101
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
102
|
Silov S, Zaburannyi N, Anisimova M, Ostash B. The Use of the Rare TTA Codon in Streptomyces Genes: Significance of the Codon Context? Indian J Microbiol 2020; 61:24-30. [PMID: 33505089 DOI: 10.1007/s12088-020-00902-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
Streptomycetes, Gram-positive bacteria with huge and GC-rich genomes provide an ample example of codon usage bias taken to the extreme. Particularly, in all sequenced to date streptomycete genomes leucyl codon TTA is the rarest one. It is present (usually once or twice) in 70-200 out of 7000-8000 coding sequences that make up a typical streptomycete genome. tRNALeu UAA of streptomycetes, encoded by the bldA gene, has been shown to be present in mature form only after the onset of morphological differentiation and activation of secondary metabolism. Consequently, during the early stages of cell growth, the translation of genes carrying the TTA codon can be interrupted due to the absence of tRNALeu UAA. Several reports show that mutations of TTA to synonymous codons in certain genes indeed relieve their expression from bldA dependence. However, the deletion of bldA does not always arrest the expression of TTA-containing genes. The nucleotides T/C downstream of TTA were suggested, in 2002, to favor TTA mistranslation. We tested this hypothesis using sizable datasets derived from individual Streptomyces genome and a subset of TTA+ genes for secondary metabolism known for their active expression. Our results revealed nucleotide biases downstream of NNA codons family, such as the preference for C and the avoidance of A. Yet, none of the observed biases was sufficient to claim a special case for TTA codon. Hence, the issue of codon context and TTA codon mistranslation in Streptomyces deserves further elaboration.
Collapse
Affiliation(s)
- Serhii Silov
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho Str. 4, Lviv, 79005 Ukraine
| | - Nestor Zaburannyi
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho Str. 4, Lviv, 79005 Ukraine
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho Str. 4, Lviv, 79005 Ukraine
| |
Collapse
|
103
|
Liu C, Wang J, Sun P, Yu J, Meng F, Zhang Z, Guo H, Wei C, Li X, Shen S, Wang X. Illegitimate Recombination Between Homeologous Genes in Wheat Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:1076. [PMID: 32849677 PMCID: PMC7396543 DOI: 10.3389/fpls.2020.01076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 05/30/2023]
Abstract
Polyploidies produce a large number of duplicated regions and genes in genomes, which have a long-term impact and stimulate genetic innovation. The high similarity between homeologous chromosomes, forming different subgenomes, or homologous regions after genome repatterning, may permit illegitimate DNA recombination. Here, based on gene colinearity, we aligned the (sub)genomes of common wheat (Triticum aestivum, AABBDD genotype) and its relatives, including Triticum urartu (AA), Aegilops tauschii (DD), and T. turgidum ssp. dicoccoides (AABB) to detect the homeologous (paralogous or orthologous) colinear genes within and between (sub)genomes. Besides, we inferred more ancient paralogous regions produced by a much ancient grass-common tetraploidization. By comparing the sequence similarity between paralogous and orthologous genes, we assumed abnormality in the topology of constructed gene trees, which could be explained by gene conversion as a result of illegitimate recombination. We found large numbers of inferred converted genes (>2,000 gene pairs) suggested long-lasting genome instability of the hexaploid plant, and preferential donor roles by DD genes. Though illegitimate recombination was much restricted, duplicated genes produced by an ancient whole-genome duplication, which occurred millions of years ago, also showed evidence of likely gene conversion. As to biological function, we found that ~40% catalytic genes in colinearity, including those involved in starch biosynthesis, were likely affected by gene conversion. The present study will contribute to understanding the functional and structural innovation of the common wheat genome.
Collapse
Affiliation(s)
- Chao Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- National Key Laboratory for North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, China
| | - Pengchuan Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jigao Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Fanbo Meng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- Institute for Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhikang Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- Institute for Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chendan Wei
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xinyu Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shaoqi Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- National Key Laboratory for North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, China
- Institute for Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
104
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020. [PMID: 32531278 DOI: 10.1101/2020.01.23.916296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
105
|
Moharana KC, Venancio TM. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:726-741. [PMID: 32270526 DOI: 10.1111/tpj.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.
Collapse
Affiliation(s)
- Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
106
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020; 30:2520-2531.e7. [PMID: 32531278 PMCID: PMC7342003 DOI: 10.1016/j.cub.2020.04.070] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/31/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities. Metagenomics reveals differences in gut microbiota diversity beyond the 16S rRNA gene Apis cerana and Apis mellifera harbor distinct species and strains in their gut Diversity is much higher in A. mellifera per individual bee and within colonies Major differences in functions are related to polysaccharide degradation
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
107
|
Weldenegodguad M, Pokharel K, Ming Y, Honkatukia M, Peippo J, Reilas T, Røed KH, Kantanen J. Genome sequence and comparative analysis of reindeer (Rangifer tarandus) in northern Eurasia. Sci Rep 2020; 10:8980. [PMID: 32488117 PMCID: PMC7265531 DOI: 10.1038/s41598-020-65487-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Reindeer are semi-domesticated ruminants that have adapted to the challenging northern Eurasian environment characterized by long winters and marked annual fluctuations in daylight. We explored the genetic makeup behind their unique characteristics by de novo sequencing the genome of a male reindeer and conducted gene family analyses with nine other mammalian species. We performed a population genomics study of 23 additional reindeer representing both domestic and wild populations and several ecotypes from various geographic locations. We assembled 2.66 Gb (N50 scaffold of 5 Mb) of the estimated 2.92 Gb reindeer genome, comprising 27,332 genes. The results from the demographic history analysis suggested marked changes in the effective population size of reindeer during the Pleistocene period. We detected 160 reindeer-specific and expanded genes, of which zinc finger proteins (n = 42) and olfactory receptors (n = 13) were the most abundant. Comparative genome analyses revealed several genes that may have promoted the adaptation of reindeer, such as those involved in recombination and speciation (PRDM9), vitamin D metabolism (TRPV5, TRPV6), retinal development (PRDM1, OPN4B), circadian rhythm (GRIA1), immunity (CXCR1, CXCR2, CXCR4, IFNW1), tolerance to cold-triggered pain (SCN11A) and antler development (SILT2). The majority of these characteristic reindeer genes have been reported for the first time here. Moreover, our population genomics analysis suggested at least two independent reindeer domestication events with genetic lineages originating from different refugial regions after the Last Glacial Maximum. Taken together, our study has provided new insights into the domestication, evolution and adaptation of reindeer and has promoted novel genomic research of reindeer.
Collapse
Affiliation(s)
- Melak Weldenegodguad
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70201, Kuopio, Finland
| | - Kisun Pokharel
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
| | - Yao Ming
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Mervi Honkatukia
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
- Nordic Genetic Resource Centre - NordGen, c/o NMBU - Biovit Box 5003, Ås, NO-1432, Norway
| | - Jaana Peippo
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
| | - Tiina Reilas
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, P.O.Box 369 Centrum, 0102, Oslo, Norway
| | - Juha Kantanen
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland.
| |
Collapse
|
108
|
Simon SJ, Tschaplinski TJ, M. LeBoldus J, Keefover‐Ring K, Azeem M, Chen J, Macaya‐Sanz D, MacDonald WL, Muchero W, DiFazio SP. Host plant genetic control of associated fungal and insect species in a Populus hybrid cross. Ecol Evol 2020; 10:5119-5134. [PMID: 32551087 PMCID: PMC7297788 DOI: 10.1002/ece3.6266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 11/10/2022] Open
Abstract
Plants employ a diverse set of defense mechanisms to mediate interactions with insects and fungi. These relationships can leave lasting impacts on host plant genome structure such as rapid expansion of gene families through tandem duplication. These genomic signatures provide important clues about the complexities of plant/biotic stress interactions and evolution. We used a pseudo-backcross hybrid family to identify quantitative trait loci (QTL) controlling associations between Populus trees and several common Populus diseases and insects. Using whole-genome sequences from each parent, we identified candidate genes that may mediate these interactions. Candidates were partially validated using mass spectrometry to identify corresponding QTL for defensive compounds. We detected significant QTL for two interacting fungal pathogens and three insects. The QTL intervals contained candidate genes potentially involved in physical and chemical mechanisms of host-plant resistance and susceptibility. In particular, we identified adjoining QTLs for a phenolic glycoside and Phyllocolpa sawfly abundance. There was also significant enrichment of recent tandem duplications in the genomic intervals of the native parent, but not the exotic parent. Tandem gene duplication may be an important mechanism for rapid response to biotic stressors, enabling trees with long juvenile periods to reach maturity despite many coevolving biotic stressors.
