a dominant loss of the anterior and posterior wing margins. Unlike many mutations that cause loss of wing tissue (e.g., scalloped, Beadex, cut, and apterous-Xasta), Lyra wing discs do not exhibit increased necrotic or apoptotic cell death, nor do they show altered BrdU incorporation. However, during wing disc eversion, loss of the anterior and posterior wing margins is apparent. We have previously shown that senseless, a gene that is necessary and sufficient for peripheral nervous system (PNS) development, is allelic to Lyra. Here we show by several genetic criteria that Lyra alleles are neomorphic alleles of senseless that cause ectopic expression of SENSELESS in the wing pouch. Similarly, overexpression of SENSELESS in the wing disc causes loss of wing margin tissue, thereby mimicking the Lyra phenotype. Lyra mutants display aberrant expression of DELTA, VESTIGIAL, WINGLESS, and CUT. As in Lyra mutants, overexpression of SENSELESS in some areas of the wing pouch also leads to loss of WINGLESS and CUT. In summary, our data indicate that overexpression of SENSELESS causes a severe reduction in NOTCH signaling that in turn may lead to decreased transcription of several key genes required for wing development, leading to a failure in cell proliferation and loss of wing margin tissue.
Collapse
Affiliation(s)
- R Nolo
- Howard Hughes Medical Institute, Program in Developmental Biology, Division of Neuroscience, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
137
|
Ghazi A, Anant S, VijayRaghavan K. Apterous mediates development of direct flight muscles autonomously and indirect flight muscles through epidermal cues. Development 2000; 127:5309-18. [PMID: 11076753 DOI: 10.1242/dev.127.24.5309] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two physiologically distinct types of muscles, the direct and indirect flight muscles, develop from myoblasts associated with the Drosophila wing disc. We show that the direct flight muscles are specified by the expression of Apterous, a Lim homeodomain protein, in groups of myoblasts. This suggests a mechanism of cell-fate specification by labelling groups of fusion competent myoblasts, in contrast to mechanisms in the embryo, where muscle cell fate is specified by single founder myoblasts. In addition, Apterous is expressed in the developing adult epidermal muscle attachment sites. Here, it functions to regulate the expression of stripe, a gene that is an important element of early patterning of muscle fibres, from the epidermis. Our results, which may have broad implications, suggest novel mechanisms of muscle patterning in the adult, in contrast to embryonic myogenesis.
Collapse
Affiliation(s)
- A Ghazi
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | | | | |
Collapse
|
138
|
Abstract
Xlim-1, a LIM class homeobox gene expressed in Xenopus laevis, is one of the earliest known marker genes of pronephros development and is expressed in pronephros rudiment. In this study, we examined the role of Xlim-1 in pronephros development. Temporal expression of Xlim-1 in explants was analyzed in a series of induction assays using RT-PCR analysis. Xlim-1 was expressed 9 to 15 h after activin/retinoic acid treatment, corresponding to pronephros differentiation in explants. We further examined the role of Xlim-1 using a series of microinjection experiments. Presumptive pronephric anlagen of embryos were injected with various Xlim-1 mutants, and effects of these Xlim-1 mutants on pronephrogenesis in embryos and in explants were analyzed by RT-PCR and immunohistochemistry. Dominant-negative Xlim-1 inhibited differentiation of pronephros in activin/retinoic acid-treated animal caps. In embryos injected with a dominant-negative form of Xlim-1, development of pronephric tubules was inhibited at the late tail-bud stage. Our results suggest that Xlim-1 may not initiate differentiation of the pronephros, but that it is necessary for growth and elongation in the development of pronephric tubules.
Collapse
Affiliation(s)
- T C Chan
- Department of Life Sciences, CREST, Graduate School of Arts and Sciences, Japan Science and Technology Corporation, University of Tokyo, 3-8-1 Komaba, Meguro-ku,Tokyo, 153-8902, Japan
| | | | | |
Collapse
|
139
|
Pueyo JI, Galindo MI, Bishop SA, Couso JP. Proximal-distal leg development in Drosophila requires the apterous gene and the Lim1 homologue dlim1. Development 2000; 127:5391-402. [PMID: 11076760 DOI: 10.1242/dev.127.24.5391] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proximal-distal leg development in Drosophila involves a battery of genes expressed and required in specific proximal-distal (PD) domains of the appendage. Here we report the characterisation of a new gene of this type, dlim1, a member of the Lhx family of genes whose proteins contain two Lim domains and a homeodomain. We show that the Lhx gene apterous (ap) is also required for PD leg development, and we study the functional interactions between ap, dlim1 and other PD genes during leg development. Our results show that a regulatory network formed by ap and dlim1 plus the homeobox genes aristaless and Bar specifies distal leg cell fates in Drosophila.
Collapse
Affiliation(s)
- J I Pueyo
- School of Biological Sciences, Royal Holloway College, University of London, London, UK
| | | | | | | |
Collapse
|
140
|
Lu CH, Rincón-Limas DE, Botas J. Conserved overlapping and reciprocal expression of msh/Msx1 and apterous/Lhx2 in Drosophila and mice. Mech Dev 2000; 99:177-81. [PMID: 11091089 DOI: 10.1016/s0925-4773(00)00479-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we describe and compare the expression patterns of the murine genes Lhx2 and Msx1 and their Drosophila orthologues apterous (ap) and muscle-segment homeobox (msh). We find that Lhx2 and Msx1 show complementary patterns of expression in most tissues including the neural and cranial epithelium, pituitary gland, olfactory organs, and neural tube; in contrast, Lhx2 and Msx1 are coexpressed in the developing limbs. Strikingly, the spatial relationship between ap and msh expression in Drosophila is very reminiscent of the expression of their murine orthologues. ap and msh show complementary expression in the leg and antennal imaginal discs, brain and ventral ganglion of the central nervous system (CNS), but both are coexpressed in the wing imaginal disc. These observations suggest conservation in the regulation of these genes between Drosophila and mice.
Collapse
Affiliation(s)
- C H Lu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
141
|
Abstract
During development it is not sufficient for cells to differentiate properly--they must also become physically grouped into appropriate structures, to form skin on the outside, and blood and muscle on the inside. How does this three-dimensional patterning occur? One classic explanation for this resolution of cells and tissues into distinct three-dimensional structures has been that as cells differentiate, they develop differential adhesive properties, and that these affinity differences allow cells to sort out from one another. This classic hypothesis is being investigated with increasing intensity, as recent work on the Drosophila wing and the vertebrate brain has shown that signalling between tissues is essential for the establishment of differential affinities.
Collapse
Affiliation(s)
- H McNeill
- Developmental Patterning Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|
142
|
Wang SH, Simcox A, Campbell G. Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. Genes Dev 2000; 14:2271-6. [PMID: 10995384 PMCID: PMC316934 DOI: 10.1101/gad.827000] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cell fate decisions in the early Drosophila wing disc assign cells to compartments (anterior or posterior and dorsal or ventral) and distinguish the future wing from the body wall (notum). Here we show that EGF-receptor (EGFR) signaling stimulated by its ligand, Vein, has a fundamental role in regulating two of these cell fate choices: (1) Vn/EGFR signaling directs cells to become notum by antagonizing wing development and by activating notum-specifying genes; (2) Vn/EGFR signaling directs cells to become part of the dorsal compartment by induction of apterous, the dorsal selector gene, and consequently also controls wing development, which depends on an interaction between dorsal and ventral cells.
Collapse
Affiliation(s)
- S H Wang
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
143
|
Abstract
The process of proximal-distal (PD) patterning in animal appendages requires the generation of positional values as they grow away from the main body axes. In the Drosophila leg some PD fates are intercalated between previously existing ones. In a recent study, Kojima et al. describe a role for the homeobox gene Bar in patterning of the distal region of the leg. Their work highlights fundamental aspects of PD development, such as the fashion in which new PD values appear, the importance of regulatory relationships between PD genes, and correlation of their patterns of expression with morphogenesis and differentiation.