Collapse
Affiliation(s)
- Sandra J. Simon
- Department of BiologyWest Virginia UniversityMorgantownWest Virginia
| | - Timothy J. Tschaplinski
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Jared M. LeBoldus
- Forest Engineering, Resources & ManagementOregon State UniversityCorvallisOregon
- Botany and Plant PathologyOregon State UniversityCorvallisOregon
| | - Ken Keefover‐Ring
- Department of BotanyUniversity of Wisconsin-MadisonMadisonWisconsin
- Department of GeographyUniversity of WisconsinMadisonWisconsin
| | - Muhammad Azeem
- Department of BotanyUniversity of Wisconsin-MadisonMadisonWisconsin
- Department of GeographyUniversity of WisconsinMadisonWisconsin
- Department of ChemistryCOMSATS University IslamabadAbbottabadPakistan
| | - Jin‐Gui Chen
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - David Macaya‐Sanz
- Department of BiologyWest Virginia UniversityMorgantownWest Virginia
| | - William L. MacDonald
- Division of Plant and Soil SciencesWest Virginia UniversityMorgantownWest Virginia
| | - Wellington Muchero
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | | |
Collapse
|
109
|
Arnaiz O, Meyer E, Sperling L. ParameciumDB 2019: integrating genomic data across the genus for functional and evolutionary biology. Nucleic Acids Res 2020; 48:D599-D605. [PMID: 31733062 PMCID: PMC7145670 DOI: 10.1093/nar/gkz948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 01/28/2023] Open
Abstract
ParameciumDB (https://paramecium.i2bc.paris-saclay.fr) is a community model organism database for the genome and genetics of the ciliate Paramecium. ParameciumDB development relies on the GMOD (www.gmod.org) toolkit. The ParameciumDB web site has been publicly available since 2006 when the P. tetraurelia somatic genome sequence was released, revealing that a series of whole genome duplications punctuated the evolutionary history of the species. The genome is linked to available genetic data and stocks. ParameciumDB has undergone major changes in its content and website since the last update published in 2011. Genomes from multiple Paramecium species, especially from the P. aurelia complex, are now included in ParameciumDB. A new modern web interface accompanies this transition to a database for the whole Paramecium genus. Gene pages have been enriched with orthology relationships, among the Paramecium species and with a panel of model organisms across the eukaryotic tree. This update also presents expert curation of Paramecium mitochondrial genomes.
Collapse
Affiliation(s)
- Olivier Arnaiz
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence may also be addressed to Olivier Arnaiz.
| | - Eric Meyer
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Linda Sperling
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- To whom correspondence should be addressed.
| |
Collapse
|
110
|
Forsberg F, Brunet A, Ali TML, Collas P. Interplay of lamin A and lamin B LADs on the radial positioning of chromatin. Nucleus 2020; 10:7-20. [PMID: 30663495 PMCID: PMC6363278 DOI: 10.1080/19491034.2019.1570810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immunosuppressive drugs such as cyclosporin A (CsA) can elicit hepatotoxicity by affecting gene expression. Here, we address the link between CsA and large-scale chromatin organization in HepG2 hepatocarcinoma cells. We show the existence of lamina-associated domains (LADs) interacting with lamin A, lamin B, or both. These ‘A-B’, ‘A-only’ and ‘B-only’ LADs display distinct fates after CsA treatment: A-B LADs remain constitutive or lose A, A-only LADs mainly lose A or switch to B, and B-only LADs remain B-only or acquire A. LAD rearrangement is overall uncoupled from changes in gene expression. Three-dimensional (3D) genome modeling predicts changes in radial positioning of LADs as LADs switch identities, which are corroborated by fluorescence in situ hybridization. Our results reveal interplay between A- and B-type lamins on radial locus positioning, suggesting complementary contributions to large-scale genome architecture. The data also unveil a hitherto unsuspected impact of cytotoxic drugs on genome conformation.Abbreviations: ChIP-seq: chromatin immunoprecipitation sequencing; CsA: cyclosporin A; FISH; fluorescence in situ hybridization; ICMT: isoprenylcysteine methyltransferase; LAD: lamina-associated domain; TAD: topologically-associated domain
Collapse
Affiliation(s)
- Frida Forsberg
- a Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Annaël Brunet
- a Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Tharvesh M Liyakat Ali
- a Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Philippe Collas
- a Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine , University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
111
|
Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLoS One 2020; 15:e0225808. [PMID: 32396560 PMCID: PMC7217449 DOI: 10.1371/journal.pone.0225808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Peronospora effusa (previously known as P. farinosa f. sp. spinaciae, and here referred to as Pfs) is an obligate biotrophic oomycete that causes downy mildew on spinach (Spinacia oleracea). To combat this destructive many disease resistant cultivars have been bred and used. However, new Pfs races rapidly break the employed resistance genes. To get insight into the gene repertoire of Pfs and identify infection-related genes, the genome of the first reference race, Pfs1, was sequenced, assembled, and annotated. Due to the obligate biotrophic nature of this pathogen, material for DNA isolation can only be collected from infected spinach leaves that, however, also contain many other microorganisms. The obtained sequences can, therefore, be considered a metagenome. To filter and obtain Pfs sequences we utilized the CAT tool to taxonomically annotate ORFs residing on long sequences of a genome pre-assembly. This study is the first to show that CAT filtering performs well on eukaryotic contigs. Based on the taxonomy, determined on multiple ORFs, contaminating long sequences and corresponding reads were removed from the metagenome. Filtered reads were re-assembled to provide a clean and improved Pfs genome sequence of 32.4 Mbp consisting of 8,635 scaffolds. Transcript sequencing of a range of infection time points aided the prediction of a total of 13,277 gene models, including 99 RxLR(-like) effector, and 14 putative Crinkler genes. Comparative analysis identified common features in the predicted secretomes of different obligate biotrophic oomycetes, regardless of their phylogenetic distance. Their secretomes are generally smaller, compared to hemi-biotrophic and necrotrophic oomycete species. We observe a reduction in proteins involved in cell wall degradation, in Nep1-like proteins (NLPs), proteins with PAN/apple domains, and host translocated effectors. The genome of Pfs1 will be instrumental in studying downy mildew virulence and for understanding the molecular adaptations by which new isolates break spinach resistance.
Collapse
Affiliation(s)
- Joël Klein
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Manon Neilen
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Marcel van Verk
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- Crop Data Science, KeyGene, Wageningen, The Netherlands
| | - Bas E. Dutilh
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Guido Van den Ackerveken
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
112
|
Nduva GM, Hassan AS, Nazziwa J, Graham SM, Esbjörnsson J, Sanders EJ. HIV-1 Transmission Patterns Within and Between Risk Groups in Coastal Kenya. Sci Rep 2020; 10:6775. [PMID: 32317722 PMCID: PMC7174422 DOI: 10.1038/s41598-020-63731-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
HIV-1 transmission patterns within and between populations at different risk of HIV-1 acquisition in Kenya are not well understood. We investigated HIV-1 transmission networks in men who have sex with men (MSM), injecting drug users (IDU), female sex workers (FSW) and heterosexuals (HET) in coastal Kenya. We used maximum-likelihood and Bayesian phylogenetics to analyse new (N = 163) and previously published (N = 495) HIV-1 polymerase sequences collected during 2005-2019. Of the 658 sequences, 131 (20%) were from MSM, 58 (9%) IDU, 109 (17%) FSW, and 360 (55%) HET. Overall, 206 (31%) sequences formed 61 clusters. Most clusters (85%) consisted of sequences from the same risk group, suggesting frequent within-group transmission. The remaining clusters were mixed between HET/MSM (7%), HET/FSW (5%), and MSM/FSW (3%) sequences. One large IDU-exclusive cluster was found, indicating an independent sub-epidemic among this group. Phylodynamic analysis of this cluster revealed a steady increase in HIV-1 infections among IDU since the estimated origin of the cluster in 1987. Our results suggest mixing between high-risk groups and heterosexual populations and could be relevant for the development of targeted HIV-1 prevention programmes in coastal Kenya.
Collapse
Affiliation(s)
- George M Nduva
- Lund University, Lund, Sweden
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Amin S Hassan
- Lund University, Lund, Sweden
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Susan M Graham
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- University of Washington, Seattle, WA, USA
| | - Joakim Esbjörnsson
- Lund University, Lund, Sweden.
- The University of Oxford, Oxford, United Kingdom.
| | - Eduard J Sanders
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
113
|
Vior NM, Cea-Torrescassana E, Eyles TH, Chandra G, Truman AW. Regulation of Bottromycin Biosynthesis Involves an Internal Transcriptional Start Site and a Cluster-Situated Modulator. Front Microbiol 2020; 11:495. [PMID: 32273872 PMCID: PMC7113386 DOI: 10.3389/fmicb.2020.00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/06/2020] [Indexed: 01/18/2023] Open
Abstract
Bottromycin is a ribosomally synthesized and post-translationally modified peptide (RiPP) produced by several streptomycetes, including the plant pathogen Streptomyces scabies. There is significant interest in this molecule as it possesses strong antibacterial activity against clinically relevant multidrug resistant pathogens and is structurally distinct from all other antibiotics. However, studies into its efficacy are hampered by poor yields. An understanding of how bottromycin biosynthesis is regulated could aid the development of strategies to increase titres. Here, we use 5′-tag-RNA-seq to identify the transcriptional organization of the gene cluster, which includes an internal transcriptional start site that precedes btmD, the gene that encodes the bottromycin precursor peptide. We show that the gene cluster does not encode a master regulator that controls pathway expression and instead encodes a regulatory gene, btmL, which functions as a modulator that specifically affects the expression of btmD but not genes up- or downstream of btmD. In order to identify non-cluster associated proteins involved in regulation, proteins were identified that bind to the main promoter of the pathway, which precedes btmC. This study provides insights into how this deceptively complex pathway is regulated in the absence of a pathway specific master regulator, and how it might coordinate with the central metabolism of the cell.
Collapse
Affiliation(s)
- Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Tom H Eyles
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
114
|
Macnar JM, Szulc NA, Kryś JD, Badaczewska-Dawid AE, Gront D. BioShell 3.0: Library for Processing Structural Biology Data. Biomolecules 2020; 10:biom10030461. [PMID: 32188163 PMCID: PMC7175226 DOI: 10.3390/biom10030461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
BioShell is an open-source package for processing biological data, particularly focused on structural applications. The package provides parsers, data structures and algorithms for handling and analyzing macromolecular sequences, structures and sequence profiles. The most frequently used routines are accessible by a set of easy-to-use command line utilities for a Linux environment. The full functionality of the package assumes knowledge of C++ or Python to assemble an application using this software library. Since the last publication that announced the version 2.0, the package has been greatly expanded and rewritten in C++ standard 11 (C++11) to improve its modularity and efficiency. A new testing platform has been implemented to continuously test the correctness and integrity of the package. More than two hundred test programs have been published to provide simple examples that can be used as templates. This makes BioShell an easy to use library that greatly speeds up development of bioinformatics applications and web services without compromising computational efficiency.
Collapse
Affiliation(s)
- Joanna M. Macnar
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.M.M.); (N.A.S.); (J.D.K.); (A.E.B.-D.)
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Stefana Banacha 2C, 02-097 Warsaw, Poland
| | - Natalia A. Szulc
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.M.M.); (N.A.S.); (J.D.K.); (A.E.B.-D.)
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Justyna D. Kryś
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.M.M.); (N.A.S.); (J.D.K.); (A.E.B.-D.)
| | - Aleksandra E. Badaczewska-Dawid
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.M.M.); (N.A.S.); (J.D.K.); (A.E.B.-D.)
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (J.M.M.); (N.A.S.); (J.D.K.); (A.E.B.-D.)
- Correspondence:
| |
Collapse
|
115
|
Abstract
Environmental exposure has a significant impact on human health. While some airborne fungi can cause life-threatening infections, the impact of environment on fungal spore dispersal and transmission is poorly understood. The democratization of shotgun metagenomics allows us to explore important questions about fungal propagation. We focus on Pneumocystis, a genus of host-specific fungi that infect mammals via airborne particles. In humans, Pneumocystis jirovecii causes lethal infections in immunocompromised patients if untreated, although its environmental reservoir and transmission route remain unclear. Environmental exposure has a significant impact on human health. While some airborne fungi can cause life-threatening infections, the impact of environment on fungal spore dispersal and transmission is poorly understood. The democratization of shotgun metagenomics allows us to explore important questions about fungal propagation. We focus on Pneumocystis, a genus of host-specific fungi that infect mammals via airborne particles. In humans, Pneumocystis jirovecii causes lethal infections in immunocompromised patients if untreated, although its environmental reservoir and transmission route remain unclear. Here, we attempt to clarify, by analyzing human exposome metagenomic data sets, whether humans are exposed to different Pneumocystis species present in the air but only P. jirovecii cells are able to replicate or whether they are selectively exposed to P. jirovecii. Our analysis supports the latter hypothesis, which is consistent with a local transmission model. These data also suggest that healthy carriers are a major driver for the transmission.
Collapse
|
116
|
The Tempo and Mode of Angiosperm Mitochondrial Genome Divergence Inferred from Intraspecific Variation in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2020; 10:1077-1086. [PMID: 31964685 PMCID: PMC7056966 DOI: 10.1534/g3.119.401023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mechanisms of sequence divergence in angiosperm mitochondrial genomes have long been enigmatic. In particular, it is difficult to reconcile the rapid divergence of intergenic regions that can make non-coding sequences almost unrecognizable even among close relatives with the unusually high levels of sequence conservation found in genic regions. It has been hypothesized that different mutation and repair mechanisms act on genic and intergenic sequences or alternatively that mutational input is relatively constant but that selection has strikingly different effects on these respective regions. To test these alternative possibilities, we analyzed mtDNA divergence within Arabidopsis thaliana, including variants from the 1001 Genomes Project and changes accrued in published mutation accumulation (MA) lines. We found that base-substitution frequencies are relatively similar for intergenic regions and synonymous sites in coding regions, whereas indel and nonsynonymous substitutions rates are greatly depressed in coding regions, supporting a conventional model in which mutation/repair mechanisms are consistent throughout the genome but differentially filtered by selection. Most types of sequence and structural changes were undetectable in 10-generation MA lines, but we found significant shifts in relative copy number across mtDNA regions for lines grown under stressed vs. benign conditions. We confirmed quantitative variation in copy number across the A. thaliana mitogenome using both whole-genome sequencing and droplet digital PCR, further undermining the classic but oversimplified model of a circular angiosperm mtDNA structure. Our results suggest that copy number variation is one of the most fluid features of angiosperm mitochondrial genomes.
Collapse
|
117
|
Larsen CN, Sun G, Li X, Zaremba S, Zhao H, He S, Zhou L, Kumar S, Desborough V, Klem EB. Mat_peptide: comprehensive annotation of mature peptides from polyproteins in five virus families. Bioinformatics 2020; 36:1627-1628. [PMID: 31609421 DOI: 10.1093/bioinformatics/btz777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Sequence repositories have few well-annotated virus mature peptide sequences. Therefore post-translational proteolytic processing of polyproteins into mature peptides (MPs) has been performed in silico, with a new computational method, for over 200 species in 5 pathogenic virus families (Caliciviridae, Coronaviridae, Flaviviridae, Picornaviridae and Togaviridae). RESULTS Using pairwise alignment with reference sequences, MPs have been annotated and their sequences made available for search, analysis and download. At publication the method had produced 156 216 sequences, a large portion of the protein sequences now available in https://www.viprbrc.org. It represents a new and comprehensive mature peptide collection. AVAILABILITY AND IMPLEMENTATION The data are available at the Virus Pathogen Resource https://www.viprbrc.org, and the software at https://github.com/VirusBRC/vipr_mat_peptide.
Collapse
Affiliation(s)
| | - Guangyu Sun
- Vecna Technologies, Inc., Greenbelt, MD 20770
| | - Xiaomei Li
- Northrop Grumman, Rockville, MD 20850, USA
| | | | | | - Sherry He
- Northrop Grumman, Rockville, MD 20850, USA
| | - Liwei Zhou
- Northrop Grumman, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
118
|
Xiao Y, Zhu Z, Li J, Yao J, Jiang H, Ran R, Li X, Li Z. Expression and prognostic value of long non-coding RNA H19 in glioma via integrated bioinformatics analyses. Aging (Albany NY) 2020; 12:3407-3430. [PMID: 32081833 PMCID: PMC7066912 DOI: 10.18632/aging.102819] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Numerous discoveries have elucidated that long noncoding RNAs (lncRNAs) play a critical role in cancer malignant progression. However, their potential involvement in gliomas remains to be explored. Herein, the expression level of lncRNA H19 in glioma tissues, and its relevance with clinical characteristics were analyzed through Oncomine. The results showed that H19 was highly expressed in glioma tissues and its expression increased with the increase of malignancy. Next, GTEx and TCGA data were downloaded for differently expressed genes (DEGs) identification, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the correlation analyses between H19 expression and clinic features. Radiation therapy had a good effect on glioblastoma multiforme (GBM), but didn't have a good effect on low grade glioma (LGG). Meanwhile, the expression level of H19 could act as an indicator molecule indicating the effect of radiotherapy. Finally, gene set enrichment analysis (GSEA) and immune infiltration analysis were conducted. It was found that H19 could affect the immune infiltration level of glioma through copy number variations, thus affecting the prognosis of glioma patients. Collectively, H19 may be involved in the occurrence and development of glioma, and has potential reference value for the relief and immunotherapy of glioma.
Collapse
Affiliation(s)
- Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Zipeng Zhu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Jianxiong Li
- Department of Chemotherapy, Chinese PLA General Hospital, Beijing 100036, P.R. China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, P.R. China
| | - Haitao Jiang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Ran Ran
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Xueyuan Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng 250000, Shandong Province, P.R. China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, P.R. China
| |
Collapse
|
119
|
Bani Baker Q, Hammad M, Al-Rashdan W, Jararweh Y, AL-Smadi M, Al-Zinati M. Comprehensive comparison of cloud-based NGS data analysis and alignment tools. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
120
|
Maldonado E, Antunes A. LMAP_S: Lightweight Multigene Alignment and Phylogeny eStimation. BMC Bioinformatics 2019; 20:739. [PMID: 31888452 PMCID: PMC6937843 DOI: 10.1186/s12859-019-3292-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/26/2019] [Indexed: 01/22/2023] Open
Abstract
Background Recent advances in genome sequencing technologies and the cost drop in high-throughput sequencing continue to give rise to a deluge of data available for downstream analyses. Among others, evolutionary biologists often make use of genomic data to uncover phenotypic diversity and adaptive evolution in protein-coding genes. Therefore, multiple sequence alignments (MSA) and phylogenetic trees (PT) need to be estimated with optimal results. However, the preparation of an initial dataset of multiple sequence file(s) (MSF) and the steps involved can be challenging when considering extensive amount of data. Thus, it becomes necessary the development of a tool that removes the potential source of error and automates the time-consuming steps of a typical workflow with high-throughput and optimal MSA and PT estimations. Results We introduce LMAP_S (Lightweight Multigene Alignment and Phylogeny eStimation), a user-friendly command-line and interactive package, designed to handle an improved alignment and phylogeny estimation workflow: MSF preparation, MSA estimation, outlier detection, refinement, consensus, phylogeny estimation, comparison and editing, among which file and directory organization, execution, manipulation of information are automated, with minimal manual user intervention. LMAP_S was developed for the workstation multi-core environment and provides a unique advantage for processing multiple datasets. Our software, proved to be efficient throughout the workflow, including, the (unlimited) handling of more than 20 datasets. Conclusions We have developed a simple and versatile LMAP_S package enabling researchers to effectively estimate multiple datasets MSAs and PTs in a high-throughput fashion. LMAP_S integrates more than 25 software providing overall more than 65 algorithm choices distributed in five stages. At minimum, one FASTA file is required within a single input directory. To our knowledge, no other software combines MSA and phylogeny estimation with as many alternatives and provides means to find optimal MSAs and phylogenies. Moreover, we used a case study comparing methodologies that highlighted the usefulness of our software. LMAP_S has been developed as an open-source package, allowing its integration into more complex open-source bioinformatics pipelines. LMAP_S package is released under GPLv3 license and is freely available at https://lmap-s.sourceforge.io/.