Collapse
Affiliation(s)
- M I Galindo
- School of Biological Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
144
|
Klein T, Seugnet L, Haenlin M, Martinez Arias A. Two different activities of Suppressor of Hairless during wing development in Drosophila. Development 2000; 127:3553-66. [PMID: 10903180 DOI: 10.1242/dev.127.16.3553] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch pathway plays a crucial and universal role in the assignation of cell fates during development. In Drosophila, Notch is a transmembrane protein that acts as a receptor of two ligands Serrate and delta. The current model of Notch signal transduction proposes that Notch is activated upon binding its ligands and that this leads to the cleavage and release of its intracellular domain (also called Nintra). Nintra translocates to the nucleus where it forms a dimeric transcription activator with the Su(H) protein. In contrast with this activation model, experiments with the vertebrate homologue of Su(H), CBF1, suggest that, in vertebrates, Nintra converts CBF1 from a repressor into an activator. Here we have assessed the role of Su(H) in Notch signalling during the development of the wing of Drosophila. Our results show that, during this process, Su(H) can activate the expression of some Notch target genes and that it can do so without the activation of the Notch pathway or the presence of Nintra. In contrast, the activation of other Notch target genes requires both Su(H) and Nintra, and, in the absence of Nintra, Su(H) acts as a repressor. We also find that the Hairless protein interacts with Notch signalling during wing development and inhibits the activity of Su(H). Our results suggest that, in Drosophila, the activation of Su(H) by Notch involve the release of Su(H) from an inhibitory complex, which contains the Hairless protein. After its release Su(H) can activate gene expression in absence of Nintra.
Collapse
Affiliation(s)
- T Klein
- Institut für Genetik, Universität zu Köln, Weyertal 121, Germany.
| | | | | | | |
Collapse
|
145
|
Parker GE, Sandoval RM, Feister HA, Bidwell JP, Rhodes SJ. The homeodomain coordinates nuclear entry of the Lhx3 neuroendocrine transcription factor and association with the nuclear matrix. J Biol Chem 2000; 275:23891-8. [PMID: 10818088 DOI: 10.1074/jbc.m000377200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LIM homeodomain transcription factors regulate development in complex organisms. To characterize the molecular signals required for the nuclear localization of these proteins, we examined the Lhx3 factor. Lhx3 is essential for pituitary organogenesis and motor neuron specification. By using functional fluorescent derivatives, we demonstrate that Lhx3 is found in both the nucleoplasm and nuclear matrix. Three nuclear localization signals were mapped within the homeodomain, and one was located in the carboxyl terminus. The homeodomain also serves as the nuclear matrix targeting sequence. No individual signal is alone required for nuclear localization of Lhx3; the signals work in combinatorial fashion. Specific combinations of these signals transferred nuclear localization to cytoplasmic proteins. Mutation of nuclear localization signals within the homeodomain inhibited Lhx3 transcriptional function. By contrast, mutation of the carboxyl-terminal signal activated Lhx3, indicating that this region is critical to transcriptional activity and may be a target of regulatory pathways. The pattern of conservation of the nuclear localization and nuclear matrix targeting signals suggests that the LIM homeodomain factors use similar mechanisms for subcellular localization. Furthermore, upon nuclear entry, association of Lhx3 with the nuclear matrix may contribute to LIM homeodomain factor interaction with other classes of transcription factors.
Collapse
Affiliation(s)
- G E Parker
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202-5132, USA
| | | | | | | | | |
Collapse
|
146
|
Milán M, Cohen SM. Temporal regulation of apterous activity during development of the Drosophila wing. Development 2000; 127:3069-78. [PMID: 10862744 DOI: 10.1242/dev.127.14.3069] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of Notch along the dorsoventral compartment boundary. We present evidence that the ability of cells to participate in this Apterous-dependent cell-interaction is under spatial and temporal control. Apterous-dependent expression of dLMO causes downregulation of Serrate and fringe and allows expression of delta in dorsal cells. This limits the time window during which dorsoventral cell interactions can lead to localized activation of Notch and induction of the dorsoventral organizer. Overactivation of Apterous in the absence of dLMO leads to overexpression of Serrate, reduced expression of delta and concomitant defects in differentiation and cell survival in the wing primordium. Thus, downregulation of Apterous activity is needed to allow normal wing development.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Germany
| | | |
Collapse
|
147
|
Abstract
We explore the transformation of antenna to leg in Drosophila melanogaster, using ectopically expressed transgenes with heat shock promoters: heat shock Antennapedia, heat shock Ultrabithorax, and heat shock mouse Hox A5. We determined the frequency of transformation of several leg markers in response to Antennapedia protein delivered by heat shock at different times and doses. We also studied stage-specific responses to the transgene, heat shock mouse Hox A5. Results show that each marker has its own stage and dose-specific pattern of response. The same marker could pass through a period of high-dose inhibition followed by a dose-independent response and then a positive dose-dependent phase. The heat shock-induced transgenes and spineless aristapedia transformed the apterous enhancer trap antenna disc expression pattern toward the pattern found in leg discs. These results are considered in relation to developmental competence-the ability of developing tissue to respond to internal or external influences. The results suggest that all genes tested interact with the same competence system and that at least two classes of mechanisms are associated with antenna to leg transformation: one comprises global mechanisms that permit transformation over approximately 24 hr; the second class of mechanisms act very locally and are responsible for changes in dose response on the order of 4-8 hr.