Collapse
Affiliation(s)
- Emanuel Maldonado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
121
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
122
|
Santos-Aberturas J, Chandra G, Frattaruolo L, Lacret R, Pham TH, Vior NM, Eyles TH, Truman AW. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 2019; 47:4624-4637. [PMID: 30916321 PMCID: PMC6511847 DOI: 10.1093/nar/gkz192] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 01/26/2023] Open
Abstract
The rational discovery of new specialized metabolites by genome mining represents a very promising strategy in the quest for new bioactive molecules. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural product that derive from genetically encoded precursor peptides. However, RiPP gene clusters are particularly refractory to reliable bioinformatic predictions due to the absence of a common biosynthetic feature across all pathways. Here, we describe RiPPER, a new tool for the family-independent identification of RiPP precursor peptides and apply this methodology to search for novel thioamidated RiPPs in Actinobacteria. Until now, thioamidation was believed to be a rare post-translational modification, which is catalyzed by a pair of proteins (YcaO and TfuA) in Archaea. In Actinobacteria, the thioviridamide-like molecules are a family of cytotoxic RiPPs that feature multiple thioamides, which are proposed to be introduced by YcaO-TfuA proteins. Using RiPPER, we show that previously undescribed RiPP gene clusters encoding YcaO and TfuA proteins are widespread in Actinobacteria and encode a highly diverse landscape of precursor peptides that are predicted to make thioamidated RiPPs. To illustrate this strategy, we describe the first rational discovery of a new structural class of thioamidated natural products, the thiovarsolins from Streptomyces varsoviensis.
Collapse
Affiliation(s)
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Luca Frattaruolo
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Rodney Lacret
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Thu H Pham
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Tom H Eyles
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
123
|
Schneeberger PHH, Fuhrimann S, Becker SL, Pothier JF, Duffy B, Beuret C, Frey JE, Utzinger J. Qualitative microbiome profiling along a wastewater system in Kampala, Uganda. Sci Rep 2019; 9:17334. [PMID: 31757984 PMCID: PMC6874685 DOI: 10.1038/s41598-019-53569-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Kampala, the capital city of Uganda, is rapidly expanding without adequate wastewater treatment facilities to accommodate the current estimated population of 1.68 million people. Hence, freshwater bodies and natural ecosystems around the city are heavily polluted with organic and inorganic contaminants. Yet, there is a paucity of data on pathogenic microorganisms, which potentially threatens health of local communities. We performed a qualitative microbial analysis using a whole metagenome sequencing approach encompassing over 150 gigabases of sequencing data to characterize the Nakivubo wastewater system, which includes a wastewater channel and surrounding wetlands. We found that microbial diversity is heterogeneous throughout the system and that three community state types could be differentiated. We showed the presence of various waterborne agents of gastrointestinal infections in humans, which were associated with leakage occurring around two locations along the wastewater channel. Our data indicate that the microbial decontamination capacity of the local wastewater treatment facility was insufficient at the time of sampling, and that several areas of the wetlands were contaminated with human pathogens, indicating that parts of the wetlands are potentially unsafe for urban agriculture.
Collapse
Affiliation(s)
- Pierre H H Schneeberger
- Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland.
- Department of Virology, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- University Health Network, Toronto, Canada.
- University of Toronto, Toronto, Canada.
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sören L Becker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Joël F Pothier
- Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Brion Duffy
- Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Christian Beuret
- Department of Virology, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Jürg E Frey
- Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
124
|
Zhang H, Zhai Y. Integrated transcriptomic and proteomic analyses of the tissues from the digestive gland of
Chlamys farreri
following cadmium exposure. J Cell Biochem 2019; 121:974-983. [DOI: 10.1002/jcb.29254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Zhang
- Institute of Metabolic Diseases Qingdao University Qingdao Shandong China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality Ministry of Agriculture Qingdao Shandong China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences National Center for Quality Supervision and Test of Aquatic Products Qingdao Shandong China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products (Qingdao) Ministry of Agriculture Qingdao Shandong China
| |
Collapse
|
125
|
Tambong JT. Taxogenomics and Systematics of the Genus Pantoea. Front Microbiol 2019; 10:2463. [PMID: 31736906 PMCID: PMC6831937 DOI: 10.3389/fmicb.2019.02463] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022] Open
Abstract
Members of the genus Pantoea are Gram-negative bacteria isolated from various environments. Taxonomic affiliation based on multilocus sequence analysis (MLSA) is used routinely for inferring accurate phylogeny and identification of bacterial species and genera. Partial sequences of five housekeeping genes (fusA, gyrB, leuS, rpoB, and pyrG) were extracted from 206 draft or complete genomes of Pantoea strains publicly available in databases and analyzed together with the representative sequences of the 25 validly published Pantoea type strains to verify and assess their phylogenetic assignations. Of a total of 159 strains assigned to species level, 11.3% of the non-type strains were incorrectly assigned within suitable Pantoea species. The highest proportion of misidentified strains was recorded in Pantoea vagans, 8 out of 15 (53.3%) inaccurate assignations at the species level. One probable reason for this incorrect classification could be the method previously used for strain identification. Forty-seven (22.8%) genome sequences were from strains identified at the genus level only (Pantoea sp.). A combination of MLSA, average nucleotide identities [ANI and MuMmer-based ANI (ANIm)], tetranucleotide usage pattern (TETRA), and genome-based DNA-DNA hybridization (gDDH) data was used to accurately assign 25 of the 47 strains to validly published Pantoea species, while 17 strains could be assigned as putative novel species within the genus Pantoea. Four genomes designed as Pantoea sp. were identified as Mixta calida. Positive and significant correlation coefficients were computed between MLSA and all the indices derived from whole-genome sequences being proposed for species delimitation. gDDH exhibited the best correlation with MLSA while TETRA was the worst. Accurate species-level identification is key to a better understanding of bacterial diversity and evolution. The MLSA scheme used here could be instrumental to determine the correct taxonomic status of new whole-genome sequenced Pantoea strains, especially non-type strains, before depositing into public databases.
Collapse
Affiliation(s)
- James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
126
|
Allan CW, Matzkin LM. Genomic analysis of the four ecologically distinct cactus host populations of Drosophila mojavensis. BMC Genomics 2019; 20:732. [PMID: 31606030 PMCID: PMC6790045 DOI: 10.1186/s12864-019-6097-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Relationships between an organism and its environment can be fundamental in the understanding how populations change over time and species arise. Local ecological conditions can shape variation at multiple levels, among these are the evolutionary history and trajectories of coding genes. This study examines the rate of molecular evolution at protein-coding genes throughout the genome in response to host adaptation in the cactophilic Drosophila mojavensis. These insects are intimately associated with cactus necroses, developing as larvae and feeding as adults in these necrotic tissues. Drosophila mojavensis is composed of four isolated populations across the deserts of western North America and each population has adapted to utilize different cacti that are chemically, nutritionally, and structurally distinct. RESULTS High coverage Illumina sequencing was performed on three previously unsequenced populations of D. mojavensis. Genomes were assembled using the previously sequenced genome of D. mojavensis from Santa Catalina Island (USA) as a template. Protein coding genes were aligned across all four populations and rates of protein evolution were determined for all loci using a several approaches. CONCLUSIONS Loci that exhibited elevated rates of molecular evolution tend to be shorter, have fewer exons, low expression, be transcriptionally responsive to cactus host use and have fixed expression differences across the four cactus host populations. Fast evolving genes were involved with metabolism, detoxification, chemosensory reception, reproduction and behavior. Results of this study give insight into the process and the genomic consequences of local ecological adaptation.
Collapse
Affiliation(s)
- Carson W Allan
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA
| | - Luciano M Matzkin
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA.
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA.
- BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ, 85721, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ, 85721, USA.
| |
Collapse
|
127
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
128
|
Lloyd Evans D, Hlongwane TT, Joshi SV, Riaño Pachón DM. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ 2019; 7:e7558. [PMID: 31579570 PMCID: PMC6764373 DOI: 10.7717/peerj.7558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chloroplast genomes provide insufficient phylogenetic information to distinguish between closely related sugarcane cultivars, due to the recent origin of many cultivars and the conserved sequence of the chloroplast. In comparison, the mitochondrial genome of plants is much larger and more plastic and could contain increased phylogenetic signals. We assembled a consensus reference mitochondrion with Illumina TruSeq synthetic long reads and Oxford Nanopore Technologies MinION long reads. Based on this assembly we also analyzed the mitochondrial transcriptomes of sugarcane and sorghum and improved the annotation of the sugarcane mitochondrion as compared with other species. METHODS Mitochondrial genomes were assembled from genomic read pools using a bait and assemble methodology. The mitogenome was exhaustively annotated using BLAST and transcript datasets were mapped with HISAT2 prior to analysis with the Integrated Genome Viewer. RESULTS The sugarcane mitochondrion is comprised of two independent chromosomes, for which there is no evidence of recombination. Based on the reference assembly from the sugarcane cultivar SP80-3280 the mitogenomes of four additional cultivars (R570, LCP85-384, RB72343 and SP70-1143) were assembled (with the SP70-1143 assembly utilizing both genomic and transcriptomic data). We demonstrate that the sugarcane plastome is completely transcribed and we assembled the chloroplast genome of SP80-3280 using transcriptomic data only. Phylogenomic analysis using mitogenomes allow closely related sugarcane cultivars to be distinguished and supports the discrimination between Saccharum officinarum and Saccharum cultum as modern sugarcane's female parent. From whole chloroplast comparisons, we demonstrate that modern sugarcane arose from a limited number of Saccharum cultum female founders. Transcriptomic and spliceosomal analyses reveal that the two chromosomes of the sugarcane mitochondrion are combined at the transcript level and that splice sites occur more frequently within gene coding regions than without. We reveal one confirmed and one potential cytoplasmic male sterility (CMS) factor in the sugarcane mitochondrion, both of which are transcribed. CONCLUSION Transcript processing in the sugarcane mitochondrion is highly complex with diverse splice events, the majority of which span the two chromosomes. PolyA baited transcripts are consistent with the use of polyadenylation for transcript degradation. For the first time we annotate two CMS factors within the sugarcane mitochondrion and demonstrate that sugarcane possesses all the molecular machinery required for CMS and rescue. A mechanism of cross-chromosomal splicing based on guide RNAs is proposed. We also demonstrate that mitogenomes can be used to perform phylogenomic studies on sugarcane cultivars.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- Cambridge Sequence Services (CSS), Waterbeach, Cambridgeshire, UK
- Department of Computer Sciences, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | | | - Shailesh V. Joshi
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Diego M. Riaño Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
129
|
Feigin CY, Newton AH, Pask AJ. Widespread cis-regulatory convergence between the extinct Tasmanian tiger and gray wolf. Genome Res 2019; 29:1648-1658. [PMID: 31533979 PMCID: PMC6771401 DOI: 10.1101/gr.244251.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
Abstract
The extinct marsupial Tasmanian tiger, or thylacine, and the eutherian gray wolf are among the most widely recognized examples of convergent evolution in mammals. Despite being distantly related, these large predators independently evolved extremely similar craniofacial morphologies, and evidence suggests that they filled similar ecological niches. Previous analyses revealed little evidence of adaptive convergence between their protein-coding genes. Thus, the genetic basis of their convergence is still unclear. Here, we identified candidate craniofacial cis-regulatory elements across vertebrates and compared their evolutionary rates in the thylacine and wolf, revealing abundant signatures of convergent positive selection. Craniofacial thylacine-wolf accelerated regions were enriched near genes involved in TGF beta (TGFB) and BMP signaling, both of which are key morphological signaling pathways with critical roles in establishing the identities and boundaries between craniofacial tissues. Similarly, enhancers of genes involved in craniofacial nerve development showed convergent selection and involvement in these pathways. Taken together, these results suggest that adaptation in cis-regulators of TGF beta and BMP signaling may provide a mechanism to explain the coevolution of developmentally and functionally integrated craniofacial structures in these species. We also found that despite major structural differences in marsupial and eutherian brains, accelerated regions in both species were common near genes with roles in brain development. Our findings support the hypothesis that, relative to protein-coding genes, positive selection on cis-regulatory elements is likely to be an essential driver of adaptive convergent evolution and may underpin thylacine-wolf phenotypic similarities.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Museums Victoria, Melbourne, Victoria 3053, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Museums Victoria, Melbourne, Victoria 3053, Australia
| |
Collapse
|
130
|
Expression induction of a class of RD26 genes by drought and salinity stresses in maize. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
131
|
Yuan H, Atta C, Tornabene L, Li C. Assexon: Assembling Exon Using Gene Capture Data. Evol Bioinform Online 2019; 15:1176934319874792. [PMID: 31523128 PMCID: PMC6732846 DOI: 10.1177/1176934319874792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Exon capture across species has been one of the most broadly applied approaches
to acquire multi-locus data in phylogenomic studies of non-model organisms.
Methods for assembling loci from short-read sequences (eg, Illumina platforms)
that rely on mapping reads to a reference genome may not be suitable for studies
comprising species across a wide phylogenetic spectrum; thus, de novo assembling
methods are more generally applied. Current approaches for assembling targeted
exons from short reads are not particularly optimized as they cannot (1)
assemble loci with low read depth, (2) handle large files efficiently, and (3)
reliably address issues with paralogs. Thus, we present Assexon: a streamlined
pipeline that de novo assembles targeted exons and their flanking sequences from
raw reads. We tested our method using reads from Lepisosteus
osseus (4.37 Gb) and Boleophthalmus pectinirostris
(2.43 Gb), which are captured using baits that were designed based on genome
sequence of Lepisosteus oculatus and Oreochromis
niloticus, respectively. We compared performance of Assexon to
PHYLUCE and HybPiper, which are commonly used pipelines to assemble
ultra-conserved element (UCE) and Hyb-seq data. A custom exon capture analysis
pipeline (CP) developed by Yuan et al was compared as well. Assexon accurately
assembled more than 3400 to 3800 (20%-28%) loci than PHYLUCE and more than 1900
to 2300 (8%-14%) loci than HybPiper across different levels of phylogenetic
divergence. Assexon ran at least twice as fast as PHYLUCE and HybPiper. Number
of loci assembled using CP was comparable with Assexon in both tests, while
Assexon ran at least 7 times faster than CP. In addition, some steps of CP
require the user’s interaction and are not fully automated, and this user time
was not counted in our calculation. Both Assexon and CP retrieved no paralogs in
the testing runs, but PHYLUCE and Hybpiper did. In conclusion, Assexon is a tool
for accurate and efficient assembling of large read sets from exon capture
experiments. Furthermore, Assexon includes scripts to filter poorly aligned
coding regions and flanking regions, calculate summary statistics of loci, and
select loci with reliable phylogenetic signal. Assexon is available at https://github.com/yhadevol/Assexon.
Collapse
Affiliation(s)
- Hao Yuan
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean Universitiy), Ministry of Education, Shanghai, China
| | - Calder Atta
- School of Aquatic and Fishery Sciences and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean Universitiy), Ministry of Education, Shanghai, China
| |
Collapse
|
132
|
Abstract
Analysis of sequence read pairs can be essential for characterizing structural variation, including junction-spanning pairs of reads (JSPRs) suggesting recent lateral/horizontal gene transfer. TwinBLAST can be used to facilitate this analysis of JSPRs by enabling the visualization and curation of two BLAST reports side by side in a single interface. Analysis of sequence read pairs can be essential for characterizing structural variation, including junction-spanning pairs of reads (JSPRs) suggesting recent lateral/horizontal gene transfer. TwinBLAST can be used to facilitate this analysis of JSPRs by enabling the visualization and curation of two BLAST reports side by side in a single interface.
Collapse
|
133
|
Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE. Molecular Dating of the Emergence of Anaerobic Rumen Fungi and the Impact of Laterally Acquired Genes. mSystems 2019; 4:e00247-19. [PMID: 31455637 PMCID: PMC6712302 DOI: 10.1128/msystems.00247-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023] Open
Abstract
The anaerobic gut fungi (AGF), or Neocallimastigomycota, inhabit the rumen and alimentary tract of herbivorous mammals, where they play important roles in the degradation of plant fiber. Comparative genomic and phylogenomic analyses of the AGF have long been hampered by their fastidious growth condition, as well as their large (up to 200 Mb) and AT-biased (78 to 84%) genomes. We sequenced 21 AGF transcriptomes and combined them with 5 available AGF genome sequences to explore their evolutionary relationships, time their divergence, and characterize gene gain/loss patterns associated with their evolution. We estimate that the most recent common ancestor of the AGF diverged 66 (±10) million years ago, a time frame that coincides with the evolution of grasses (Poaceae), as well as the mammalian transition from insectivory to herbivory. The concordance of independent estimations suggests that AGF have been important in shaping the success of mammalian herbivory transition by improving the efficiency of energy acquisition from recalcitrant plant materials. Comparative genomics identified multiple lineage-specific genes in the AGF, two of which were acquired from rumen gut bacteria and animal hosts via horizontal gene transfer (HGT). A third AGF domain, plant-like polysaccharide lyase, represents a novel gene in fungi that potentially aids AGF to degrade pectin. Analysis of genomic and transcriptomic sequences confirmed both the presence and expression of these lineage-specific genes in nearly all AGF clades. These genetic elements may contribute to the exceptional abilities of AGF to degrade plant biomass and enable metabolism of the rumen microbes and animal hosts.IMPORTANCE Anaerobic fungi living in the rumen of herbivorous mammals possess an extraordinary ability to degrade plant biomass. We examined the origin and genomic composition of these poorly characterized anaerobic gut fungi using both transcriptome and genomic data. Phylogenomics and molecular dating analyses found remarkable concurrence of the divergence times of the rumen fungi, the forage grasses, and the dietary shift of ancestral mammals from primarily insectivory to herbivory. Comparative genomics identified unique machinery in these fungi to utilize plant polysaccharides. The rumen fungi were also identified with the ability to code for three protein domains with putative functions in plant pectin degradation and microbial defense, which were absent from all other fungal organisms (examined over 1,000 fungal genomes). Two of these domains were likely acquired from rumen gut bacteria and animal hosts separately via horizontal gene transfer. The third one is a plant-like polysaccharide lyase, representing a unique fungal enzyme with potential pectin breakdown abilities.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew Brian Couger
- High Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
134
|
Bagheri H, Muppirala U, Masonbrink RE, Severin AJ, Rajan H. Shared data science infrastructure for genomics data. BMC Bioinformatics 2019; 20:436. [PMID: 31438850 PMCID: PMC6704658 DOI: 10.1186/s12859-019-2967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Creating a scalable computational infrastructure to analyze the wealth of information contained in data repositories is difficult due to significant barriers in organizing, extracting and analyzing relevant data. Shared data science infrastructures like Boag is needed to efficiently process and parse data contained in large data repositories. The main features of Boag are inspired from existing languages for data intensive computing and can easily integrate data from biological data repositories. RESULTS As a proof of concept, Boa for genomics, Boag, has been implemented to analyze RefSeq's 153,848 annotation (GFF) and assembly (FASTA) file metadata. Boag provides a massive improvement from existing solutions like Python and MongoDB, by utilizing a domain-specific language that uses Hadoop infrastructure for a smaller storage footprint that scales well and requires fewer lines of code. We execute scripts through Boag to answer questions about the genomes in RefSeq. We identify the largest and smallest genomes deposited, explore exon frequencies for assemblies after 2016, identify the most commonly used bacterial genome assembly program, and address how animal genome assemblies have improved since 2016. Boag databases provide a significant reduction in required storage of the raw data and a significant speed up in its ability to query large datasets due to automated parallelization and distribution of Hadoop infrastructure during computations. CONCLUSIONS In order to keep pace with our ability to produce biological data, innovative methods are required. The Shared Data Science Infrastructure, Boag, provides researchers a greater access to researchers to efficiently explore data in new ways. We demonstrate the potential of a the domain specific language Boag using the RefSeq database to explore how deposited genome assemblies and annotations are changing over time. This is a small example of how Boag could be used with large biological datasets.