Collapse
Affiliation(s)
- E Larsen
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
148
|
Garoia F, Guerra D, Pezzoli MC, López-Varea A, Cavicchi S, García-Bellido A. Cell behaviour of Drosophila fat cadherin mutations in wing development. Mech Dev 2000; 94:95-109. [PMID: 10842062 DOI: 10.1016/s0925-4773(00)00306-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied several cell behaviour parameters of mutant alleles of fat (ft) in Drosophila imaginal wing disc development. Mutant imaginal discs continue growing in larvae delayed in pupariation and can reach sizes of several times those of wild-type. Their growth is, however, basically allometric. Homozygous ft cells grow faster than their twin cells in clones and generate larger territories, albeit delimited by normal clonal restrictions. Moreover, ft cells in clones tend to grow towards wing proximal regions. These behaviours can be related with failures in cell adhesiveness and cell recognition. Double mutant combinations with alleles of other genes, e.g. of the Epidermal growth factor receptor (DER) pathway, modify ft clonal phenotypes, indicating that adhesiveness is modulated by intercellular signalling. Mutant ft cells show, in addition, smaller cell sizes during proliferation and abnormal cuticular differentiation, which reflect cell membrane and cytoskeleton anomalies, which are not modulated by the DER pathway.
Collapse
Affiliation(s)
- F Garoia
- Dipartimento di Biologia Evoluzionistica Sperimentale, Universitá di Bologna, Italy
| | | | | | | | | | | |
Collapse
|
149
|
van Meyel DJ, O'Keefe DD, Thor S, Jurata LW, Gill GN, Thomas JB. Chip is an essential cofactor for apterous in the regulation of axon guidance in Drosophila. Development 2000; 127:1823-31. [PMID: 10751171 DOI: 10.1242/dev.127.9.1823] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
LIM-homeodomain transcription factors are expressed in subsets of neurons and are required for correct axon guidance and neurotransmitter identity. The LIM-homeodomain family member Apterous requires the LIM-binding protein Chip to execute patterned outgrowth of the Drosophila wing. To determine whether Chip is a general cofactor for diverse LIM-homeodomain functions in vivo, we studied its role in the embryonic nervous system. Loss-of-function Chip mutations cause defects in neurotransmitter production that mimic apterous and islet mutants. Chip is also required cell-autonomously by Apterous-expressing neurons for proper axon guidance, and requires both a homodimerization domain and a LIM interaction domain to function appropriately. Using a Chip/Apterous chimeric molecule lacking domains normally required for their interaction, we reconstituted the complex and rescued the axon guidance defects of apterous mutants, of Chip mutants and of embryos doubly mutant for both apterous and Chip. Our results indicate that Chip participates in a range of developmental programs controlled by LIM-homeodomain proteins and that a tetrameric complex comprising two Apterous molecules bridged by a Chip homodimer is the functional unit through which Apterous acts during neuronal differentiation.
Collapse
Affiliation(s)
- D J van Meyel
- The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
Lim1, also known as Lhx1, encodes a LIM homeodomain transcription factor that is essential for head development in the mouse. As with other LIM homeodomain proteins, LIM1 has two LIM domains located N-terminal to the homeodomain, with each LIM domain containing two zinc finger motifs. LIM domains can physically interact with other proteins to form protein complexes that regulate transcription. Previous studies have suggested that LIM domains negatively regulate the transcriptional activity of their associated homeodomains. To investigate the requirement of LIM domains for LIM1 activity, we have mutated the Lim1 gene to alter the conserved amino acid residues that are required for zinc finger structure within both of the LIM domains. Although mice homozygous for this Lim1 allele express the mutant mRNA and protein appropriately, they are a phenocopy for Lim1-null mice. These results suggest that the integrity of the LIM domains is essential for LIM1 activity in mouse head development. genesis 27:12-21, 2000.
Collapse
Affiliation(s)
- S S Cheah
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|