Collapse
Affiliation(s)
- Hamid Bagheri
- Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, 50011 USA
| | - Usha Muppirala
- Genome Informatics Facility, Iowa State University, 206 Science I, Ames, 50011 USA
| | - Rick E. Masonbrink
- Genome Informatics Facility, Iowa State University, 206 Science I, Ames, 50011 USA
| | - Andrew J. Severin
- Genome Informatics Facility, Iowa State University, 206 Science I, Ames, 50011 USA
| | - Hridesh Rajan
- Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, 50011 USA
| |
Collapse
|
135
|
Matsui M, Iwasaki W. Graph Splitting: A Graph-Based Approach for Superfamily-Scale Phylogenetic Tree Reconstruction. Syst Biol 2019; 69:265-279. [DOI: 10.1093/sysbio/syz049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
A protein superfamily contains distantly related proteins that have acquired diverse biological functions through a long evolutionary history. Phylogenetic analysis of the early evolution of protein superfamilies is a key challenge because existing phylogenetic methods show poor performance when protein sequences are too diverged to construct an informative multiple sequence alignment (MSA). Here, we propose the Graph Splitting (GS) method, which rapidly reconstructs a protein superfamily-scale phylogenetic tree using a graph-based approach. Evolutionary simulation showed that the GS method can accurately reconstruct phylogenetic trees and be robust to major problems in phylogenetic estimation, such as biased taxon sampling, heterogeneous evolutionary rates, and long-branch attraction when sequences are substantially diverge. Its application to an empirical data set of the triosephosphate isomerase (TIM)-barrel superfamily suggests rapid evolution of protein-mediated pyrimidine biosynthesis, likely taking place after the RNA world. Furthermore, the GS method can also substantially improve performance of widely used MSA methods by providing accurate guide trees.
Collapse
Affiliation(s)
- Motomu Matsui
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
136
|
Batista MB, Chandra G, Monteiro RA, de Souza EM, Dixon R. Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae. Nucleic Acids Res 2019. [PMID: 29529262 PMCID: PMC5934665 DOI: 10.1093/nar/gky142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors. Comparison of DNA binding motifs between the three promoter groups suggests Group III promoters are potentially co-activated by Fnr3–Fnr1 heterodimers. Specific interaction between Fnr1 and Fnr3, detected in two-hybrid assays, was dependent on conserved residues in their dimerization interfaces, indicative of heterodimer formation in vivo. The requirements for co-activation of the fnr1 promoter, belonging to Group III, suggest either sequential activation by Fnr3 and Fnr1 homodimers or the involvement of Fnr3–Fnr1 heterodimers. Analysis of Fnr proteins with swapped activation domains provides evidence that co-activation by Fnr1 and Fnr3 at Group III promoters optimises interactions with RNA polymerase to fine-tune transcription in response to prevailing oxygen concentrations.
Collapse
Affiliation(s)
- Marcelo Bueno Batista
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, P.O. Box 19046, Curitiba, PR 81531-990, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, P.O. Box 19046, Curitiba, PR 81531-990, Brazil
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
137
|
Stöver BC, Wiechers S, Müller KF. JPhyloIO: a Java library for event-based reading and writing of different phylogenetic file formats through a common interface. BMC Bioinformatics 2019; 20:402. [PMID: 31331268 PMCID: PMC6647125 DOI: 10.1186/s12859-019-2982-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Today a variety of phylogenetic file formats exists, some of which are well-established but limited in their data model, while other more recently introduced ones offer advanced features for metadata representation. Although most currently available software only supports the classical formats with a limited metadata model, it would be desirable to have support for the more advanced formats. This is necessary for users to produce richly annotated data that can be efficiently reused and make underlying workflows easily reproducible. A programming library that abstracts over the data and metadata models of the different formats and allows supporting all of them in one step would significantly simplify the development of new and the extension of existing software to address the need for better metadata annotation. RESULTS We developed the Java library JPhyloIO, which allows event-based reading and writing of the most common alignment and tree/network formats. It allows full access to all features of the nine currently supported formats. By implementing a single JPhyloIO-based reader and writer, application developers can support all of these formats. Due to the event-based architecture, JPhyloIO can be combined with any application data structure, and is memory efficient for large datasets. JPhyloIO is distributed under LGPL. Detailed documentation and example applications (available on http://bioinfweb.info/JPhyloIO/ ) significantly lower the entry barrier for bioinformaticians who wish to benefit from JPhyloIO's features in their own software. CONCLUSION JPhyloIO enables simplified development of new and extension of existing applications that support various standard formats simultaneously. This has the potential to improve interoperability between phylogenetic software tools and at the same time motivate usage of more recent metadata-rich formats such as NeXML or phyloXML.
Collapse
Affiliation(s)
- Ben C Stöver
- Institute for Evolution and Biodiversity, WWU Münster, Hüfferstraße 1, 48149, Münster, Germany.
| | - Sarah Wiechers
- Institute for Evolution and Biodiversity, WWU Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Kai F Müller
- Institute for Evolution and Biodiversity, WWU Münster, Hüfferstraße 1, 48149, Münster, Germany
| |
Collapse
|
138
|
Qiu L, Liu X. Identification of key genes involved in myocardial infarction. Eur J Med Res 2019; 24:22. [PMID: 31269974 PMCID: PMC6607516 DOI: 10.1186/s40001-019-0381-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background This study focuses on the identification of conserved genes involved in myocardial infarction (MI), and then analyzed the differentially expressed genes (DEGs) between the incident and recurrent events to identify MI-recurrent biomarkers. Methods Gene expression data of MI peripheral blood were downloaded from GSE97320 and GSE66360 datasets. We identified the common DEGs in these two datasets by functional enrichment analysis and protein–protein interaction (PPI) network analysis. GSE48060 was further analyzed to validate the conserved genes in MI and to compare the DEGs between the incident and recurrent MI. Results A total of 477 conserved genes were identified in the comparison between MI and control. Protein–protein interaction (PPI) network showed hub genes, such as MAPK14, STAT3, and MAPKAPK2. Part of those conserved genes was validated in the analysis of GSE48060. The DEGs in the incident and recurrent MI showed significant differences, including RNASE2 and A2M-AS1 as the potential biomarkers of MI recurrence. Conclusions The conserved genes in the pathogenesis of MI were identified, benefit for target therapy. Meanwhile, some specific genes may be used as markers for the prediction of recurrent MI. Electronic supplementary material The online version of this article (10.1186/s40001-019-0381-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linlin Qiu
- Danyang People's Hospital of Jiangsu Province, Danyang, China
| | - Xueqing Liu
- Danyang People's Hospital of Jiangsu Province, Danyang, China.
| |
Collapse
|
139
|
Mujic AB, Huang B, Chen MJ, Wang PH, Gernandt DS, Hosaka K, Spatafora JW. Out of western North America: Evolution of the Rhizopogon-Pseudotsuga symbiosis inferred by genome-scale sequence typing. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
140
|
Zhang LN, Ma PF, Zhang YX, Zeng CX, Zhao L, Li DZ. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol Phylogenet Evol 2019; 137:222-235. [PMID: 31112779 DOI: 10.1016/j.ympev.2019.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/18/2022]
Abstract
With the development of sequencing technologies, the use of multiple nuclear genes has become conventional for resolving difficult phylogenies. However, this technique also presents challenges due to gene-tree discordance, as a result of incomplete lineage sorting (ILS) and reticulate evolution. Although alleles can show sequence variation within individuals, which contain information regarding the evolution of organisms, they continue to be ignored in almost all phylogenetic analyses using randomly phased genome sequences. Here, we tried to incorporate alleles from multiple nuclear loci to study the phylogeny of the economically important bamboo genus Phyllostachys (Poaceae, Bambusoideae). Obtaining a total of 3926 sequences, we documented extensive allelic variation for 61 genes from 39 sampled species. Using datasets consisting of selected alleles, we demonstrated substantial discordance among phylogenetic relationships inferred from different alleles, as well as between concatenation and coalescent methods. Furthermore, ILS and hybridization were suggested to be underlying causes of the discordant phylogenetic signals. Taking these possible causes for conflicting phylogenetic results into consideration, we recovered the monophyly of Phyllostachys and its two morphology-defined sections. Our study also suggests that alleles deserve more attention in phylogenetic studies, since ignoring them can yield highly supported but spurious phylogenies. Meanwhile, alleles are helpful for unraveling complex evolutionary processes, particularly hybridization.
Collapse
Affiliation(s)
- Li-Na Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Xiao Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Chun-Xia Zeng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
141
|
Misra VA, Wafula EK, Wang Y, dePamphilis CW, Timko MP. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC PLANT BIOLOGY 2019; 19:196. [PMID: 31088371 PMCID: PMC6515653 DOI: 10.1186/s12870-019-1786-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/17/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root parasitic weeds are a major constraint to crop production worldwide causing significant yearly losses in yield and economic value. These parasites cause their destruction by attaching to their hosts with a unique organ, the haustorium, that allows them to obtain the nutrients (sugars, amino acids, etc.) needed to complete their lifecycle. Parasitic weeds differ in their nutritional requirements and degree of host dependency and the differential expression of sugar transporters is likely to be a critical component in the parasite's post-attachment survival. RESULTS We identified gene families encoding monosaccharide transporters (MSTs), sucrose transporters (SUTs), and SWEETs (Sugars Will Eventually be Exported Transporters) in three root-parasitic weeds differing in host dependency: Triphysaria versicolor (facultative hemiparasite), Phelipanche aegyptiaca (holoparasite), and Striga hermonthica (obligate hemiparasite). The phylogenetic relationship and differential expression profiles of these genes throughout parasite development were examined to uncover differences existing among parasites with different levels of host dependence. Differences in estimated gene numbers are found among the three parasites, and orthologs within the different sugar transporter gene families are found to be either conserved among the parasites in their expression profiles throughout development, or to display parasite-specific differences in developmentally-timed expression. For example, MST genes in the pGLT clade express most highly before host connection in Striga and Triphysaria but not Phelipanche, whereas genes in the MST ERD6-like clade are highly expressed in the post-connection growth stages of Phelipanche but highest in the germination and reproduction stages in Striga. Whether such differences reflect changes resulting from differential host dependence levels is not known. CONCLUSIONS While it is tempting to speculate that differences in estimated gene numbers and expression profiles among members of MST, SUT and SWEET gene families in Phelipanche, Striga and Triphysaria reflect the parasites' levels of host dependence, additional evidence that altered transporter gene expression is causative versus consequential is needed. Our findings identify potential targets for directed manipulation that will allow for a better understanding of the nutrient transport process and perhaps a means for controlling the devastating effects of these parasites on crop productivity.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Eric K. Wafula
- Department of Biology, Penn State University, University Park, PA 16802 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Present Address: Center for Quantitative Sciences, Vanderbilt University, 2220 Pierce Avenue, 571 Preston Research Building, Nashville, TN 37232-6848 USA
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|
142
|
Abstract
Sleep deprivation has been reported to be a contributing factor for the epidemic of obesity. However, it is still largely unknown how sleep deprivation contributes to obesity at the transcriptional level. Here, we identified the significantly changed genes and pathways that may contribute to the sleep deprivation-induced obesity by analyzing two online datasets, including mouse obesity database and mouse sleep deprivation database. 298 differentially expressed genes (DEGs) were identified in high fat diet mice as compared to normal diet mice, while 541 DEGs were identified in mice with sleep deprivation when compared with mice with normal sleep. There are 12 common DEGs, such as Saa3 and Plin4, in both comparisons. And six of common DEGs were validated in other Gene Expression Omnibus (GEO) dataset. GO and KEGG pathway analyses revealed 19 common altered pathways, and most of them were metabolic processes, including steroid metabolic process, small molecule metabolic process and cholesterol metabolic process. Notably, we found that Aldoc, Cyp2b10, Nsdhl, Pcsk9, Saa3, Plin4 and Acss2 were involved in most of those altered pathways. Taken together, our study suggests that Saa3, Plin4, Aldoc, Cyp2b10, Nsdhl, Pcsk9 and Acss2 might be involved in sleep deprivation-induced obesity by regulating metabolic processes.
Collapse
Affiliation(s)
- YI WEI
- Nanjing Forest Police College, Nanjing 210023, P. R. China
| |
Collapse
|
143
|
Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, de la Providencia I, Ndikumana S, Beaudet D, Hainaut M, Drula E, Kuo A, Tang N, Roy S, Viala J, Henrissat B, Grigoriev IV, Corradi N, Roux C, Martin FM. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. THE NEW PHYTOLOGIST 2019; 222:1584-1598. [PMID: 30636349 DOI: 10.1111/nph.15687] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 05/21/2023]
Abstract
Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.
Collapse
Affiliation(s)
- Emmanuelle Morin
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| | - Shingo Miyauchi
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Adrian Pelin
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mathieu Hainaut
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
| | - Elodie Drula
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
| | - Alan Kuo
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Sébastien Roy
- Agronutrition- rue Pierre et Marie Curie, Immeuble BIOSTEP, 31670, Labège, France
| | - Julie Viala
- Agronutrition- rue Pierre et Marie Curie, Immeuble BIOSTEP, 31670, Labège, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, 13007, Marseille, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Francis M Martin
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forest University, 100080, Beijing, China
| |
Collapse
|
144
|
Grüning BA, Lampa S, Vaudel M, Blankenberg D. Software engineering for scientific big data analysis. Gigascience 2019; 8:giz054. [PMID: 31121028 PMCID: PMC6532757 DOI: 10.1093/gigascience/giz054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/20/2019] [Accepted: 04/18/2019] [Indexed: 11/14/2022] Open
Abstract
The increasing complexity of data and analysis methods has created an environment where scientists, who may not have formal training, are finding themselves playing the impromptu role of software engineer. While several resources are available for introducing scientists to the basics of programming, researchers have been left with little guidance on approaches needed to advance to the next level for the development of robust, large-scale data analysis tools that are amenable to integration into workflow management systems, tools, and frameworks. The integration into such workflow systems necessitates additional requirements on computational tools, such as adherence to standard conventions for robustness, data input, output, logging, and flow control. Here we provide a set of 10 guidelines to steer the creation of command-line computational tools that are usable, reliable, extensible, and in line with standards of modern coding practices.
Collapse
Affiliation(s)
- Björn A Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, D-79110 Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstr. 49, D-79104 Freiburg, Germany
| | - Samuel Lampa
- Pharmaceutical Bioinformatics group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Svante Arrhenius vag 16C, 106 91, Solna, Sweden
| | - Marc Vaudel
- K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Postboks 7804, 5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Postboks 7804, 5020, Bergen, Norway
| | - Daniel Blankenberg
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue / NE50, Cleveland, OH, USA
| |
Collapse
|
145
|
Kiening M, Ochsenreiter R, Hellinger HJ, Rattei T, Hofacker I, Frishman D. Conserved Secondary Structures in Viral mRNAs. Viruses 2019; 11:E401. [PMID: 31035717 PMCID: PMC6563262 DOI: 10.3390/v11050401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
RNA secondary structure in untranslated and protein coding regions has been shown to play an important role in regulatory processes and the viral replication cycle. While structures in non-coding regions have been investigated extensively, a thorough overview of the structural repertoire of protein coding mRNAs, especially for viruses, is lacking. Secondary structure prediction of large molecules, such as long mRNAs remains a challenging task, as the contingent of structures a sequence can theoretically fold into grows exponentially with sequence length. We applied a structure prediction pipeline to Viral Orthologous Groups that first identifies the local boundaries of potentially structured regions and subsequently predicts their functional importance. Using this procedure, the orthologous groups were split into structurally homogenous subgroups, which we call subVOGs. This is the first compilation of potentially functional conserved RNA structures in viral coding regions, covering the complete RefSeq viral database. We were able to recover structural elements from previous studies and discovered a variety of novel structured regions. The subVOGs are available through our web resource RNASIV (RNA structure in viruses; http://rnasiv.bio.wzw.tum.de).
Collapse
Affiliation(s)
- Michael Kiening
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, D-85354 Freising, Germany.
| | - Roman Ochsenreiter
- University of Vienna, Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, Währingerstr. 29, 1090 Vienna, Austria.
| | - Hans-Jörg Hellinger
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | - Ivo Hofacker
- University of Vienna, Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, Währingerstr. 29, 1090 Vienna, Austria.
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria.
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, D-85354 Freising, Germany.
- St Petersburg State Polytechnic University, St Petersburg 195251, Russia.
| |
Collapse
|
146
|
Identification of the OXA-48 Carbapenemase Family by Use of Tryptic Peptides and Liquid Chromatography-Tandem Mass Spectrometry. J Clin Microbiol 2019; 57:JCM.01240-18. [PMID: 30814261 DOI: 10.1128/jcm.01240-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/16/2019] [Indexed: 01/11/2023] Open
Abstract
Phenotypic detection of the OXA-48-type class D β-lactamases in Enterobacteriaceae is challenging. We describe a rapid (less than 90 min) assay for the identification of OXA-48 family carbapenemases in subcultured bacterial isolates based on a genoproteomic approach. Following in silico trypsin digestion to ascertain theoretical core peptides common to the OXA-48 family, liquid chromatography-tandem mass spectrometry (LC-MS/MS) data-dependent acquisition was used to identify candidate peptide markers. Two peptides were selected based on performance characteristics: ANQAFLPASTFK, a core peptide common to all 12 OXA-48 family β-lactamase members, and YSVVPVYQEFAR, a highly specific peptide common to 11 of 12 OXA-48 family proteins providing the basis for an LC-MS/MS multiple reaction monitoring assay. An accuracy assessment was performed that included 98 isolates, 26 of which were OXA-48 positive. Two additional specificity assessments were performed including a mixture of isolates positive for OXA-48, KPC, NDM, VIM, and IMP carbapenemases. A combination of expert rules and expert judgment was applied by blinded operators to identify positive isolates. All isolates containing an OXA-48 family carbapenemase across all three test sets were correctly identified with no false positives, demonstrating 100% sensitivity (95% confidence interval [CI], 91.2% to 100%) and 100% specificity (95% CI, 96.2% to 100%) for the assay. These findings provide a framework for an LC-MS/MS-based method for the direct detection of OXA-48 family carbapenemases from cultured isolates that may have utility in predicting carbapenem resistance and tracking hospital outbreaks of OXA-48-carrying organisms.
Collapse
|
147
|
Caron H, Molino J, Sabatier D, Léger P, Chaumeil P, Scotti‐Saintagne C, Frigério J, Scotti I, Franc A, Petit RJ. Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecol Evol 2019; 9:4897-4905. [PMID: 31031952 PMCID: PMC6476754 DOI: 10.1002/ece3.5096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.
Collapse
Affiliation(s)
- Henri Caron
- BIOGECOINRA, Univ. BordeauxCestasFrance
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
| | | | - Daniel Sabatier
- AMAP, IRD, Cirad, CNRS, INRAUniversité de MontpellierMontpellierFrance
| | | | | | - Caroline Scotti‐Saintagne
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
- INRA, UR629 Ecologie des Forêts MéditerranéennesURFMAvignonFrance
| | | | - Ivan Scotti
- INRAUMR 0745 EcoFoG (Ecologie des forêts de Guyane)KourouFrance
- INRA, UR629 Ecologie des Forêts MéditerranéennesURFMAvignonFrance
| | | | | |
Collapse
|
148
|
Ünlü ES, Ünüvar ÖC, Aydın M. Identification of alternative oxidase encoding genes in Caulerpa cylindracea by de novo RNA-Seq assembly analysis. Mar Genomics 2019; 46:41-48. [PMID: 30922784 DOI: 10.1016/j.margen.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/06/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
Abstract
Alternative oxidases (AOX) are defined in plants, fungi and algae. The main function of AOX proteins has been described for electron flow through electron transport chain and regulation of mitochondrial retrograde signaling pathway. The roles of AOX proteins have been characterized in reproduction and resistance against oxidative stress, cold stress, starvation, and biotic attacks. Caulerpa cylindracea is an invasive marine green alga. Although the natural habitats of the species are Australia coasts, the impact of the invasion has been monitored through the Mediterranean Sea and the Aegean Sea. C. cylindracea species have advantages against others by showing higher resistance to stress conditions such as cold, starvation, pathogen attacks and by their capability of sexual and vegetative reproduction. Comparing the advantages of C. cylindracea over the niche and defined functional roles of mitochondrial AOX proteins, it is evident that AOX proteins are likely involved in developing those advantageous skills in C. cylindracea. However, there is limited data about biochemical and molecular mechanisms that take part in stress resistance and invasion characteristics. We aimed to identify mitochondrial alternative oxidase encoding genes in C. cylindracea while annotating whole transcriptome data for the species. Samples were collected from Seferihisar/İzmir. Transcriptome analysis from pooled RNA samples revealed 47,400 assembled contigs represented by 33,340 unigenes. Using standalone Blast analysis, we were able to identify two alternative oxidase encoding genes.
Collapse
Affiliation(s)
- Ercan Selçuk Ünlü
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry, Bolu 14280, Turkey.
| | - Ömer Can Ünüvar
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry, Bolu 14280, Turkey
| | - Meryem Aydın
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry, Bolu 14280, Turkey
| |
Collapse
|
149
|
Spirkoski J, Shah A, Reiner AH, Collas P, Delbarre E. PML modulates H3.3 targeting to telomeric and centromeric repeats in mouse fibroblasts. Biochem Biophys Res Commun 2019; 511:882-888. [PMID: 30850162 DOI: 10.1016/j.bbrc.2019.02.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
Abstract
Targeted deposition of histone variant H3.3 into chromatin is paramount for proper regulation of chromatin integrity, particularly in heterochromatic regions including repeats. We have recently shown that the promyelocytic leukemia (PML) protein prevents H3.3 from being deposited in large heterochromatic PML-associated domains (PADs). However, to what extent PML modulates H3.3 loading on chromatin in other areas of the genome remains unexplored. Here, we examined the impact of PML on targeting of H3.3 to genes and repeat regions that reside outside PADs. We show that loss of PML increases H3.3 deposition in subtelomeric, telomeric, pericentric and centromeric repeats in mouse embryonic fibroblasts, while other repeat classes are not affected. Expression of major satellite, minor satellite and telomeric non-coding transcripts is altered in Pml-null cells. In particular, telomeric Terra transcripts are strongly upregulated, in concordance with a marked reduction in H4K20me3 at these sites. Lastly, for most genes H3.3 enrichment or gene expression outcomes are independent of PML. Our data argue towards the importance of a PML-H3.3 axis in preserving a heterochromatin state at centromeres and telomeres.
Collapse
Affiliation(s)
- Jane Spirkoski
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway
| | - Andrew H Reiner
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway; Oslo Center for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| | - Erwan Delbarre
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway.
| |
Collapse
|
150
|
Fischer MA, Güllert S, Refai S, Künzel S, Deppenmeier U, Streit WR, Schmitz RA. Long-term investigation of microbial community composition and transcription patterns in a biogas plant undergoing ammonia crisis. Microb Biotechnol 2019; 12:305-323. [PMID: 30381904 PMCID: PMC6390037 DOI: 10.1111/1751-7915.13313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 02/01/2023] Open
Abstract
Ammonia caused disturbance of biogas production is one of the most frequent incidents in regular operation of biogas reactors. This study provides a detailed insight into the microbial community of a mesophilic, full-scale biogas reactor (477 kWh h-1 ) fed with maize silage, dried poultry manure and cow manure undergoing initial process disturbance by increased ammonia concentration. Over a time period of 587 days, the microbial community of the reactor was regularly monitored on a monthly basis by high-throughput amplicon sequencing of the archaeal and bacterial 16S rRNA genes. During this sampling period, the total ammonia concentrations varied between 2.7 and 5.8 g l-1 [NH4 + -N]. To gain further inside into the active metabolic pathways, for selected time points metatranscriptomic shotgun analysis was performed allowing the quantification of marker genes for methanogenesis, hydrolysis and syntrophic interactions. The results obtained demonstrated a microbial community typical for a mesophilic biogas plant. However in response to the observed changing process conditions (e.g. increasing NH4 + levels, changing feedstock composition), the microbial community reacted highly flexible by changing and adapting the community composition. The Methanosarcina-dominated archaeal community was shifted to a Methanomicrobiales-dominated archaeal community in the presence of increased ammonia conditions. A similar trend as in the phylogenetic composition was observed in the transcription activity of genes coding for enzymes involved in acetoclastic methanogenesis and syntrophic acetate oxidations (Codh/Acs and Fthfs). In accordance, Clostridia simultaneously increased under elevated ammonia concentrations in abundance and were identified as the primary syntrophic interaction partner with the now Methanomicrobiales-dominated archaeal community. In conclusion, overall stable process performance was maintained during increased ammonia concentration in the studied reactor based on the microbial communities' ability to flexibly respond by reorganizing the community composition while remaining functionally stable.
Collapse
MESH Headings
- Ammonia/metabolism
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biofuels/microbiology
- Bioreactors/microbiology
- Cluster Analysis
- Culture Media/chemistry
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Longitudinal Studies
- Microbiota
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Martin Alexander Fischer
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
| | - Simon Güllert
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
- Institute of Microbiology & BiotechnologyUniversity HamburgBiozentrum Klein FlottbekHamburgGermany
| | - Sarah Refai
- Institute of Microbiology & BiotechnologyUniversity BonnMeckenheimer Allee 16853115BonnGermany
| | - Sven Künzel
- Max‐Planck‐Institute of Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
| | - Uwe Deppenmeier
- Institute of Microbiology & BiotechnologyUniversity BonnMeckenheimer Allee 16853115BonnGermany
| | - Wolfgang R. Streit
- Institute of Microbiology & BiotechnologyUniversity HamburgBiozentrum Klein FlottbekHamburgGermany
| | - Ruth Anne Schmitz
- Institute of General MicrobiologyChristian‐Albrechts‐University KielAm Botanischen Garten 1‐924118KielGermany
| |
Collapse
|